Alibaba Cloud

Apsara Stack Enterprise

Alibaba Cloud Message Queue

User Guide

Product Version: v3.16.2
Document Version: 20220816

(-] Alibaba Cloud

Alibaba Cloud Message Queue User Guide- Legal disclaimer

Legal disclaimer

Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions of this legal
disclaimer before you read or use this document. If you have read or used this document, it shall be deemed
as your total acceptance of this legal disclaimer.

1.

You shall download and obt ain this document from the Alibaba Cloud website or other Alibaba Cloud-
aut horized channels, and use this document for your own legal business activities only. The content of
this document is considered confidential information of Alibaba Cloud. You shall strictly abide by the
confidentiality obligations. No part of this document shall be disclosed or provided to any third party for
use wit hout the prior written consent of Alibaba Cloud.

. No part of this document shall be excerpted, translated, reproduced, transmitted, or disseminated by

any organization, company or individual in any form or by any means without the prior written consent of
Alibaba Cloud.

. The content of this document may be changed because of product version upgrade, adjustment, or

other reasons. Alibaba Cloud reserves the right to modify the content of this document without notice
and an updated version of this document will be released through Alibaba Cloud-aut horized channels
from time to time. You should pay attention to the version changes of this document as they occur and
download and obt ain the most up-to-date version of this document from Alibaba Cloud-aut horized
channels.

. This document serves only as a reference guide for your use of Alibaba Cloud products and services.

Alibaba Cloud provides this document based onthe "status quo", "being defective", and "existing
functions" of its products and services. Alibaba Cloud makes every effort to provide relevant operational
guidance based on existing technologies. However, Alibaba Cloud hereby makes a clear statement that
it in no way guarantees the accuracy, integrity, applicability, and reliability of the content of this
document, either explicitly or implicitly. Alibaba Cloud shall not take legal responsibility for any errors or
lost profits incurred by any organization, company, or individual arising from download, use, or trust in
this document. Alibaba Cloud shall not, under any circumstances, take responsibility for any indirect,
consequential, punitive, contingent, special, or punitive damages, including lost profits arising from t he
use or trust inthis document (evenif Alibaba Cloud has been notified of the possibility of such a loss).

. By law, allthe contents in Alibaba Cloud documents, including but not limited to pictures, architecture

design, page layout, and text description, are intellectual property of Alibaba Cloud and/or its
affiliates. This intellect ual property includes, but is not limited to, trademark rights, patent rights,
copyrights, and trade secrets. No part of this document shall be used, modified, reproduced, publicly
transmitted, changed, disseminated, distributed, or published wit hout the prior written consent of
Alibaba Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for marketing, advertising, promotion, or ot her purposes wit hout the prior written consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limited to, "Alibaba Cloud",
"Aliyun", "HiChina", and other brands of Alibaba Cloud and/or its affiliates, which appear separately or in
combination, as well as the auxiliary signs and patterns of the preceding brands, or anyt hing similar to
the company names, trade names, trademarks, product or service names, domain names, patterns,
logos, marks, signs, or special descriptions that third parties identify as Alibaba Cloud and/or its
affiliates.

. Please directly contact Alibaba Cloud for any errors of this document.

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Document conventions

Document conventions

Style

/\ Danger

warning

) Notice

@ Note

Bold

Courier font

Italic

(1 or [alb]

{} or {a|b}

Description

A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

A note indicates supplemental
instructions, best practices, tips, and
other content.

Closing angle brackets are used to
indicate a multi-level menu cascade.

Bold formatting is used for buttons ,
menus, page names, and other Ul
elements.

Courier font is used for commands

ltalic formatting is used for parameters
and variables.

This format is used for an optional value,
where only one item can be selected.

This format is used for a required value,
where only one item can be selected.

Example

& Danger:

Resetting will result in the loss of user
configuration data.

warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

p Notice:

If the weight is set to 0, the server no
longer receives new requests.

@ Note:

You can use Ctrl + A to select all files.

Click Settings> Network> Set network
type.

Click OK.

Runthe cd /d C:/window command to
enter the Windows system folder.

bae log list --instanceid

Instance_ID

ipconfig [-all|-t]

switch {active|stand}

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Table of Contents

Table of Contents

1.What is Message Queue for Apache RocketMQ? ————————————— 10
2.Updates == e 11
B3.Quick start = e 13
3. OV eIV OW mmmm e e e e 13
3.2. Log on to the Message Queue for Apache RocketMQ cons... -——-—-- 15
3.3. Create resources S s e e 16
3.4. Send Messages — e 18
3.4.1. Use the TCP client SDK for Java to send and subscribe...——— 18
3.4.2. Use the HTTP client SDK for Java to send and subscri...——— 21
3.4.3. Check whether messages are sent - 25
3.5. Subscribe to messages - 25
4.Message types e s e 27
4.1. Normal messages ----——----=-==m-mmmmmmmmm 27
4.2. Scheduled messages and delayed messages ------------------==----m-m-m--- 27
4.3. Transactional messages ----—----——--——-mmmmmmmmmmrmm - 29
4.4, Ordered mMESSAQES -—-——---===m-mmmmm s 31
5.Console guide 35
5.1. Resource management s e e 35
5.1.1. Resource management OVerview - 35
5.1.2. Manage instanCes s e e e 35
5.1.3. Manage topics #sermrmmmre i e e 36
5.1.4. Manage groups =temm e e 38
5.2. M@55aQ€ QUEIY === e 40
5.2.1. Overview st e 40
5.2.2. QUery messages st e e 4
5.2.3. Query results S tem s e 42

> Document Version: 20220816

User Guide-Table of Contents Alibaba Cloud Message Queue

5.3. M@SSage tracing —----—m--m—mmmmmmmmm 43
5.3, OVEIVIOW === e e oo 43
5.3.2. Query message traces --—-------=m—mms=mmmmmmmm e 45
5.3.3. Status in message traces - 47

5.4. View the consumer status - 48

5.5. Reset consumer Offsets —-----mmmmmmmmm 50

5.6. Dead-letter qUeUES ———-=--mmmmmmm 51

5.7. Resource statistics -————————r 54
5.70. OVEIVIBW == e e e e oo 54
5.7.2. Query the statistics of produced messages ------------=-=--=-=----=--—= 54
5.7.3. Query the statistics of consumed messages ----------—-=-=--=-=----=---= 55

5.8. Account authorization management ----------——---mmmmmmom e 56

5.9. Switch between different access modes --------——=-====—==mmmmmmmmmmmmmemee- 58

5.10. Bind a VPC to a Message Queue for Apache RocketMQ in..-———- 58

5.11. Route messages from a cluster to another cluster ——--—-——---——-——— 61

6.SDK user guide ————— 69

6.1. OVeIVIeW oo 69

6.2. SDK user guide ————-—-omm 69
6.2.1. DEMO Projects ——-—m-mmmmmmmm e 20

6.2.0.1. OVEIVIEW === e e 70
6.2.1.2. Prepare the environment ---—-——----==m-mmmmmmmmmmem 70
6.2.1.3. Configure a demo project --———-----—---=mmmmmmmmmmmmmme 70
6.2.1.4. Run the demo project --------——----m=mmmmmmmmmmmem e 72
6.2.2. Client parameters ———————eee o 73
6.2.3. Client error codes ———smme o 80
6.2.4. SDK for Java ——————rooo oo oo o 84
6.2.4.1. Usage notes e cnn el vt s s ns S ot 85
6.2.4.2. Prepare the environment - 87

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Table of Contents

6.2.4.3. Configure logging -~ 87
6.2.4.4. Spring integration - 90
6.2.4.4.1. OVEIVIEW - 90
6.2.4.4.2. Integrate a producer with Spring - 90
6.2.4.4.3. Integrate a transactional message producer with..-—-— 92
6.2.4.4.4. Integrate a consumer with Spring ——————-—mmv 94
6.2.4.5. Three modes for sending messages -———--————————-—— 96
6.2.4.5.1. Overview &2 s cnp e w o s inc S ot 96
6.2.4.5.2. Reliable synchronous transmission -------—--—-—--——---- 97
6.2.4.5.3. Reliable asynchronous transmission —-------=-=-=-==-m-mmsemm 99
6.2.4.5.4. One-way transmission === we o e e ou s 101
6.2.4.6. Send messages by using multiple threads - 103
6.2.4.7. Send and subscribe to ordered messages ---------—----------= 105
6.2.4.8. Send and subscribe to transactional messages —-——————— 108
6.2.4.9. Send and subscribe to delayed messages - 112
6.2.4.10. Send and subscribe to scheduled messages -—--—-—--—--—--—--—— 114
6.2.4.11. Subscribe to messages - 115
6.2.5. SDK for C or C4+ 118
6.2.5.1. Prepare the SDK for C or C++ environment -—--—-——--—--——-——- 118
6.2.5.1.1. OVErVIeW == 118
6.2.5.1.2. Download SDK for C++ - 118
6.2.5.1.3. Use SDK for C++ in Linux —-—--—-=-m-mmmmmmmmmmme oo 119
6.2.5.2. Send and subscribe to normal messages --—-----—--—-—--—--—-——-——- 119
6.2.5.3. Send and subscribe to ordered messages - 119
6.2.5.4. Send and subscribe to scheduled messages --—---—--—--—--—--—--— 122
6.2.5.5. Send and subscribe to transactional messages -——--—--—--—---— 124
6.2.5.6. Subscribe to messages - 126
6.2.6. SDK for .NET s =fesm e miam s e s 128

> Document Version: 20220816 I

User Guide-Table of Contents Alibaba Cloud Message Queue

6.2.6.1. .Prepare the SDK for .NET environment ----—-----—--—------— 128
6.2.6.1.1. Overview s e 128
6.2.6.1.2. Download SDK for .NET ==t rr—r——u—m—r 128
6.2.6.1.3. .Configure SDK for .NET == 129

6.2.6.2. Send and subscribe to normal messages - 135

6.2.6.3. Send and subscribe to ordered messages - 136

6.2.6.4. Send and subscribe to scheduled messages -——-—--—--—-——-— 139

6.2.6.5. Send and subscribe to transactional messages -—--—--———-— 140

6.2.6.6. Subscribe to messages ===ttt e 145

6.3. HTTP client SDK reference ~————tee—r—o——w——— 0 147
6.3.1. Protocol description st —w a0 147

6.3.1.1. Common parameters s=—=s=ra e e e 147

6.3.1.2. Request signatures st s 148

6.3.1.3. Operation for sending messages ——-—--———-—-———————— 149

6.3.1.4. Operation for consuming messages - 151

6.3.1.5. Operation for acknowledging messages - 156

6.3.2. Java SDK ss=trmmmsmmn o smmias e s 159

6.3.2.1. Prepare the environment =—————sr———a——— 159

6.3.2.2. Send and consume normal messages ~—--------------=----mm-m--mom 160

6.3.2.3. Send and consume ordered messages -—-------------=----------—— 164

6.3.2.4. Send and consume scheduled messages and delaye...----— 168

6.3.2.5. Send and consume transactional messages -------—---—---—----— 172

6.3.3. GO SDK oo 178

6.3.3.1. Prepare the environment == 178

6.3.3.2. Send and consume normal messages —---—--——-—————— 179

6.3.3.3. Send and consume ordered messages - 183

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Table of Contents

6.3.4. Python SDK oo 197
6.3.4.1. Prepare the environment -
6.3.4.2. Send and consume normal messages ——---——---=--==-—--m—m--— 132
6.3.4.3. Send and consume ordered messages ————-———— 201
6.3.4.4. Send and consume scheduled messages and delaye...---—— 205
6.3.4.5. Send and consume transactional messages ---—-——--—-——-——— 208

6.3.5. Node.js SDK oo 213
6.3.5.1. Prepare the environment ———————— 214
6.3.5.2. Send and consume normal messages ——---—--—--—--——---——--— 214
6.3.5.3. Send and consume ordered messages —-----—-----—-=-----—---— 217
6.3.5.4. Send and consume scheduled messages and delaye...--—-- 221
6.3.5.5. Send and consume transactional messages -------—------------~ 225

6.3.6. PHP SDK = =rrat s & S e e e e e 230
6.3.6.1. Prepare the environment —————————— 230
6.3.6.2. Send and consume normal messages -~ 231
6.3.6.3. Send and consume ordered messages -~ 235
6.3.6.4. Send and consume scheduled messages and delaye...——— 239
6.3.6.5. Send and consume transactional messages -—————————— 243

6.3.7. C# SDK &S fovesivascnnbems i cumm mmum o ol Surcasiie 248
6.3.7.1. Prepare the environment —---—-----—mmmmmmmmmmme 248
6.3.7.2. Send and consume normal messages ---------------—-----—--—= 249
6.3.7.3. Send and consume ordered messages --------------—-----—---—= 253
6.3.7.4. Send and consume scheduled messages and delaye... --——-- 257
6.3.7.5. Send and consume transactional messages —--—--——-—-——-——— 261

6.3.8. C++ SDK ———-riii oo oo 268
6.3.8.1. Prepare the environment - 268
6.3.8.2. Send and consume normal messages —————————————— 271
6.3.8.3. Send and consume ordered messages - 275

> Document Version: 20220816 v

User Guide-Table of Contents Alibaba Cloud Message Queue

6.3.8.5. Send and consume transactional messages -------—-—-----—-—--—-— 283
7.Best practices === 291
7. Clustering consumption and broadcasting consumption - 291
7.2. Message filtering ~———— 293
7.3. Subscription consistency - mmmm e 295
7.4. Consumption idempotence -~ 298
7.5. Active geo-redundancy 299
7.6. Message routing -———--—----==-mmmmmm e 301
8.5ervice usage FAQ - 304
Bl FAQ s e 304
8.1.1. Quick start ——-———————————e e 304
8.1.2. Configurations —---——===-———m-m - 305
8.1.3. Message traCing s e s e 306
8.1.4. Alert handling ——- 307
8.1.5. Ordered mMeESSAQEeS - 307
8.2. Exceptions ————r o 308
8.2.1. Usage-related exceptions =ssssmime s inas e o i 308
8.2.2. Nonexistent resouUrCes --------=-=m=mmmmmmmmmm e 310
8.2.3. Inconsistent status - 311
8.3. Troubleshooting ——-—--—---rr 314
8.3.1. Unexpected consumer connections -—------—=--—-——---mmmmmmmm - 314
8.3.2. Inconsistent subscriptions = ai s an 315
8.3.3. Message accumulation ——————————— 317
8.3.4. Message accumulation in Java processes - 318
8.3.5. Application OOM due to message caching on the client —- 319
8.3.6. AuthenticationException reported due to failure in sen... - 320

Vi

> Document Version: 20220816

User Guide-What is Message Queue
for Apache RocketMQ?

1.What is Message Queue for
Apache RocketMQ?

Message Queue for Apache RocketMQ is a distributed messaging middleware that is developed based
on Apache Rocket MQ. Message Queue for Apache Rocket MQ features low latency, high concurrency,
high availability, and high reliability.

Alibaba Cloud Message Queue

Message Queue for Apache RocketMQ provides a complete set of cloud messaging services based on
the technologies that are used for building highly available and distributed clusters. The messaging
services include message subscription and publishing, message tracing, scheduled and delayed
messages, and resource statistics. Message Queue for Apache Rocket MQ is used as a core service in an
enterprise-grade Internet architecture. Message Queue for Apache RocketMQ provides asynchronous
decoupling and peak-load shifting capabilities for distributed application systems. It also supports
various features for Internet applications, including accumulation of large numbers of messages, high
throughput, and reliable message consumption retries. Message Queue for Apache RocketMQ is one of
the core cloud services that are used to support the Double 11 Shopping Festival.

Message Queue for Apache Rocket MQ supports connections over TCP and HTTP and supports multiple
programming languages such as Java, C++, and .NET. T his allows you to connect applications that are
developed in different programming languages to Message Queue for Apache RocketMQ.

> Document Version: 20220816 10

User Guide- Updates Alibaba Cloud Message Queue

2.Updates

This topic describes the updates of Message Queue for Apache RocketMQ fromV3.8.0 to V3.8.1 to help
you get started with the updated version.

Optimization of resource isolation by instance

Message Queue for Apache RocketMQ provides instances for multi-tenancy isolation. Each user can
purchase multiple instances and logically isolate them from each other.

To ensure the compatibility with the existing resources of existing users, Message Queue for Apache
RocketMQ provides the following types of instances and namespaces:

e Default instances, which are compatible with the existing resources of existing users

o This type of instance has no separate namespace. Resource names must be globally unique wit hin
and across all instances.

o By default, aninstance without a namespace is automatically generated for the existing resources
of each existing user. If no existing resources are available, you can create at most one instance
without a namespace.

o You can configure the endpoint, which can be obtained fromthe Instances page in the Message
Queue for Apache Rocket MQ console.

// Recommended configuration:

properties.put (PropertyKeyConst.NAMESRV ADDR, "xxxx");

// Compatible configuration, which is not recommended. We recommend that you update thi
s configuration to the recommended configuration:

properties.put (PropertyKeyConst.ONSAddr, "xxxx");

e New instances

o A new instance has a separate namespace. Resource names must be unique within an instance but
can be the same across different instances.

o You can configure the endpoint, which can be obtained fromthe Instances page in the Message
Queue for Apache RocketMQ console.

// Recommended configuration:
properties.put (PropertyKeyConst .NAMESRV ADDR, "xxx");

o A RocketMQ client must be updated to the following latest versions for different programming
languages:

m Java: V1.8.7.1.Final
m Cand C++:V2.0.0
m NET:V1.1.3

Optimization of resource application

Previously, Message Queue for Apache Rocket MQ resources consisted of topics, producer IDs, and
consumer IDs. Each two of the resources have a many-to-many relationship, which was difficult to
comprehend. Each time you created a topic, you must associate the topic with a producer ID and a
consumer ID. This process was too complex for medium- and large-sized enterprise customers.

To optimize user experience and help new users get started, the resource application process has been
simplified.

11 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.7.1.Final/ons-client-1.8.7.1.Final.jar?spm=a2c4g.11186623.2.19.28e57c33GHLvgc&file=ons-client-1.8.7.1.Final.jar
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.4b6a10d9123MR2&file=aliyun-mq-linux-cpp-sdk.tar.gz
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.7524160crag7cy&file=aliyun-mq-windows-net-sdk.rar

Alibaba Cloud Message Queue User Guide- Updates

The resource application process has been optimized in the following aspects:

e Topic management, which is unchanged

o You need to apply for a topic. A topic is used to classify messages. It is the primary classifier.

e Group management

o You do not need to apply for a producer ID. Producer IDs and consumer IDs are integrated into
group IDs. In the Message Queue for Apache RocketMQ console, the Producers module has been
removed. The Producers and Consumers modules have been integrated into the Groups module.

o You do not need to associate a producer ID or consumer ID with a topic. Instead, you need only to
apply for a group ID and associate it with a topic in the code.

o Compatibility:
m The list of producer IDs is no longer displayed. This does not affect the current services.

m The consumer IDs that start with CID- or CID_ and that you have applied for can still be used and
can be set in the PropertyKeyConst.Consumerld or PropertyKeyConst.GROUP_ID parameter of the
code.

e Sample code

@ Note

o We recommend that you update a RocketMQ client to the following latest versions for
different programming languages:

m Java: V1.8.7.1.Final
m Cand C++:V2.0.0
m NET:V1.1.3

o Existing producer IDs or consumer IDs can still be used and do not affect the current
services. However, we recommend that you update your instance configuration to the
recommended configuration.

o Recommended configuration: Integrate producer IDs and consumer IDs into group IDs.

// Set the PropertyKeyConst.GROUP ID parameter. The original PropertyKeyConst.ProducerI
d and PropertyKeyConst.ConsumerId parameters are deprecated.
properties.put (PropertyKeyConst.GROUP ID, "The original CID-XXX or the GID-XXX");

o Compatible configuration: Use a producer ID to identify a producer and a consumer ID to identify a
consumer.

// When you create a producer, you must set the PropertyKeyConst.ProducerId parameter.
properties.put (PropertyKeyConst.ProducerId, "The original PID-XXX or the GID-XXX");
// When you create a consumer, you must set the PropertyKeyConst.ConsumerId parameter.

properties.put (PropertyKeyConst.ConsumerId, "The original CID-XXX or the GID-XXX");

> Document Version: 20220816 12

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.7.1.Final/ons-client-1.8.7.1.Final.jar?spm=a2c4g.11186623.2.19.28e57c33GHLvgc&file=ons-client-1.8.7.1.Final.jar
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.4b6a10d9123MR2&file=aliyun-mq-linux-cpp-sdk.tar.gz
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.7524160crag7cy&file=aliyun-mq-windows-net-sdk.rar

User Guide- Quick start Alibaba Cloud Message Queue

3.Quick start
3.1. Overview

Message Queue for Apache RocketMQ provides TCP client SDKs and HTTP client SDKs for multiple
programming languages. You can use the SDKs to send and subscribe to different types of messages.
T his topic describes how to use TCP client SDKs and HTTP client SDKs for multiple programming
languages to send and subscribe to normal messages and the relevant usage notes.

Background information

If your application that is deployed on a server uses Message Queue for Apache RocketMQ, we
recommend that you use an SDK to access Message Queue for Apache Rocket MQ. This method is easy-
to-use and provides high availability.

This topic provides examples to show how to use the SDK for Java to connect to Message Queue for
Apache RocketMQ and send and subscribe to messages over TCP or HTTP.

Message Queue for Apache RocketMQ supports four types of messages. For more information, see
Message types. In the following examples, normal messages are used. The topics that you create by
using the procedure that is described in the following section cannot be used to send or subscribe to
othertypes of messages. Each topic can be used to send and subscribe to messages only of a specific

type.

Process

13 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

You can follow the process illustrated in the following figure based on the protocol that you select.

1. Create a RocketMQ
Instance
(RocketMQ console)

2. Create a Topic
(RocketMQ console)

3. Create a TTP Group 3. Create a HTTP
ID Group ID

(RocketMQ console) (RocketMQ console)

4. Obtain the TCP 4. Obtain the HTTP

client endpoint client endpoint
(RocketMQ console) (RocketMQ console)

5. Download and 5. Download and
install install
the TCP SDK the HTTP SDK

6. Run the TCP Demo 6. Run the HTTP
code Demo code

To send message To send message

7 Run the TCP Demo 7. Run the HTTP Demo
code
To receive message

code
To receive message

1. Create resources. You must create a Message Queue for Apache RocketMQ instance, a topic, and a
group, and obtain the endpoint information of the instance.

2. Use the corresponding SDK to send and subscribe to messages based on the protocol that you
select.

o Call SDKs to send messages

o Use the HTTP client SDK forJava to send and subscribe to normal messages

Usage notes

e Message Queue for Apache Rocket MQ provides TCP client SDKs and HTTP client SDKs for you to send
and consume messages. You cannot specify the same group ID in the code of a TCP client SDK and
the code of an HTTP client SDK at the same time. If you want to use a TCP client SDK to send and
consume messages, you must create a group forthe TCP protocol. You cannot specify a group that
is created forthe HTTP protocol in the code of the TCP client SDK.

e A Message Queue for Apache RocketMQ instance provides a TCP endpoint and an HTTP endpoint. An
endpoint for a specific protocol must be used together with an SDK for the same protocol. For
example, if you want to use a TCP client SDK to send and consume messages, you must obtain the
TCP endpoint of your Message Queue for Apache Rocket MQ instance. You cannot use the HTTP
endpoint to connect to the instance.

References

> Document Version: 20220816 14

User Guide- Quick start Alibaba Cloud Message Queue

For information about how to use TCP client SDKs and HTTP client SDKs for other programming
languages to send and subscribe to messages, see the following topics:

e TCP

o

o

C and C++: Send and receive normal messages

.NET: Send and subscribe to normal messages

e HTTP

o

o

o

3.

Go: Send and consume normal messages
Python: Send and consume normal messages
Node.js: Send and consume normal messages
PHP: Send and consume normal messages
C#: Send and consume normal messages

C++: Send and consume normal messages

2. Log on to the Message Queue for

Apache RocketMQ console

This topic describes how to log on to the Message Queue for Apache RocketMQ console.

Prerequisites

e The URL of the Apsara Uni-manager Management Console is obtained fromthe deployment
personnel before you log on to the Apsara Uni-manager Management Console.

e A browser is available. We recommend that you use the Google Chrome browser.

Procedure

1.

In the address bar, enter the URL of the Apsara Uni-manager Management Console. Press the Enter
key.

Enter your username and password.

Obtain the username and password that you can use to log on to the console fromthe operations
administrator.

@ Note When you log on to the Apsara Uni-manager Management Console for the first
time, you must change the password of your username. Your password must meet complexity
requirements. The password must be 8 to 20 characters in length and must contain at least
two of the following character types:

o Uppercase or lowercase letters
o Digits

o Special characters, which include ! @ # $ %

. ClickLogin.

. If your account has multi-factor authentication (MFA) enabled, perform corresponding operations

in the following scenarios:

o It isthe first time that you log onto the console after MFA is forcibly enabled by the

15

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

administrator.
a. Onthe Bind Virtual MFA Device page, bind an MFA device.
b. Enterthe account and password again as in Step 2 and clickLog On.
c. Enter a six-digit MFA verification code and click Authenticate.
o You have enabled MFA and bound an MFA device.

Enter a six-digit MFA authentication code and click Authenticate.

@ Note For more informat ion, see the Bind a virtual MFA device to enable MFA topic in A
psara Uni-manager Operations Console User Guide.

. Inthe top navigation bar, choose Products > Middleware > Message Queue.

3.3. Create resources

Before you use a client SDK to send and subscribe to messages, create the required resources and
obtain the resource information in the Message Queue for Apache RocketMQ console. When you use the
SDK, you must configure the resource parameters based on the resource information.

Context

If you want to connect a new application to Message Queue for Apache RocketMQ, you must create
the following resources for the application:

Instance: a virtual machine that provides the Message Queue for Apache RocketMQ service. An
instance stores topics and group IDs.

Topic: atopic of messages. In Message Queue for Apache RocketMQ, a producer sends a message to
a specified topic, and a consumer subscribes to the topic to consume the message.

Group ID: a group ID that is used to identify a group of producers or consumers.

£} Notice A TCP client cannot share a group ID with an HTTP client. You must create a group
for each of them. For example, if you want to use the TCP client SDK to send and subscribe to
messages, you must use the group that is created only for TCP clients.

Endpoint: an endpoint of the Message Queue for Apache Rocket MQ broker. You can use an endpoint
to connect producer or consumer clients to a specified Message Queue for Apache RocketMQ
instance.

D Notice A Message Queue for Apache RocketMQ instance has a TCP endpoint and an HTTP
endpoint. Each endpoint can be used only for clients over the same protocol. For example, if you
want to use the TCP client SDK to send and subscribe to messages, you must specify the TCP
endpoint in the SDK. You cannot use the HTTP endpoint in the SDK.

AccessKey ID and AccessKey secret: the user credentials that are used to verify the identity of the
user. For more information, see the Obtain an AccessKey pairtopic of Message Queue for Apache Roc
ketMQ Developer Guide.

Create an instance

1. Log onto the Message Queue for Apache RocketMQ console and clickInstances in the left-side

> Document Version: 20220816

16

User Guide- Quick start Alibaba Cloud Message Queue

2.
3.
4.

navigation pane. For information about how to log on to the Message Queue for Apache
RocketMQ console, see Log on to the Message Queue for Apache Rocket MQ console.

Onthe Instances page, click Create Instance.
Onthe Create Instance page, configure the parameters and click Submit .

In the message that appears, clickBack to Console.
Onthe Instances page, you can view the basic information about the instance that is created.

Obtain an endpoint

1.

2.
3.

In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Instances.

In the upper part of the Instances page, select the name of the instance that you want to view.
Clickthe Network Management tab. On this tab, view the endpoint information of the instance.

o TCP Endpoint: If youwant to use the TCP client SDK to send and subscribe to messages,
specify the TCP endpoint in the code.

o HTTP Endpoint: If you want to use the HTTP client SDK to send and subscribe to messages,
specify the HTTP endpoint in the code.

Create a topic

1.

vk wN

Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

In the upper part of the Topics page, select the instance that you want to manage.
Click Create Topic.
Inthe Create Topic dialog box, enter a name for the topic in the T opic field.

Fromthe Message Type drop-down list, select a message type. Your topic is used to send and
subscribe to messages of this type.

In this example, Normal Message is selected to create a topic. For more information about other
message types, see Message types.

In the Description field, enter a description about the topic. Then, click OK.
The topic that you created appears in the topic list.

Create a group

1.

Log onto the Message Queue for Apache RocketMQ console and click Groups in the left-side
navigation pane.

2. Onthe Groups page, click the name of the Message Queue for Apache Rocket MQ instance in which

you want to a group.

3. Select a protocol forthe group that you want to create.

o If youwant to use TCP-based SDKs to publish and consume messages, you must clickthe TCP
Protocol tab to create a group.

o If youwant to use HTTP-based SDKs to publish and consume messages, you must clickthe HTTP
Protocol tab to create a group.

o ClickCreate Group ID.

o Inthe Create Group ID dialog box, configure the Group ID parameter and Description
parameter. Then, click OK.

17

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

The group that is created appears in the group list.

3.4. Send messages
3.4.1. Use the TCP client SDK for Java to send and

subscribe to normal messages

Afteryou create the required resources in the Message Queue for Apache RocketMQ console, you can
use Message Queue for Apache RocketMQ TCP client SDK for Java to send and subscribe to normal
messages.

Before you begin

Create resources

Install Message Queue for Apache RocketMQ SDK for Java

You can use one of the following methods to install Message Queue for Apache RocketMQ SDK for
Java:

e Introduce a dependency by using Maven:

<dependency>
<groupId>com.aliyun.openservices</groupId>
<artifactId>ons-client</artifactId>

<!-- Set the value to the version of Message Queue for Apache RocketMQ SDK for Java. -

<version>"XXX"</version>

</dependency>

e Download a JAR file that contains a dependency

For more information about the download link, see Overview.

Use the TCP client SDK for Java to send normal messages

The following sample code provides an example on how to use the TCP client SDK for Java to send
normal messages. Before you run the code, we recommend that you specify the information about the
required resources that are created in advance based on the comments included in the code.

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ProducerTest {
public static void main(String[] args) {
Properties properties = new Properties();
// Specify the ID of the group that you created for TCP clients in the Message Que
ue for Apache RocketMQ console.
properties.put (PropertyKeyConst.GROUP ID, "XXX");
// Specify the AccessKey ID for identity verification.
properties.put (PropertyKeyConst.AccessKey, "XXX") ;

I - N RO DRy g 7 - S I P S I A I3 Iy (N I

> Document Version: 20220816 18

User Guide- Quick start Alibaba Cloud Message Queue

// ©DpeClly Llle AcCCessney secrlel Lor luelltlLly verilri1cdilloll.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// Specify the TCP endpoint of your instance. To view the TCP endpoint, log on to
the Message Queue for Apache RocketMQ console and go to the Network Management tab of the I
nstances page.

properties.put (PropertyKeyConst.NAMESRV ADDR, "XXX") ;

Producer producer = ONSFactory.createProducer (properties) ;

// Before you send a message, call the start() method only once to start the produ
Cer.

producer.start () ;

// Cyclically send messages.

while (true) {

Message msg = new Message (

// Specify the topic that you created in the Message Queue for Apache Rock
etMQ console. The value is the name of the topic to which you want to send messages.

"TopicTestMQ",

// Message Tag,

// Specify the message tag, which is similar to a Gmail tag. The message t
ag is used to sort messages and filter messages for the consumer on the Message Queue for A
pache RocketMQ broker based on specified conditions.

"TagA",

// Message Body

// Specify the message body in the binary format. Message Queue for Apache
RocketMQ does not process the message body.

// The producer and consumer must agree on the message serialization and d
eserialization methods.

"Hello MQ".getBytes());

// Specify the message key. The message key is the business-specific attribute
of the message and must be globally unique. A unique key helps you query and resend a messa
ge in the console if the message fails to be consumed.

// Note: You can send and subscribe to messages even if you do not specify mes
sage keys.

msg.setKey ("ORDERID 100");

// Send the message. If no exception is thrown, the message is sent.

// Print the message ID. The message ID can be used to query the sending statu
s of the message.

SendResult sendResult = producer.send(msqg) ;

System.out.println ("Send Message success. Message ID is: " + sendResult.getMes
sageld());

}

// Before you exit the application, shut down the producer.
// Note: This step is optional.

producer.shutdown () ;

You can also send messages by performing the following operations in the Message Queue for Apache
RocketMQ console: Log onto the Message Queue for Apache RocketMQ console. Inthe left-side
navigation pane, click Topics. On the Topics page, find the topic that you created, and click Send
Message inthe Actions column.

Use the TCP client SDK for Java to subscribe to normal messages

19 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

The following sample code provides an example on how to use the TCP client SDK for Java to subscribe
to normal messages. Before you run the code, we recommend that you specify the information about
the required resources that are created in advance based on the comments included in the code.

import
import
import
import
import
import
import
import

public

com.aliyun.openservices.ons.api.Action;
com.aliyun.openservices.ons.api.ConsumeContext;
com.aliyun.openservices.ons.api.Consumer;
com.aliyun.openservices.ons.api.Message;
com.aliyun.openservices.ons.api.MessageListener;
com.aliyun.openservices.ons.api.ONSFactory;
com.aliyun.openservices.ons.api.PropertyKeyConst;
java.util.Properties;

class ConsumerTest {

public static void main(String[] args) {

Properties properties = new Properties();

// Specify the ID of the group that you created for TCP clients in the Message Queu

e for Apache RocketMQ console.

properties.put (PropertyKeyConst.GROUP ID, "XXX");

// Specify the AccessKey ID for identity verification.

properties.put (PropertyKeyConst.AccessKey, "XXX") ;

// Specify the AccessKey secret for identity verification.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// Specify the TCP endpoint of your instance. To view the TCP endpoint, log on to

the Message Queue for Apache RocketMQ console and go to the Network Management tab of the I

nstances page.

properties.put (PropertyKeyConst.NAMESRV ADDR, "XXX") ;
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("TopicTestMQ", "*", new MessageListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message) ;

return Action.CommitMessage;

}) i
consumer.start () ;

System.out.println ("Consumer Started");

Check whether your message subscription is successful

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups.

2. Inthe upper part of the Groups page, select the instance that you want to manage.

3. Onthe Groups page, find the group ID for the consumer of which you want to view the
subscription, and click Subscription in the Actions column.

If the value of Online is Yes, the consumer has been started and the subscription is successful.
Otherwise, the subscription fails.

What's next

& Query messages

e Query message traces

> Document Version: 20220816 20

User Guide- Quick start Alibaba Cloud Message Queue

3.4.2. Use the HTTP client SDK for Java to send

and subscribe to normal messages

Afteryou create the required resources in the Message Queue for Apache RocketMQ console, you can
use Message Queue for Apache RocketMQ HTTP client SDK for Java to send and subscribe to normal
messages.

Before you begin

Create resources

Install Message Queue for Apache RocketMQ SDK for Java

You can use one of the following methods to install Message Queue for Apache RocketMQ SDK for
Java:

e Introduce a dependency by using Maven:

<dependency>
<groupId>com.aliyun.mg</groupId>
<artifactId>mg-http-sdk</artifactId>

<!-- Set the value to the version of Message Queue for Apache RocketMQ SDK for Java.

<version>X.X.X</version>
<classifier>jar-with-dependencies</classifier>

</dependency>

e Download a JAR file that contains a dependency

For more information about the download link, see Overview.

Use the HTTP client SDK for Java to send normal messages

The following sample code provides an example on how to use the HTTP client SDK for Java to send
normal messages. Before you run the code, we recommend that you specify the information about the
required resources that are created in advance based on the comments included in the code.

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQProducer;
import com.aliyun.mg.http.model.TopicMessage;
import java.util.Date;
public class Producer ({
public static void main(String[] args) {
MQOClient mgClient = new MQClient (

// Specify the HTTP endpoint of your instance. To view the HTTP endpoint, 1
og on to the Message Queue for Apache RocketMQ console and go to the Network Management tab
of the Instances page.

"s {HTTP_ENDPOINT}",

// Specify the AccessKey ID for identity verification.

"${ACCESS KEY}",

// Specify the AccessKey secret for identity verification.

WS SECRET_KEY} "

) i
// Specify the topic that you created in the Message Queue for Apache RocketMQ cons

21 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

ole. ''he value 1s the name Of the topic to which you want to send messages.

final String topic = "${TOPIC}";

// Specify the ID of the instance on which the topic is created.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the Message Queue for Apache R
ocketMQ console.

final String instanceId = "${INSTANCE ID}";

// Obtain the producer that sends messages to the topic.

MQProducer producer;

if (instanceId != null && instanceId != "") {

producer = mgClient.getProducer (instanceld, topic);
} else {
producer = mgClient.getProducer (topic);
}
try {
// Cyclically send four messages.
for (int 1 = 0; i < 4; i++) {
TopicMessage pubMsg; // Specify the normal message.
pubMsg = new TopicMessage (
// Specify the content of the message.
"hello mg!".getBytes(),
// Specify the message tag.
npn
)7
// Specify the custom attributes of the message.
pubMsg.getProperties () .put ("a", String.valueOf(i)):;
// Specify the key of the message.
pubMsg.setMessageKey ("MessageKey") ;

// Send the message in synchronous mode. If no exception is thrown, the message

is sent.

TopicMessage pubResultMsg = producer.publishMessage (pubMsg) ;

// Send the message in synchronous mode. If no exception is thrown, the message
is sent.

System.out.println (new Date() + " Send mg message success. Topic is:" + topic +
", msgld is: " + pubResultMsg.getMessageId()

+ ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5 ()) ;
}
} catch (Throwable e) {
// Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
System.out.println(new Date() + " Send mg message failed. Topic is:" + topic);
e.printStackTrace () ;
}

mgClient.close () ;

You can also send messages by performing the following operations in the Message Queue for Apache
RocketMQ console: Log onto the Message Queue for Apache RocketMQ console. Inthe left-side
navigation pane, click Topics. On the Topics page, find the topic that you created, and click Send
Message inthe Actions column.

> Document Version: 20220816 22

User Guide- Quick start Alibaba Cloud Message Queue

Use the HTTP client SDK for Java to subscribe to normal messages

The following sample code provides an example on how to use the HTTP client SDK forJavato
subscribe to normal messages. Before you run the code, we recommend that you specify the

information about the required resources that are created in advance based on the comments included
in the code.

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQConsumer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
public static void main(String[] args) {

MQOClient mgClient = new MQClient (

// Specify the HTTP endpoint of your instance. To view the HTTP endpoint, 1
og on to the Message Queue for Apache RocketMQ console and go to the Network Management tab
of the Instances page.

"5 HTTP ENDPOINT}",

// Specify the AccessKey ID for identity verification.

"${ACCESS KEY}",

// Specify the AccessKey secret for identity verification.

"${SECRET KEY}"

) i

// Specify the topic that you created in the Message Queue for Apache RocketMQ cons
ole. The value is the name of the topic from which you want to consume messages.

final String topic = "${TOPIC}";

// Specify the ID of the group that you created for HTTP clients in the Message Que
ue for Apache RocketMQ console.

final String groupld = "${GROUP ID}";

// Specify the ID of the instance on which the topic is created.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

final MQConsumer consumer;

if (instancelId != null && instanceId != "") {

consumer = mgClient.getConsumer (instancelId, topic, groupId, null);
} else {
consumer = mgClient.getConsumer (topic, groupld) ;

}

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

do {

List<Message> messages = null;
try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

messages

consumer .consumeMessage (

3,// Specify the maximum number of messages that can be consumed at

23

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

a time. In this example, the value 1is set to 3. The maximum value that you can specify is 1
6.
3// Specify the duration of a long polling cycle. Unit: seconds. In
this example, the value is set to 3. The maximum value that you can specify is 30.
)i
} catch (Throwable e) {
e.printStackTrace () ;
try {
Thread.sleep (2000) ;
} catch (InterruptedException el) {
el.printStackTrace() ;

}

// No messages in the topic are available for consumption.

if (messages == null || messages.isEmpty()) {
System.out.println (Thread.currentThread () .getName () + ": no new message, coO
ntinue!");
continue;

}
// Specify the message consumption logic.
for (Message message : messages) {
System.out.println ("Receive message: " + message);
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker sends the message for con
sumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
{
List<String> handles = new ArrayList<String>();
for (Message message : messages) {
handles.add (message.getReceiptHandle ()) ;
}
try {
consumer.ackMessage (handles) ;
} catch (Throwable e) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;
System.out.println ("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
if (errors.getErrorMessages() != null) {
for (String errorHandle :errors.getErrorMessages().keySet()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (err
orHandle) .getErrorMessage()) ;
}
}
continue;
}
e.printStackTrace () ;

> Document Version: 20220816 24

User Guide- Quick start Alibaba Cloud Message Queue

i
} while (true);

Check whether your message subscription is successful

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups.

2. Inthe upper part of the Groups page, select the instance that you want to manage.

3. Onthe Groups page, find the group ID for the consumer of which you want to view the
subscription, and click Subscription inthe Actions column.

If the value of Online is Yes, the consumer has been started and the subscription is successful.
Otherwise, the subscription fails.

What's next

& Query messages

e Query message traces

3.4.3. Check whether messages are sent

After you send a message, you can check the status of the message inthe console.

Procedure

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Message Query.

2. Onthe Message Query page, clickthe By Message ID tab.

3. Inthe search box, enter the topic name that corresponds to the message and the message ID
returned after the message is sent, and click Search to query the sending status of the message.

Storage Time indicates the time when the Message Queue for Apache RocketMQ broker stores
the message. If the message appears in the search results, the message has been sent to the
Message Queue for Apache RocketMQ broker.

) Notice This step demonstrates the situation where Message Queue for Apache
RocketMQ is used forthe first time and the consumer has never been started. Therefore, no
consumption data appears in the message status information.

What's next

You can start the consumer and subscribe to messages. For more information, see Subscribe to
messages. For more information about the message status, see Query messages and Message tracing
status.

3.5. Subscribe to messages

25 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Quick start

After a message is sent, the consumer can subscribe to the message. You need to use the SDK for the
corresponding protocol and programming language to subscribe to the message. This topic describes
how to subscribe to messages by using TCP client SDK for Java.

Procedure

1. Runthe following sample code to test the message subscription feature. Set parameters based on
the descriptions before you run the code.

import
import
import
import
import
import
import
import

public

com.aliyun.openservices.ons.api.Action;
com.aliyun.openservices.ons.api.ConsumeContext;
com.aliyun.openservices.ons.api.Consumer;
com.aliyun.openservices.ons.api.Message;
com.aliyun.openservices.ons.api.MessageListener;
com.aliyun.openservices.ons.api.ONSFactory;
com.aliyun.openservices.ons.api.PropertyKeyConst;
java.util.Properties;

class ConsumerTest {

public static void main(String[] args) {

Properties properties = new Properties();

// The group ID that you created in the console.

properties.put (PropertyKeyConst.GROUP ID, "XXX");

// The AccessKey ID used for identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret used for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Ap

ache RocketMQ console. In the left-side navigation pane, click Instance Details. In the

upper part of the Instance Details page, select your instance. On the Instance Informat

ion tab, view the endpoint in the Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR, "XXX") ;
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("TopicTestMQ", "*", new MessageListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message) ;

return Action.CommitMessage;

});
consumer.start () ;

System.out.println ("Consumer Started");

Afteryou run the code, you can check whether the consumer is started in the Message Queue for
Apache RocketMQ console. This operation checks whether the message subscription is successful.

2. Log onto the Message Queue for Apache RocketMQ console.

3. Inthe left-side navigation pane, click Groups.

4. Find the group ID of the consumer whose subscription you want to view, and click Subscription in
the Actions column.

If the value of Online is Yes, the consumer has been started and the subscription is successful.
Otherwise, the subscription fails.

> Document Version: 20220816 26

User Guide- Message types Alibaba Cloud Message Queue

4.Message types
4.1. Normal messages

This topic describes the definition of normal messages and provides the sample code for sending and
subscribing to normal messages.

In Message Queue for Apache RocketMQ, normal messages do not have special features. They are
different fromthe following featured messages: scheduled messages, delayed messages, ordered
messages, and transactional messages. For more information about these featured messages, see
Scheduled messages and delayed messages, Ordered messages, and Transactional messages. The
following sample code provide examples on how to use TCP client SDKs and HTTP client SDKs for
different programming languages to send and subscribe to normal messages:

Sample code for using TCP client SDKs

For information about the sample code for using TCP client SDKs to send and subscribe to normal
messages, see the following topics:

e The SDK forJava:
o QOverview
o Send messages in multiple threads

o Subscribe to messages

e The SDK for Cand the SDK for C++: Send and receive normal messages

e The SDKfor.NET: Send and subscribe to normal messages

Sample code for using HTTP client SDKs

For information about the sample code for using HTTP client SDKs to send and subscribe to normal
messages, see the following topics:

e The SDK forJava: Send and subscribe to normal messages

e The SDK for Go: Send and subscribe to normal messages

e The SDK for Python: Send and subscribe to normal messages
e The SDK for Node.js: Send and subscribe to normal messages
e The SDK for PHP: Send and subscribe to normal messages

e The SDK for C#: Send and subscribe to normal messages

e The SDK for C++: Send and subscribe to normal messages

4.2. Scheduled messages and delayed
messages

This topic introduces the concepts related to scheduled messages and delayed messages and
describes the scenarios, usage, and usage notes of these messages in Message Queue for Apache
RocketMQ.

Concepts

27 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Message types

e Scheduled message: A scheduled message is not immediately sent to consumers after the Message
Queue for Apache RocketMQ broker receives the message fromthe producer. The broker is
configured to send the message to consumers at a specific point in time later than the current time.

e Delayed message: A delayed message is not immediately sent to consumers after the Message
Queue for Apache RocketMQ broker receives the message. The broker is configured to send the
message to consumers after a specific period of time elapses.

Scheduled messages and delayed messages are slightly different in coding, but are consistent inthe
effect. Scheduled messages and delayed messages are not immediately sent to consumers afterthe
Message Queue for Apache RocketMQ broker receives the messages. These messages are sent to
consumers after being delayed for a specific period of time, which is specified in the attributes of the
messages.

Scenarios

Scheduled messages and delayed messages can be used in the following scenarios:

e A time window between message production and message consumption is required. For example,
when a transaction order is created on an e-commerce platform, a producer sends a delayed
message to the Message Queue for Apache RocketMQ broker. A delay of 30 minutes is specified for
the message to be sent to a consumer. The message is used to remind the consumer to check
whether the order is paid. If the order is not paid, the related system closes the order. If the orderis
paid, the consumer ignores the message.

e Scheduled messages are sent to trigger scheduled tasks. For example, a notification message is sent
to a user at a specified point in time.

Usage
Scheduled messages and delayed messages are slightly different in coding.

e To send a scheduled message, specify a point in time that is later than the point in time when the
message is sent by a producer. The broker sends the message to consumers at the specified point in
time.

e To send a delayed message, specify a period of time that starts fromthe point in time when the
message is sent by a producer. The broker sends the message to consumers after the specified
period of time elapses.

Usage notes

e The msg.setStartDeliverTime parameter for a scheduled message or a delayed message must be set
to a specific point in time after the current timestamp. Unit: milliseconds. If the scheduled time is
earlier than the current time, the message is immediately sent to the consumer.

e The msg.setStartDeliverTime parameter for a scheduled message or a delayed message can be set to
a specific point in time within 40 days after the scheduled message or the delayed message is
generated. Unit: milliseconds. If the specified point in time is not within the 40 days, the message
cannot be sent.

e The StartDeliverTime parameter specifies the time when the Message Queue for Apache RocketMQ
broker starts to send the message to the consumer. If messages have been accumulated forthe
consumer, the scheduled message or the delayed message are queued after the accumulated
messages, and are not sent to the consumer at the specified time.

e Due to the potential time difference between the producer and the broker, the actual delivery time
may be different from the delivery time specified in the producer.

e Scheduled messages and delayed messages can be retained for at most three days on the Message

> Document Version: 20220816 28

User Guide- Message types Alibaba Cloud Message Queue

Queue for Apache RocketMQ broker. For example, a message is scheduled to be consumed in 5 days.
If the message is not consumed after 5 days, the message will be deleted on the eighth day.

Sample code for using TCP client SDKs

For information about the sample code for using TCP client SDKs to send and subscribe to scheduled
messages or delayed messages, see the following topics:
e Java SDK

o Send and receive scheduled messages

o Send and receive delayed messages

e The SDK for C++: Send and receive scheduled messages

e The SDK for.NET: Send and subscribe to scheduled messages

Sample code for using HTTP client SDKs

For information about the sample code for using HTTP client SDKs to send and subscribe to scheduled
messages and delayed messages, see the following topics:

e The SDK forJava: Send and subscribe to scheduled messages and delayed messages
e The SDK for Go: Send and consume scheduled messages and delayed messages

e The SDK for Python: Send and consume scheduled messages and delayed messages
e The SDK for Node.js: Send and consume scheduled messages and delayed messages
e The SDK for PHP: Send and consume scheduled messages and delayed messages

e The SDK for C#: Send and consume scheduled messages and delayed messages

e The SDK for C++: Send and consume scheduled messages and delayed messages

4.3. Transactional messages

This topic introduces the terms that are related to transactional messages in Message Queue for
Apache Rocket MQ. This topic also describes the scenarios, methods, and usage notes of using
transactional messages.

Terms

e Transactional message: Message Queue for Apache RocketMQ provides a distributed transaction
processing feature that is similar to X/0Open XA to ensure transaction consistency by using
transactional messages.

e Half transactional message: A half transactional message is a message that cannot be sent to
consumers by the Message Queue for Apache Rocket MQ broker. If a Message Queue for Apache
RocketMQ broker receives a message from a producer and does not receive the second
acknowledgment (ACK) fromthe producer, the message is temporarily undeliverable. A message in
this state is called a half transactional message.

e Message status check: In scenarios such as a transient connection occurs in the network or the
producer application is restarted, the Message Queue for Apache RocketMQ broker does not receive
the second ACK for a transactional message. When the Message Queue for Apache Rocket MQ broker
finds that a message remains as a half transactional message for an excessive long period of time,
the broker sends a request to the producer to check whether the final status of the message is
Commit or Rollback.

29 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Message types

Common scenarios

Message Queue for Apache RocketMQ allows you to use transactional messages in the following
scenarios:

The distributed transaction processing feature provided by Message Queue for Apache RocketMQ can
be used to ensure transaction consistency based on transactional messages. The distributed
transaction processing feature is similar to X/Open XA.

For example, an e-commerce platform provides a shopping cart system and a transaction system. When
customers use the shopping cart to place orders, the customer entry point is the shopping cart system,
and the entry point for order placement is the transaction system. Data in the two systems must be
eventually consistent. In this case, transactional messages can be used. After an order is placed, the
transaction system sends a transactional message about the order to Message Queue for Apache
RocketMQ. The shopping cart system subscribes to the transactional message about the order from
Message Queue for Apache RocketMQ, performs the required operations, and then updates data.

How to use transactional messages

Interaction process

The following figure shows the process of using transactional messages in Message Queue for Apache
RocketMQ.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Execute
ocal
transaction

Commit: Deliver
the message

2. Half message
sent successfully

4. Commit or Rollback

Rollback:
Not deliver the message and it
will be deleted after being
stored for three days

The procedure to send a transactional message includes the following steps:

6. Check status of 5. Check the transaction’s status again
the local transaction if not receiving confirmation from Step 4

1. A producer sends a message to the Message Queue for Apache RocketMQ broker.

2. The Message Queue for Apache Rocket MQ broker persists the message and sends an ACKto the
producer. At this stage, the message is a half transactional message.

3. The producer executes a local transaction.

4. The producer sends an ACK to the Message Queue for Apache RocketMQ broker to submit the
execution result of the local transaction. In the execution result, the status of the transaction may
be Commit or Rollback. If the status of the transaction is Commit, the broker marks the half
transactional message as deliverable. Then, consumers can consume the message. If the status of
the transaction is Rollback, the broker deletes the message. In this case, consumers cannot
consume the message.

The following list describes how to checkthe status of a transactional message:

e [f the Message Queue for Apache RocketMQ broker does not receive an ACK fromthe producer
because the netwaork is disconnected or the message producer application is restarted, the Message
Queue for Apache RocketMQ broker sends a request to query the status of the message aftera
specific period of time.

> Document Version: 20220816 30

User Guide- Message types Alibaba Cloud Message Queue

e Afterthe producer receives the request, the producer checks the final status of the local transaction
that corresponds to the message.

e The producer sends a new ACK to the Message Queue for Apache RocketMQ broker based on the
final status of the local transaction. The broker processes the half transactional message based on
the content of the ACK. For more information, see Step 4.

Usage notes

1. Producers of transactional messages cannot be in the same group to which producers of messages
of othertypes belong. Message Queue for Apache Rocket MQ brokers perform status check
operations for transactional messages based on the IDs of the groups to which the producers
belong.

2. You must specify the implementation class of the LocalTransactionChecker method when you call
ONSFactory.createTransactionProducer to create a transactional message producer. This way, the
broker can check the status of transactional messages after exceptions occur.

3. Afterthe local transaction that corresponds to a transactional message is executed, the execute
method returns one of the following results:

o TransactionStatus.CommitTransaction: The transaction is committed. The message can be
consumed by consumers.

o TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

o TransactionStatus.Unknow: The transaction is in an unknown state. The Message Queue for
Apache Rocket MQ broker is expected to send a request to the producerto checkthe status of
the transaction again after a specific period of time.

Sample code for using TCP SDKs

For information about sample code, see the following references:
e SDKforjava: Send and subscribe to transactional messages
e SDKforCand C++: Send and receive transactional messages

e SDKfor.NET: Send and receive transactional messages

Sample code for using HTTP-based SDKs

For information about sample code, see the following references:
e SDKforjava: Send and consume transactional messages

e SDK for Go: Send and consume transactional messages

e SDKforPython: Send and consume transactional messages

e SDKforNode.js: Send and consume transactional messages

e SDKfor PHP: Send and consume transactional messages

e SDKfor CG#: Send and consume transactional messages

e SDK for C++: Send and consume transactional messages

4.4. Ordered messages

This topic introduces the terms that are related to ordered messages in Message Queue for Apache
RocketMQ. T his topic also describes the scenarios and usage notes of using ordered messages.

31 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Message types

Terms

Ordered messages in Message Queue for Apache RocketMQ are messages that are published and
consumed strictly based on specific orders. Ordered messages are also known as first-in-first-out (FIFO)
messages. Ordered messages are published and consumed in FIFO order.

An ordered message involves ordered publishing and ordered consumption.

e Ordered publishing: Each producer sends messages to a specified topic in FIFO order.

e Ordered consumption: Each consumer consumes messages in a specified topic in FIFO order. A
message that is first sent is first consumed by consumers.

Ordered messages are classified into globally ordered messages and partitionally ordered messages.

e Globally ordered messages: All messages in a topic are published and consumed in FIFO order.

e Partitionally ordered messages: Messages in a specified topic are partitioned based on a partition
key. Messages in each partition are published and consumed in FIFO order. The partition key for
ordered messages in a topic is used to distinguish message partitions. partition keys are used in a
manner that is different fromthe manner in which message keys of normal messages are used.

Globally ordered messages

>>) ‘ B001 B002 B003 /

Partitionally ordered messages

D, |}
)) @ e)

o)

Common scenarios
e Globally ordered messages

Your business does not require high performance and requires that all messages must be published
and consumed in FIFO order.

e Partitionally ordered messages

Your business requires high performance and requires that messages in each partition must be
published and consumed in FIFO order. In this case, you can specify a partition key field to partition
messages to multiple partitions.

Examples:

e Example 1

> Document Version: 20220816 32

User Guide- Message types Alibaba Cloud Message Queue

When a user signs up with your application, a verification code is used to verify the identity of the
user. In this case, you can use the field that stores user IDs as the partition key. This way, messages
that are sent by the same user are published and consumed in FIFO order.

e Example 2

To partition messages that are generated when orders are made on an e-commerce platform, you
can use the field that stores order IDs as the partition key. T his way, order creation messages,
payment messages, refund messages, and logistics messages of the same order are published and
consumed in FIFO order.

All internal e-commerce systems of Alibaba Group use partitionally ordered messages. T his ensures
that messages in each partition are in FIFO order and the systems provide high performance.

Comparison between globally ordered messages and partitionally
ordered messages

You are required to create different types of topics for different types of messages in the Message
Queue for Apache RocketMQ console. The following table describes the comparison among types of
topics.

Message types

. Support transactional Support scheduled

Topic type PP PP Performance
messages messages

Unordered messages,

including normal

messages, transactional)
Yes Yes Highest

messages, scheduled

messages, and delayed

messages

Partitionally ordered)
No No High

messages

Globally ordered

y No No Medium

messages

Methods of sending messages

Support reliable Support reliable
Support one-way
Message type synchronous asynchronous .
. . transmission
transmission transmission
Unordered messages,
including normal
messages, transactional
Yes Yes Yes
messages, scheduled
messages, and delayed
messages
Partitionally ordered
Yes No No

messages

33 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Message types

Globally ordered
messages

Support reliable

Message type synchronous

transmission

Yes

Usage notes

Sample code for using TCP SDKs

Support reliable
asynchronous
transmission

No

Ordered messages cannot be published in a broadcasting manner.

Support one-way
transmission

No

A producer or consumer can publish messages to or consume messages from only one type of topic.
A producer or consumer cannot be used to publish or consume both ordered messages and

unordered messages.

Ordered messages cannot be sent in asynchronous mode. If ordered messages are sent in

asynchronous mode, messages may be disordered.

If you want to use globally ordered messages, we recommend that you create at least two Message
Queue for Apache RocketMQ instances. The multi-instance structure is used to prevent your business
from being interrupted when the primary instance unexpectedly fails. When the primary instance f ails,
another instance immediately takes over the workloads. This helps ensure that your business is not
interrupted. In the multi-instance structure, only one instance works at a time.

For information about sample code, see the following references:

e SDKforjava: Send and receive ordered messages

e SDKforCand C++: Send and receive ordered messages

e SDKfor.NET: Send and subscribe to ordered messages

Sample code for using HTTP-based SDKs

For information about sample code, see the following references:

SDK forJava: Send and consume ordered messages

SDK for Go: Send and consume ordered messages

SDK for Python: Send and consume ordered messages

SDK for Node.js: Send and consume ordered messages

SDK for PHP: Send and consume ordered messages
SDK for C#: Send and consume ordered messages

SDK for C++: Send and consume ordered messages

> Document Version: 20220816

34

User Guide- Console guide Alibaba Cloud Message Queue

5.Console guide
5.1. Resource management
5.1.1. Resource management overview

T his topic describes how to manage resources in Message Queue for Apache RocketMQ.

If a new application needs to access Message Queue for Apache RocketMQ, you must create the
following Message Queue for Apache Rocket MQ resources for the application:

e Instance: As a virtual machine (VM) resource of Message Queue for Apache RocketMQ, an instance
stores the topics and group IDs of messages.

e Topic: In Message Queue for Apache RocketMQ, a producer sends a message to a specified topic, and
a consumer subscribes to the topic to obtain and consume the message.

e Group ID: A group ID is used to identify a group of message consumers or producers.

You can add, delete, modify, and query these resources by using the Message Queue for Apache
RocketMQ console or by calling the Message Queue for Apache RocketMQ APL

When you use SDKs to send and subscribe to messages, you must specify the topic and group ID that
you created in the Message Queue for Apache RocketMQ console. You must also enter the AccessKey ID
and AccessKey secret that you created in the Apsara Uni-manager Management Console for identity
authentication.

If you have not obtained the AccessKey ID and AccessKey secret, you can obtain themin the Apsara
Uni-manager Management Console. For more information, see Obtain the AccessKey ID and AccessKey
secret.

5.1.2. Manage instances

In Message Queue for Apache Rocket MQ, topics and groups are included in instances. T his topic
describes how to create, update, view, and delete an instance in the Message Queue for Apache
RocketMQ console.

Create an instance

1. Log onto the Message Queue for Apache RocketMQ console and clickInstances inthe left-side
navigation pane. For information about how to log on to the Message Queue for Apache
RocketMQ console, see Log on to the Message Queue for Apache RocketMQ console.

2. OntheInstances page, click Create Instance.
3. Onthe Create Instance page, configure the parameters and click Submit.

4. Inthe message that appears, clickBack to Console.
Onthe Instances page, you can view the basic information about the instance that is created.
Modify the configuration of an instance
You can upgrade or downgrade the specification of aninstance.

1. Inthe left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Instances

2. Onthe Instances page, click the name of the instance that you want to modify. Then, click

35 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

Update Specifications.

3. Onthe Update Specifications page, configure the Maximum Topics, Outbound Message
TPS, Inbound Message TPS, and Description parameters.

@ Note The value that you specify for each parameter must be in the range that is
displayed.

4. Click Submit.

5. Inthe message that appears, clickBack to Console.
Onthe Instances page, you can view the new configuration of the instance.

View the details of an instance

1. Inthe left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Instances.

2. Onthe Instances page, clickthe name of the instance that you want to view. You can view
information about the instance on the details page of the instance.

Delete an instance

Prerequisites
e Allresources in the instance are deleted, including topics and groups.
e No Message Queue for MQTT instances are bound to the instance.

1. Inthe left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Instances.

2. OntheInstances page, clickthe name of the instance that you want to delete. Then, click Delete
Instance.

3. Inthe message that appears, read the message and click OK.
Afterthe instance is deleted, a message whose content is The instance is deleted. is displayed

References
if you want to call APl operations to performthe operations that are described in this topic, see

Message Queue for Apache Rocket MQ Developer Guide.

5.1.3. Manage topics

Topic is the first-level identifier that classifies messages in Message Queue for Apache RocketMQ. For
example, you can create a topic named Topic_Trade to identify transaction-specific messages. This
topic describes how to create, update, view, and delete topics in the Message Queue for Apache
RocketMQ console.

Prerequisites

Create an instance

Create a topic

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

> Document Version: 20220816 36

User Guide- Console guide Alibaba Cloud Message Queue

2. Inthe upper part of the Topics page, select your instance.

3. ClickCreate Topic.
4. Inthe Create Topic dialog box, enter a name for the topic in the Topic field.

) Notice The topic name must be unique in the instance where you create the topic and
must comply with the following rules:

o The topic name cannot start with CID or GID, because CID and GID are reserved fields for
group IDs.

o The topic name can contain only letters, digits, hyphens (-), and underscores ().

o The topic name must be 3 to 64 characters in length.

5. Fromthe Message Type drop-down list, select a value. This value defines the type of message
that this topic sends and receives.

We recommend that you create different topics to send different types of messages. For example,
create Topic A for normal messages, Topic B for transactional messages, and Topic C for scheduled
messages or delayed messages. For more information about message types, see Message types.

6. Inthe Description field, enter a description about the topic and click OK.
The created topic appears in the topic list.

Modify the description of a topic
1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.
2. Inthe upper part of the Topics page, select your instance.
3. Inthe topic list, find the topic whose description you want to modify and clickthe # iconinthe

Description column.

4. Inthe Edit Topic dialog box, enter the new description and click OK.
The message The operation is successful. appears.

View topic information
1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

2. Inthe upper part of the Topics page, clickthe name of yourinstance. You can view all topics inthe
instance and the details about a specific topic. The details include the subscription, permissions,
and message type.

Delete a topic

@ Note Aftera topic is deleted, producers that send messages to the topic and consumers
that subscribe to the topic immediately stop services and all resources are deleted within 10
minutes. Proceed with caution.

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

2. Inthe upper part of the Topics page, select yourinstance.

37 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

3. Find the topic that you want to delete, clickthe - icon, and then select Delete.

4. Inthe Caution message, read the prompt carefully. If you are sure to delete the topic, click OK.
The topic no longer appears in the topic list in the instance.

References

if you need to call the Message Queue for Apache RocketMQ APIto perform relevant operations, follow
the instructions provided in Message Queue for Apache Rocket MQ Developer Guide.

5.1.4. Manage groups

Afteryou create an instance and a topic, you need to create a group for message consumers or
producers. This topic describes how to create, view, and delete a group in the Message Queue for
Apache RocketMQ console.

Prerequisites

Create an instance

Context

Producers or consumers in a group produce or consume messages of the same type based on the same
logic. To use Message Queue for Apache RocketMQ to produce or consume messages, you must create
a group to identify producer instances or consumer instances of the same type.

A consumer can subscribe to multiple topics, and a topic can be subscribed to by multiple consumers in
a group. A producer can send messages to multiple topics, and a topic can subscribe to multiple
producers in a group to receive messages.

Usage notes

e A group cannot be used across instances. For example, a group created in Instance A is unavailable in
Instance B.

e Allclientsin a group communicate with Message Queue for Apache RocketMQ brokers over the same
protocol. Message Queue for Apache Rocket MQ allows you to use HTTP-based SDKs and TCP-based
SDKs to produce and consume messages. If you specify TCP as the protocol when you create a
group, clients in the group can use only TCP-based SDKs to send and receive messages.

e If a consumer group or an existing consumer that was created in an earlier version of Message Queue
for Apache RocketMQ was created by using the credential of a Resource Access Management (RAM)
user, the RAM user and the Apsara Stack tenant account to which the RAM user belongs can use the
consumer group or consumer.

e [f a consumer group or an existing consumer that was created in an earlier version of Message Queue
for Apache RocketMQ was created by using the credential of an Apsara Stacktenant account, only
the Apsara Stacktenant account can use the consumer group or consumer. RAM users of this Apsara
Stacktenant account cannot use the consumer group or consumer.

e Forinformation about how to modify existing configurations of clients to change consumer IDs and
producer IDs to group IDs, see Updates.

Rules for naming group IDs

e The ID of a group must start with CID or GID, and contain 7 to 64 characters in length. A group ID can
consist of only letters, digits, hyphens (-), and underscores ().

> Document Version: 20220816 38

User Guide- Console guide Alibaba Cloud Message Queue

e [f a group belongs to an instance with a namespace, the ID of the group must be unique within the
instance. Group IDs in different instances can be the same. For example, the ID of a group in Instance
A can be the same as ID of a group in Instance B.

e If a group belongs to an instance without a namespace, the group ID must be globally unique across
instances and regions.

e The ID of a group cannot be modified after the group is created.

Create a group
1. Log onto the Message Queue for Apache RocketMQ console and click Groups in the left-side
navigation pane.

2. Onthe Groups page, clickthe name of the Message Queue for Apache RocketMQ instance in which
you want to a group.

3. Select a protocol forthe group that you want to create.

o If youwant to use TCP-based SDKs to publish and consume messages, you must clickthe TCP
Protocol tab to create a group.

o If youwant to use HTTP-based SDKs to publish and consume messages, you must clickthe HTTP
Protocol tab to create a group.

o ClickCreate Group ID.

o Inthe Create Group ID dialog box, configure the Group ID parameter and Description
parameter. Then, click OK.
The group that is created appears in the group list.

View information about a group

1. Inthe left-side navigation pane of the Message Queue for Apache RocketMQ console, click Groups.

2. Onthe Groups page, clickthe name of a Message Queue for Apache RocketMQ instance. Then, you
can view all groups in the instance and the details of a specific group, including the subscription
relationships, permissions, and status of consumers in the group.

Delete a group

D Notice Aftera group is deleted, producers and consumers in the group fail authentication
when they attempt to connect to the Message Queue for Apache RocketMQ instance. The
producers and consumers that are connected to the Message Queue for Apache RocketMQ
instance are not affected.

1. Inthe left-side navigation pane of the Message Queue for Apache RocketMQ console, click Groups.

2. Onthe Groups page, clickthe name of the Message Queue for Apache RocketMQ instance that
contains the group you want to delete.

3. Find the group that you want to delete and clickthe - iconinthe Actions column.

4. Inthe message that appears, read the message. If you are sure you want to delete the group, click

OK.
Afterthe group is deleted, the group is not displayed in the group list of the instance.

References

39 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

If you want to call APl operations to performthe operations that are described in this topic, see
Message Queue for Apache Rocket MQ Developer Guide.

5.2. Message query

5.2.1. Overview

If a message is not consumed as expected, you can query the message content to troubleshoot
problems. Message Queue for Apache RocketMQ allows you to query messages by message ID, by
message key, and by topic.

Comparison of query methods

Method Condition Type Description

Topic+Message Exact You can specify a topic and a message ID to obtain a
By message ID . .

ID match message and its attributes.

You can specify a topic and a message key to query
the 64 messages that are most recently sent and
contain the specified message key. We recommend

By message Topic+Message Fuzzy that you specify a unique key for each message in

key Key match producers whenever possible to ensure that the
number of messages with the same key does not
exceed 64. Otherwise, some messages cannot be
queried.

You can specify a topic and a time range to query all
messages that meet the specified conditions. This
type of query returns a large number of messages. It is
difficult to find a specific message that you want to

query.

Topic and time Range

By topic
ytop range match

We recommend that you query messages by using the following process.
Message query process

> Document Version: 20220816 40

User Guide- Console guide Alibaba Cloud Message Queue

Know the
Topic?

Know the
Message Key?

Fuzzy Search Search by Topic
by Message Key and Time Range

Accurate Search
by Message ID

5.2.2. Query messages

This topic describes how to query messages in the Message Queue for Apache RocketMQ console by
using three different methods.

1.
2.
3.

Log onto the Message Queue for Apache RocketMQ console.
In the left-side navigation pane, click Message Query.

On the Message Query page, click a tab. Onthe tab that appears, enter the information and click
Search to query messages.

o By message ID

If you query messages by message ID, exact match is used. You can specify a topic and a
message ID to query a message by using exact match. Therefore, we recommend that you print
the message IDto the log to facilitate troubleshooting after the message is sent.

In the following sample code, SDK for Java is used to obtain a message ID:

SendResult sendResult = producer.send(msqg) ;

String msgId = sendResult.getMessagelId() ;

To obtain the sample code for other programming languages, click Groups in the left-side
navigation pane. On the Groups page, find the group ID of the message and clickSample Code
in the Actions column.

By message key

Message Queue for Apache RocketMQ creates an index for messages based on the message keys
that you specify. When you enter a topic name and a message key to query messages, Message
Queue for Apache RocketMQ returns the matched messages based on the index.

41

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

P Notice
If you query messages by message key, take note of the following points:

m The query condition is the specified message key.

m Only the 64 messages that are most recently sent and contain the specified message
key are returned. Therefore, we recommend that you specify a unique and business-
distinctive key for each message.

The following sample code provides an example on how to specify a message key:

Message msg = new Message ("Topic","*","Hello MQ".getBytes());

Vass

* Specify the key to be indexed for each message. The key value is the key attribute
of the message. We recommend that you specify a unique key for each message.

* If you do not receive a message as expected, you can query the message in the Messa
ge Queue for Apache RocketMQ console. Messages can be sent and received even if this
attribute is not specified.

w2/

msg.setKey ("TestKey"+System.currentTimeMillis ()) ;

o By topic

If you cannot query messages by message ID or message key, query messages by topic. You can
specify a topic and time range for message sending, retrieve messages in batches, and then find
the datathat you need.

P Notice
If you query messages by topic, take note of the following points:

m [f you specify a topic and time range to query messages, range match is used to
retrieve all messages that meet the time condition within the topic. The number of
retrieved messages is large. Therefore, we recommend that you narrow down the
time range.

m [f you query messages by topic, a large number of messages are returned on multiple
pages.

5.2.3. Query results

This topic describes the results returned when you query messages.

You can view the queried messages on the Message Query page of the Message Queue for Apache
RocketMQ console. The displayed information includes the message ID, tag, key, and storage time. In
addition, click the corresponding buttons in the Actions column of a message to download the
message content, Query the message trace, and view the message details.

The delivery status is calculated by Message Queue for Apache RocketMQ based on the consumption
progress of each group ID. For more information about the delivery status, see .

> Document Version: 20220816 42

User Guide- Console guide Alibaba Cloud Message Queue

@ Note The delivery status is estimated based on the consumption progress. Use the message
tracing feature to query the consumption details. The message tracing feature allows you to query
the complete trace of a message. For more information, see Query the message trace.

Message delivery status

Delivery status Possible cause

The message has been subscribed to and consumed
The group ID has properly consumed the message.
at least once.
The tag of the message does not comply with the
subscription of the consumer and the message is
filtered out. To query the subscription of the

The message has been subscribed to but is filtered consumer, log on to the Message Queue for Apache
out by the filter expression. Check the tag of the RocketMQ console. In the left-side navigation pane,
message. click Groups. On the Groups page, find the group ID

of the consumer whose subscription you want to
view and click Consumer Status inthe Actions
column.

A consumer identified by the group ID has
subscribed to the message, but the message has
not been consumed possibly because the
consumptionis slow or is blocked due to an
exception.

The message has been subscribed to but is not
consumed.

The message has been subscribed to but the
consumer that subscribes to the message and is
identified by the group ID is not online. Use the
message tracing feature to query the details about
the message in an exact match.

A consumer identified by the group ID has
subscribed to the message but the consumer is not
online. Check the reason why the consumer is not
online.

An unknown exception occurred. Contact the customer service.

Message Queue for Apache Rocket MQ provides the consumption verification feature. You can push a
specified message to a specified online consumer to check whether the consumer can consume the
message based on the correct logic as expected.

) Notice The consumption verification feature is used only to verify whether consumers can
consume messages based on the correct logic as expected. This feature does not affect the
normal process of receiving messages. Therefore, information such as the consumption status of a
message does not change after the consumption is verified.

5.3. Message tracing
5.3.1. Overview

43 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

A message trace is the complete trace of a message that is sent from a producer to the Message
Queue for Apache RocketMQ broker and then consumed by a consumer. The message trace includes the
time, status, and other information of each node in the preceding process. The message trace provides
robust data support for troubleshooting in production environments. T his topic describes the scenarios,
query procedure, and parameters of query results for message tracing.

Message trace data

In Message Queue for Apache RocketMQ, the complete trace of a message involves three roles:
producer, broker, and consumer. Each role adds relevant information to the trace when the role
processes the message. The information is aggregated to indicate the status of the message. The
following figure shows the relevant data.

Message trace data

Send messages. m Subscribes to messages. P

Producer RocketMQ Server Consumer
Data displayed on the console: Data displayed on the console: Data displayed on the console:
« Producer client information + Message storage location « Consumer client information
+ Send time + Message storage time + delivery time
« Sent successfully or not + Message attributes + Consumed successfully or not
* RT * RT

You can use the message tracing feature to troubleshoot problems if a message is not sent or received
as expected in your production environment. You can query the message trace by message ID, message
key, ortopic to check whether the message is sent and received as expected within the specified time
range.

Is the message sent successfully?

Producers h g
|s the message consumed?

Why haven't | received the message?

Why did | receive the same message
Consumers .)

for multiple times?
What is the message consumption
speed (TPS)?

Usage notes

> Document Version: 20220816 44

User Guide- Console guide Alibaba Cloud Message Queue

No extra fees are incurred when you use the message tracing feature. After a message is sent, you can
query the trace of the message based onthe ID or key of the message in the Message Queue for
Apache Rocket MQ console. You must take note of the following points.

Rules for querying message traces

Message type Query description

A sending trace is generated after the message is
sent. If the message is not consumed, Not

Normal messages Consumed appears. After the message is
consumed, the delivery and consumption
information appears.

A sending trace is generated after the message is
sent. If the message is not consumed, Not

Ordered messages Consumed appears. After the message is
consumed, the delivery and consumption
information appears.

If the current system time does not reach the
Scheduled messages and delayed messages specified message consumption time, the trace can
be queried but the message cannot be queried.

Before the transaction is committed, the trace can

Transactional messages . .
9 be queried but the message cannot be queried.

Examples

If you find that a message is not received as expected based on the log information, performthe
following steps to troubleshoot the problem by using the message trace:

1. Collect the information about the message that is suspected to be abnormal. The information
includes the message ID, message key, topic, and approximate sending time.

2. Log onto the Message Queue for Apache RocketMQ console, and create a query taskto query the
message trace based on the available information.

3. Checkthe query results and analyze the cause.

o If Not Consumed appears inthe trace, go to the Groups page to View the consumer status.
Then, you can determine whether message accumulation is the reason why the message is not
consumed.

o If the message is consumed, find the corresponding consumer and the time when the message is
consumed in the consumption information. Then, log on to the consumer to view the relevant
log.

5.3.2. Query message traces

No extra fees are incurred when you use the message tracing feature. To use this feature, you must
make sure that the version of your client SDK supports this feature. After a message is sent or received,
you can query the trace of the message based on the message attributes in the Message Queue for
Apache RocketMQ console.

Prerequisites

45 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

Make sure that the version of your SDK supports the message tracing feature. You can use the
following versions of SDKs:

e SDKforjava: V1.2.7 and later

e SDKforCand C++:V1.1.2 and later

e .SDKfor.NET: V1.1.2 and later

Procedure
1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Message Tracing. Onthe page that appears, click Create Query Task in the upper-right corner.

2. Inthe Create Query Task dialog box, click the By Message ID, By Message Key, or By Topic tab and
enter the information as prompted. Then, click OK.

) Notice Specify a time range as accurate as possible to narrow the query scope and
speed up the query.

Message tracing supports the following three query methods. Select a query method and specify
the query criteria.

o By message ID: You must specify the unique message ID, topic, and approximate sending time of
a message. We recommend that you use this method because this method uses exact match and

allows you to query message traces fast.

o By message key: You must specify the message key, topic, and approximate sending time of a
message. T his method uses fuzzy match. A maximum of 1,000 traces can be displayed for a
query based on the specified message key. This method applies only to scenarios where the
message ID is not recorded but a business-distinctive message key is specified.

o Bytopic: You must specify the topic and approximate sending time for batch query. This method
uses range match and applies to scenarios where both the message ID and the message key are
unavailable and the message volume is small. We do not recommend this query method, because
a large volume of messages exist in a topic within the specified time range and you cannot find
the message you want among these messages in this time range.

Afteryou create a query task, you can view the query task on the Message Tracing page. If the
value of Task Status is Querying, you cannot view the message trace.

3. Inthe upper-right cormer, click Refresh until the value of Task Status becomes Query Completed.
You can clickthe + icon to view the brief trace information, including the message attributes and
consumption status.

o If no datais found, verify whether the query information you entered is valid.

o If the trace is queried out, brief trace information appears, including the message attributes and
consumption status.

4. ClickView Traces to checkthe complete trace.
The message trace consists of three parts:
o Producer information
o Topic information
o Consumer information

You can move the pointer over a field to view the details about the field.

> Document Version: 20220816 46

User Guide- Console guide

Alibaba Cloud Message Queue

5.3.3. Status in message traces

If you query traces by message key or topic, multiple traces may be displayed. You can page up and
down to view and compare the traces.

For more information about the query results of message traces, see Message tracing status.

This topic describes the terms and status information displayed on the Message Trace page.

Terms for message tracing

Sending status and consumption status

Role

Producer

Topic

Consumer

Sending status and consumption
status

Field

Sending Time

Time Consumed

Region

Time Consumed

Delivery Time

Field

Sent

Description

The time when the message was
sent from the producer. The time
follows the ISO 8601 standard in
the yyyy-MM-ddThh:mm:ssZ
format. The time is displayed in
UTC.

The period of time that the
producer took to send a
message by calling the Send
method. Unit: milliseconds.

The region where the message is
stored or the region where the
consumer is located.

The period of time that the
consumer took to execute the
consumeMessage method after
the message is pushed to the
consumer.

The time when the consumer
executed the consumeMessage
method to start consuming the
message. The time follows the
ISO 8601 standard in the yyyy-
MM-ddThh:mm:ssZ format. The
time is displayed in UTC.

Description

The message is sent and stored
in the Message Queue for Apache
RocketMQ broker.

47

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Console guide

Sending status and consumption

status

Sending status

Consumption status

Field

Sending Failed

Message Standing By

Transaction Uncommitted

Message Rolled Back

All Succeeded

Partially Succeeded

All Failed

Not Consumed

Consumption Result Unreturned

Consumed

Consumption Failed

Description

The message fails to be sent and
is not stored in the Message
Queue for Apache RocketMQ
broker. In this case, the broker
tries to redeliver the message.

The message is a scheduled or
delayed message and it is not
the time to deliver the message.

The message is a transactional
message and has not been
committed.

The message is a transactional
message and has been rolled
back.

The message has been
consumed by all the consumers
to which it is delivered.

The message fails to be
consumed in specific deliveries,
or the message is consumed
after it is redelivered.

The message still fails to be
consumed after all delivery
retries.

The message is not delivered to
consumers.

No results are returned for the
message consumption method
or the method is interrupted.
Therefore, the consumption
status is not returned to the
Message Queue for Apache
RocketMQ broker.

The message is consumed.

A failure result is returned for the
message consumption method,
or the method threw an
exception.

5.4. View the consumer status

> Document Version: 20220816

48

User Guide- Console guide Alibaba Cloud Message Queue

The Message Queue for Apache RocketMQ console allows you to check the consumer status to
troubleshoot exceptions that occur during message consumption. T his feature allows you to view the
information about a group ID or a consumer identified by the group ID. The information includes the
connection status, subscription, consumption TPS, number of accumulated messages, and thread
stacks. This topic describes how to view the information.

Context

The cause of an exception that occurs during message consumption is complicated. In most cases, the
consumer status information in the console alone is insufficient to troubleshoot a problem. You must
perform further troubleshooting by analyzing logs and business scenarios.

Scenarios
You can query the consumer status for troubleshooting in the following scenarios:
e Subscription inconsistency

o Symptom: Inthe Consumer Status panel, the value of Consistent Subscription columnis No
forthe group ID.

o Solution: For more information about how to handle subscription inconsistency, see Subscription
inconsistency.
e Message accumulation alerts

o Symptom: Inthe Consumer Status panel, the value in the Accumulated Messages column is
large forthe group ID.

o Solution: For more information about how to handle message accumulation alerts, see Message
accumulation.

View the information about a group ID

1. Log onto the Message Queue for Apache RocketMQ console.
2. Inthe left-side navigation pane, click Groups.

3. Onthe Groups page, find the group ID that you want to view and click Consumer Status inthe
Actions column.

The following table describes the fields in the Consumer Status panel.

Description of fields in the Consumer Status panel

Field Description

The value is Yes if one consumer instance
identified by the group ID is online. In this case,
you can view information about all online
consumer instances in the Connection
Information section. If none of the consumer
instances identified by the group ID is online, the
value is Offline and no information is displayed in
the Connection Information section.

Online status icon

49 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

Field Description

Indicates whether the subscriptions of all
consumer instances identified by the group ID are

Consistent Subscription consistent. For more information about
subscription consistency, see Subscription
consistency.

The total TPS at which messages are received by
Real-time Consumption Speed the consumer instances identified by the group ID.
Unit: messages/s.

The total number of messages that are not
Real-time Accumulated Messages consumed by the consumer instances identified
by the group ID.

The time when the consumer instances identified

Last Consumed At
by the group ID last consumed a message.

The difference between the production time of
Message Delay Time the earliest unconsumed message and the current
time.

View information about a single consumer instance identified by a
specific group ID
1. If the online status of the group ID is Yes, you can view information about each online consumer
instance identified by the group ID in the Connection Information section. The information

includes the client ID, host or public IP address, current process ID, and number of accumulated
messages.

2. If you want to view more information about a specific consumer instance, click Det ailed
Information in the Detailed Description column. The information includes the number of
consumer threads, consumption start time, subscription, and message consumption statistics.

3. If youwant to view the stack information of the current process for a specific consumer instance,
find the consumer instance and click Stack Information in the Stack Information column.

5.5. Reset consumer offsets

You can reset consumer offsets to skip the accumulated or undesired messages instead of consuming
them, or to consume messages sent after a point in time regardless of whether the messages sent
before this point in time are consumed.

Context

When you reset consumer offsets, take note of the following points:

e You cannot reset consumer offsets in broadcasting consumption mode.

e You cannot reset consumer offsets by specifying a message ID, message key, ortag.

Procedure

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups.

> Document Version: 20220816 50

User Guide- Console guide Alibaba Cloud Message Queue

2. Find the group ID whose consumer offset you want to reset, click the More icon inthe Actions
column, and then select Reset Consumer Offset.

3. Inthe Reset Consumer Offset dialog box, enter the corresponding topic in the Topic field, and
then select one the following options as needed:

o Consumption from Latest Offset (All Accumulated Messages Cleared): If this option is
selected, consumers identified by the group ID skip all accumulated (unconsumed) messages
within the topic and restart consumption fromthe latest offset.

If "reconsumelLater" is returned, the messages in the delivery retry process cannot be skipped.

o Consumption from a Specific Point in Time: If this optionis selected, a time picker appears.
Select a point in time. Only the messages that are sent after the selected point in time will be
consumed.

The period allowed for the time picker ranges fromthe production time of the earliest message
stored in the topic to the production time of the latest message stored in the topic. You can
select a point in time only within the allowed time range.

4. Click OK to reset the consumer offset.

5.6. Dead-letter queues

Dead-letter queues are used to process messages that cannot be consumed as expected. T his topic
describes how to query, export, and resend dead-letter messages in dead-letter queues. This helps you
manage dead-letter messages as needed and prevent missing messages.

Background information

When a message fails to be consumed for the first time, the Message Queue for Apache RocketMQ
broker automatically redelivers the message. If the message still cannot be consumed after the broker
redelivers the message for a maximum of allowed times, the message cannot be properly consumed.
Instead of immediately discarding the message, Message Queue for Apache RocketMQ sends it to a
particular queue of the corresponding consumer.

In Message Queue for Apache RocketMQ, a message that cannot be properly consumed is called a
dead-letter message, which is stored in a particular queue named dead-letter queue.

Features
Dead-letter messages have the following features:

e They can no longer be consumed by consumers as expected.

e They have a valid period of three days, which is the same as that of normal messages. Afterthe three
days, dead-letter messages are automatically deleted. Therefore, process dead-letter messages
within three days after they are generated.

Dead-letter queues have the following features:

e A dead-letter queue corresponds to a group ID instead of a consumer instance.

e If no dead-letter message is generated for a group ID, Message Queue for Apache RocketMQ does
not create a dead-letter queue forthe group ID.

o A dead-letter queue contains all the dead-letter messages of the corresponding group ID regardless
of the message topic.

In the Message Queue for Apache RocketMQ console, you can query, export, and resend dead-letter
messages.

51 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

Methods of querying dead-letter messages

Message Queue for Apache RocketMQ provides the following methods for you to query dead-letter
messages.

Method Condition Type Description

You can specify a group
ID and a time range to
query all messages that
meet the specified
conditions. This type of
query returns a large
number of messages. It
is difficult to find a
specific message that
you want to query.

By group ID Group ID and time range Range match

You can specify a group
ID and a message ID to
query a message by
using exact match.

By message ID Group ID+Message ID Exact match

By group ID

You can batch query all the dead-letter messages of a group ID within a time range by specifying the
group ID and time range.

) Notice The production time of a dead-letter message refers to the time when a message is
sent to the dead-letter queue after the maximum number of redelivery retries for this message is
reached.

1. Log onto the Message Queue for Apache RocketMQ console.
. Inthe left-side navigation pane, click Dead-letter Queues.

. Onthe Dead-letter Queues page, clickthe By Group ID tab.

A W N

. Fromthe drop-down list of group IDs, select the group ID whose dead-letter messages you want
to view.

(9}

. Clickthe icon for the time picker and specify the start time and end time.
6. ClickSearch. All dead-letter messages that meet the preceding conditions appear.

7. Find the dead-letter message that you want to view and click View Det ails in the Actions column
to view the details about the message. The details include the basic attributes, download URL of
the message body, message trace, and delivery status.

By message ID

If you query messages by message ID, exact match is used. You can precisely locate a message by
specifying its group ID and message ID.

1. Log onto the Message Queue for Apache RocketMQ console.
2. Inthe left-side navigation pane, click Dead-letter Queues.

3. Onthe Dead-letter Queues page, select your instance and click the By Message ID tab.

> Document Version: 20220816 52

User Guide- Console guide Alibaba Cloud Message Queue

4. Fromthe drop-down list of group IDs, select the group ID whose dead-letter messages you want
to view.

5. Inthe search box of message IDs, enter the ID of the message that you want to query.

6. ClickSearch. All dead-letter messages that meet the preceding conditions appear.

7. Find the dead-letter message that you want to view and click View Det ails in the Actions column
to view the details about the message. The details include the basic attributes, download URL of
the message body, message trace, and delivery status.

Export dead-letter messages

If you cannot process dead-letter messages within the validity period, export the messages in the
Message Queue for Apache RocketMQ console.

The Message Queue for Apache RocketMQ console allows you to export a single dead-letter message
or export dead-letter messages in batches. The exported file is in the CSV format.

The following table describes the fields of an exported message.

Field Definition
topic The topic to which the message belongs.
msgld The ID of the message.

The URL of the producer that produced the
bornHost

message.
bornTimestamp The time when the message was produced.

. The time when the message turned into a dead-
storeTimestamp letter message

. The number of times that the message failed to be
reconsumeTimes

consumed.
properties The message attributes in the JSON format.
body The Base64-encoded message body.

The cyclic redundancy check (CRC) of the message

bodyCRC body.

e Export asingle dead-letter message

In the Message Queue for Apache RocketMQ console, find the dead-letter message that you want to
export and click Export inthe Actions column.

e Export dead-letter messages in batches
In the Message Queue for Apache RocketMQ console, enter the group ID to query the dead-letter

messages, select the dead-letter messages that you want to export, and then clickBatch Export.

Resend dead-letter messages

53 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

If a message enters a dead-letter queue, the message cannot be consumed as expected for specific
reasons. Therefore, you must process the message in a special way. After you troubleshoot the
problems, you can resend the message to the corresponding consumer in the Message Queue for
Apache Rocket MQ console.

) Notice Afteradead-letter message is resent to the consumer, the message will still be
stored inthe dead-letter queue forthree days. The system automatically deletes the message
after the three days.

e Resend a single dead-letter message

In the Message Queue for Apache RocketMQ console, query one dead-letter message by message ID
or query dead-letter messages by group ID. Find the dead-letter message that you want to resend
and clickResend in the Actions column.

e Resend dead-letter messages in batches

In the Message Queue for Apache RocketMQ console, query dead-letter messages by group ID, select
the dead-letter messages that you want to resend, and then click Batch Resend.

5.7. Resource statistics
5.7.1. Overview

This topic describes how to use the resource statistics feature to query the statistics of produced
messages and consumed messages.

The resource statistics feature provides the statistics of produced messages and consumed messages.
This feature allows you to query the following data:

e Statistics of produced messages

o Queries by topic: You can query the total number of messages that are received by a topic or the
average number of messages that are received by a topic per second in a specified period of time.

o Queries by instance: You can query the total number of messages that are received by the topics in
a specified instance or the average number of messages that are received by the topics in a
specified instance per second in a specified period of time.

e Statistics of consumed messages

o Queries by group ID: You can query the total number of messages that are sent fromatopic to
consumers identified by a group ID or the average number of messages that are sent from a topic
to consumers identified by a group ID per second in a specified period of time.

o Queries by instance: You can query the total number of messages that are sent to all groups in a
specified instance or the average number of messages that are sent to all groups in a specified
instance per second in a specified period of time.

5.7.2. Query the statistics of produced messages

This topic describes how to query the statistics of produced messages. You can query the total number
of messages that are received by a topic or all topics across the brokers in a specified instance in a
specified period of time. You can also query the average number of messages that are received by a
topic or all topics across the brokers in a specified instance per second in a specified period of time.

> Document Version: 20220816 54

User Guide- Console guide Alibaba Cloud Message Queue

Procedure

1.

5.

Log on to the Message Queue for Apache RocketMQ console.

. Inthe left-side navigation pane, clickResource Statistics.

2
3.
4

Onthe Resource Statistics page, clickthe Message Production tab.

. Fromthe Resource Type drop-down list, select a resource type for which you want to query the

statistics of produced messages. Configure the related fields. Then, click Search.
The following information describes the related fields:

o Resource Type: The value can be Instance or Topic. Select Instance to query the total number
of messages that are received by the topics in a specified instance or the average number of
messages that are received by the topics in a specified instance per second in a specified period
of time. Select Topic to query the total number of messages that are received by a specified
topic or the average number of messages that are received by a specified topic persecond in a
specified period of time.

o Current Instance: This parameter is displayed if Resource Type is set to Instance. This
parameter is automatically set to the name and ID of the current instance.

o Topic: This parameter is displayed if Resource Type is set to Topic. Select a topic to query the
statistics of the produced messages that are sent to a specified topic in the current instance.

o Collection Type: The value can be Total or TPS. Select Total to query the total number of
messages that are received by the topic in each collection cycle. Select TPS to query the average
number of messages that are received by the topic per second in each collection cycle.

o Collection Interval: The value can be 1 Minute, 10 Minutes, 30 Minutes, or 1 Hour. T his
parameter specifies the interval at which data is collected. A smaller value indicates a higher
data collection frequency and more detailed data.

o Time Range: Message Queue for Apache RocketMQ allows you to query messages that are
produced in the last three days.

Query results are displayed in charts.

7.3. Query the statistics of consumed messages

This topic describes how to query the statistics of consumed messages. You can query the total
number of messages that are sent from a topic to consumers identified by a group ID in a specified
period of time. You can also query the average number of messages that are sent fromatopic to
consumers identified by a group ID per second in a specified period of time.

Procedure

1.

Log onto the Message Queue for Apache RocketMQ console.

2. Inthe left-side navigation pane, clickResource Statistics.
3.
4

. Fromthe Resource Type drop-down list, select a resource type for which you want to query the

Onthe Resource Statistics page, clickthe Message Consumption tab.

statistics of consumed messages. Configure the related fields. Then, click Search.
The following information describes the related fields:

o Resource Type: The value can be Instance or Group ID. Select Instance to query the total
number of messages that are sent to the groups in a specified instance or the average number
of messages that are sent to the groups in a specified instance per second in a specified period

55

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

of time. Select Group ID to query the total number of messages that are sent fromatopic to
consumers identified by a group ID or the average number of messages that are sent froma
topic to consumers identified by a group ID per second in a specified period of time.

o Current Instance: This parameter is displayed if Resource Type is set to Instance. This
parameter is automatically set to the name and ID of the current instance.

o Group ID: This parameter is displayed if Resource Type is set to Group ID. You must select the
group ID for which you want to query data.

o Topic: This parameter is displayed if Resource Type is set to Group ID. You must select a topic
from which the messages that you want to query are sent.

o Collection Type: The value can be Total or TPS. Select Total to query the total number of
messages that are sent to consumers identified by the group ID in each collection cycle. Select
TPS to query the average number of messages that are sent to consumers identified by the
group ID per second in each collection cycle.

o Collection Interval: The value can be 1 Minute, 10 Minutes, 30 Minutes, or 1 Hour. T his
parameter specifies the interval at which data is collected. A smaller value indicates a higher
data collection frequency and more detailed data.

o Time Range: Message Queue for Apache RocketMQ allows you to query messages that are
consumed in the last three days.

Query results are displayed in charts.

5.8. Account authorization
management

Message Queue for Apache RocketMQ allows you to use an Apsara Stack tenant account to grant
permissions to publish and subscribe to a topic to another Apsara Stacktenant account or a Resource
Access Management (RAM) user. An Apsara Stack tenant account is a level-1 department account. A
RAM user is a personal account that is used to access the Apsara Stack resources.

Grant permissions to another Apsara Stack tenant account

You can use an Apsara Stack tenant account to grant permissions to another Apsara Stack tenant
account. To grant permissions to publish and subscribe to a topic, performthe following steps:

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

2. Onthe Topics page, find the topic that you want to authorize another account to manage, click

(- inthe Actions column, and then select Authorize fromthe drop-down list.

3. Inthe Authorize dialog box, set Account Type to Apsara Stack Account.

4. Inthe Apsara Stack Account ID field, enterthe ID of the Apsara Stacktenant account to which
you want to grant permissions.

5. Fromthe Authorization Type drop-down list, select the permissions that you want to grant to
the Apsara Stacktenant account. Then, click OK.

Grant permissions to a RAM user

> Document Version: 20220816 56

User Guide- Console guide Alibaba Cloud Message Queue

You can use an Apsara Stack tenant account to grant permissions to a RAM user that belongsto the
Apsara Stacktenant account. To grant permissions to publish and subscribe to a topic, performthe
following steps:

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

2. Onthe Topics page, find the topic that you want to authorize a RAM user to manage, click ¢-) in
the Actions column, and then select Authorize fromthe drop-down list.

3. Inthe Authorize dialog box, set Account Type to RAM User.

4. Inthe RAM User Name field, enter the name of the RAM user to which you want to grant
permissions.

5. Fromthe Authorization Type drop-down list, select the permissions that you want to grant to
the RAM user. Then, click OK.

(@ Note The RAMuserto which you want to grant permissions must be an account that is used
to access the Apsara Stack resources and is owned by the department to which the Apsara Stack
tenant account belongs.

View authorization information

You can view the authorization records and the details of each topic in the Message Queue for Apache
RocketMQ console. To view authorization information, performthe following steps:

1. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Topics.

2. Onthe Topics page, find the topic that you want to view, click (- in the Actions column, and

then select View Authorization fromthe drop-down list to view the authorization records and
information of the topic.

@ Note
e You do not need to authorize your account to manage the topics that you create.

e Afteryoulog onto the Message Queue for Apache Rocket MQ console by using an
authorized account, you can view the topic that the account is authorized to manage.
Then, you must create a group ID. You cannot use the group ID of the Apsara Stack tenant
account that is used to grant permissions to your account.

e A topicthat an account is authorized to manage belongs to the Apsara Stack tenant
account that is used to grant permissions. Therefore, you cannot use the authorized
account to delete the topic.

e If you grant permissions to a RAM user, you cannot use the authorized RAM user to create
topics.

e If you grant permissions to another Apsara Stack tenant account, you can use the
authorized Apsara Stack tenant account to create topics. However, the created topics are
not associated to the Apsara Stacktenant account that is used to grant permissions.

57 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

5.9. Switch between different access
modes

Message Queue for Apache RocketMQ supports instance-specific management. By default, one
instance can be deployed at a time. Message Queue for Apache RocketMQ supports advanced access
control by using virtual private clouds (VPC) for each instance.

Context

By default, a Message Queue for Apache RocketMQ instance supports the Any Tunnel access mode.
This means that the Message Queue for Apache RocketMQ instance can be accessed in each VPC
environment. You can switch the access mode in the console at any time. If the access mode of a
Message Queue for Apache RocketMQ instance is switched to Single Tunnel, the instance can be
accessed only in a specified VPC environment.

Procedure

1. Log onto the RocketMQ console. In the left-side navigation pane, click Cluster Management.

2. Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Cluster Management.

3. Find the instance whose access mode you want to switch and click Switch Access Method inthe
Actions column.

4. Select an access mode. You can select one of the following options:

o Single Tunnel: If this optionis selected, the instance can be accessed only in a specified VPC
environment. The page displays the vSwit ch ID field. You must specify the vSwitch ID of the VPC
that you use.

o Any Tunnel: If this option is selected, the instance can be accessed in each VPC environment.

5. Select an option forForced Switch to indicate whether to forcibly switch the access mode. The
switching between access modes may cause the transient interruption of services. When forcible
swit ching is disabled, one access mode can be switched to another access mode only when the
instance traffic is light. This means that the transactions per second (TPS) must be no more than
10. When forcible switching is enabled, one access mode can be switched to another access mode
regardless of the service traffic.

6. Click OK.

5.10. Bind a VPC to a Message Queue
for Apache RocketMQ instance

Message Queue for Apache RocketMQ allows you to bind multiple virtual private clouds (VPCs) to an
instance. Message Queue for Apache RocketMQ provides an endpoint for each Single Tunnel VPC. You
can assign different endpoints of the same instance to different business services to performfine-
grained access control. This topic describes how to bind a VPC to an instance and unbind a VPC from an
instance in the Message Queue for Apache RocketMQ console.

Context

> Document Version: 20220816 58

User Guide- Console guide Alibaba Cloud Message Queue

By default, Message Queue for Apache RocketMQ provides an HTTP-based Any Tunnel endpoint and a
TCP-based Any Tunnel endpoint for each instance. You can connect to the Message Queue for Apache
RocketMQ instance by using an Any Tunnel endpoint over a VPC. You can bind multiple VPCs of the
Single Tunnel type to provide multiple networks for an instance. After a Single Tunnel VPCis bound to
an instance, the system automatically allocates an endpoint for the VPC. The endpoint can be used to
connect to the Message Queue for Apache RocketMQ instance over only the VPC. You can bind multiple
Single Tunnel VPCs to your Message Queue for Apache Rocket MQ instance. T his way, you can assign
isolated networks to your business services to performfine-grained network access control.

Prerequisites

e (Create aninstance
e AVPCiscreated.

For more information, see the Create a VPCtopic inthe VPC User Guide.
e A vSwitchis created.

For more information, see the Create a vSwitchtopic in the VPC User Guide.

Precautions

e VPC connections are established based on Any Tunnel network connections. VPCs that are bound to
a Message Queue for Apache RocketMQ instance do not affect the existing Any Tunnel networks of
the instance. The Any Tunnel networks remain available after VPCs are bound to the instance.

e We recommend that you use the credential of the administrator of the Message Queue for Apache
RocketMQ instance to bind VPCs and manage VPCs that are bound to the instance. If you use the
credentials of non-administrator users to bind and manage VPCs for a Message Queue for Apache
RocketMQ instance, your business services may fail to connect to the instance.

e Only TCP-based clients can use the endpoint fora VPCto connect to the instance.

e AfteraVPCis bound to a Message Queue for Apache RocketMQ instance, the system ensures only
that Message Queue for Apache RocketMQ brokers can connect to the instance overthe VPC. To
connect your client to the Message Queue for Apache RocketMQ instance over the VPC, make sure
that your client is connected to the VPC.

Bind a VPC to an instance

1. Log onto the Message Queue for Apache RocketMQ console. For information about how to log on
to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for
Apache RocketMQ console.

2. Inthe left-side navigation pane, click Instances.

3. OntheInstances page, clickthe name of the instance to which you want to bind a VPC. Then, click
the Network Management tab.

4. Onthe Network Management tab, click Binding VPC.
5. Inthe Binding VPC dialog box, configure the parameters and click OK.

The following table describes the parameters that you need to configure to bind a VPC.

Parameter Description

59 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Console guide

Parameter

Cluster Name

Instance

VPCID

Switch ID

VPC NAME

Afterthe VPCis bound, you can view information about the VPCin the VPC list on the Network
Management tab, including the endpoint that is assigned for the VPC, the ID of the VPC, and the

Description

The name of the cluster to which the Message
Queue for Apache RocketMQ instance belongs.

The system automatically obtains the value of
this parameter. You do not need to specify a
value.

The ID of the Message Queue for Apache
RocketMQ instance.

The system automatically obtains the value of
this parameter. You do not need to specify a
value.

Select the VPC that you want to bind to the
Message Queue for Apache RocketMQ instance
from the drop-down list.

Select the vSwitch that you want to connect to

the instance from the drop-down list.

Specify a name for the VPC that you want to bind
to the instance. We recommend that you specify

a name that can help you identify the business
service that connects to the instance over the
VPC.

vSwitch to which the instance is connected. You can also click VPC Instances in the Actions

column to view the Message Queue for Apache RocketMQ instances to which the VPCis bound.

Unbind a VPC from an instance

) Notice

e Aftera VPCis unbound from an RocketMQ instance, the endpoint forthe VPC becomes

invalid and cannot be used to access the instance. Proceed with caution when you unbind a
VPC from an instance.

e [f aVPCis bound to multiple instances in a cluster and you want to prevent access requests

that are sent over the VPC, you must unbind the VPC from all instances in the cluster.

1. Log onto the Message Queue for Apache RocketMQ console. For information about how to log on
to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for

Apache RocketMQ console.

2. Inthe left-side navigation pane, click Instances.

3. Onthe Instances page, click the name of the instance from which you want to unbind a VPC. Then,

clickthe Network Management tab.

4. Inthe VPC list, find the VPC that you want to unbind and click Unbind VPCs inthe Actions column.

> Document Version: 20220816

60

User Guide- Console guide Alibaba Cloud Message Queue

5. Inthe Unbind dialog box, check the information about the VPC and click OK.

5.11. Route messages from a cluster
to another cluster

The message routing feature provided by Message Queue for Apache RocketMQ allows you to
synchronize messages across clusters. This topic describes how to configure a message routing task.

Context

The message routing feature of Message Queue for Apache RocketMQ is used to synchronize messages
across clusters. You can configure routing rules to dynamically plan the synchronization path of
messages so that messages can be synchronized from the source node to the destination node based
on filter conditions. This implements remote message synchronization and allows you to synchronize
messages across clusters wit hin milliseconds. This way, data consistency and integrity across clusters are
ensured.

The following figure shows how the message routing feature works in Message Queue for Apache
RocketMQ. In the figure, one-way synchronization is performed based on topics to synchronize
messages from a specified source topic in the source instance to a specified destination topic in the
destination instance.

For more information about the message routing feature, see Message routing.

Precautions

e Only instances that have a namespace support the message routing feature. If you want to enable
the message routing feature for an instance, specify a namespace for the instance when you create
the instance.

e The message routing feature does not support chain routing. For example, you cannot route
messages from Cluster A to Cluster B and then from Cluster B to Cluster C. You must create ataskto
route messages from Cluster A to Cluster C.

e The message type of the source topic must be the same as the message type of destination topic.
For example, if the message type of the source topic is normal message, the message type of the
destination message must also be normal message.

e A routing task must be created in the production environment in which the destination cluster is
deployed. If you want to route messages from Cluster A to Cluster B, you must create a message
routing task in the cloud environment of Cluster B. In the message routing task configuration, specify
Cluster A as the source cluster and Cluster B as the destination cluster.

e Message routing requires the CPU resources and memory resources of the source cluster and the
destination cluster, and the storage resources of the destination cluster. You must evaluate the
amount of resources that are required before you create a message routing task.

Prerequisites
e (Create aninstance
e Create atopic
Procedure

You can performthe following steps to create a Message Queue for Apache Rocket MQ message
routing task:

61 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Console guide

e Step 1: Create a destination cloud

Before you create a routing task, you must specify information to create a cloud where your Message
Queue for Apache RocketMQ cluster is deployed. The information includes the endpoint of your
Message Queue for Apache Rocket MQ instance and the AccessKey ID and AccessKey secret of the
account to which the cloud belongs. Message Queue for Apache Rocket MQ obtains the permissions
that are required to access Message Queue for Apache Rocket MQ resources across clouds based on
the cloud information that you specified.

e Step 2: Create a routing task

Specify the message source and the message destination, and configure relevant information. For
example, specify filter conditions and set the start offset of message synchronization.

Step 1: Create a destination cloud

1. Log onto the Message Queue for Apache RocketMQ console. For information about how to log on
to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for

Apache RocketMQ console.

2. Inthe left-side navigation pane, click Message Route.

3. Onthe Message Route page, clickthe Cloud Information tab. In the upper-right corner of the
Cloud Information tab, click Add Message Synchronization Cloud.

4. Inthe Create Message Synchronization Cloud dialog box that appears, configure the

parameters. Then, click OK.

The following table describes the parameters.

Parameter

Cloud Name

Description Example

The name of the cloud to which
you want to route messages.

The cloud name must be
unique. The system identifies
the message routing
destination based on only the
name of the cloud and the
endpoint of the Message
Queue for Apache RocketMQ
instance.

Center

> Document Version: 20220816

62

User Guide- Console guide

Alibaba Cloud Message Queue

Parameter

AccessKey

Secret

Region

Message Queue for Apache
RocketMQ Instance Endpoint

Description

The AccessKey ID of the
account that is used to log on
to the cloud.

Make sure that the role of the
account is the administrator of
Message Queue for Apache
RocketMQ or a user that is
granted the permissions to
write data to and read data
from instances and topics.

For information about how to
obtain the AccessKey ID, see
the Obtain an AccessKey pair
topic in the Message Queue for
Apache RocketMQ Developer Gui
de.

The AccessKey Secret of the
account that is used to log on
to the cloud.

For information about how to
obtain the AccessKey Secret,
see Obtain an AccessKey pair
topic in the Message Queue for
Apache RocketMQ Developer Gui
de.

The ID of the region where the
Message Queue for Apache
RocketMQ cluster is deployed.

To obtain the ID of the region,
log onto the Message Queue
for Apache RocketMQ console
and view the ID of the regionin
the top navigation bar.

The endpoint of the Message
Queue for Apache RocketMQ
instance.

For information about how to
obtain the endpoint of the
Message Queue for Apache
RocketMQ instance, see the
References section in this topic.

Example

j8gEROUEAW Tk****

AMx4ainrLWhT 8jYUPHkdI4zY 7t**

*%

cn-gingdao-env33-d01

http://mgq.server.xxxx.com:808
0/rocketmq/nsaddr4client-
internal

63

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- Console guide

Parameter

MQ API

Description

Description

The interface of the Message
Queue for Apache RocketMQ
console in the cloud.

The value of this parameter
must be in the following
format: http:{console.doma

in}/json

For information about how to
obtain the value of
{console.domain}, see the
References section in this topic.

The description of the cloud.
You can specify a description
that can help you identify the
cloud.

Step 2: Create a message routing task

Example

http:mg.console.xxxx.com/json

Core node

1. Log onto the Message Queue for Apache RocketMQ console. For information about how to log on
to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for

Apache RocketMQ console.

2. Inthe left-side navigation pane, click Message Route.

3. Onthe Message Route page, clickthe Task tab. Then, click Create Task in the upper-right

corner.

4. Inthe Create Task dialog box that appears, configure the parameters. Then, click OK.

The following table describes the parameters.

Parameter

Message Source

Description

o Message Synchronization Cloud: the name
of the source cloud from which you want to
route messages.

o Source Region: the region where the source
Message Queue for Apache RocketMQ cluster is
deployed. After you configure the Message
Synchronization Cloud parameter, the
system automatically obtains the ID of the
region where the source cloud is deployed. You
do not need to specify a value for this

parameter.

o Source Instance: the instance to which the
source topic belongs.

o Source Topic: the name of the topic from
which you want to route messages.

> Document Version: 20220816

64

User Guide- Console guide

Alibaba Cloud Message Queue

Parameter

Message Destination

Offset to Start

Description

o Message Synchronization Cloud: the name
of the destination cloud to which you want to
route messages.

o Destination Region: the region where the
destination Message Queue for Apache
RocketMQ cluster is deployed. After you
configure the Message Synchronization
Cloud parameter, the system automatically
obtains the ID of the region where the
destination cloud is deployed. You do not need
to specify a value for this parameter.

o Destination Instance: the instance to which
the destination topic belongs.

o Destination Topic: the name of the topic to
which you want route messages.

The consumer offset from which you want to
route messages from the source topic to the
destination topic.

Default value: Maximum Offset. If the value of
this parameter is set to Maximum Offset, the
message routing task routes messages to the
destination topic from the most recent message
after the task is started.

(]3 Notice If the value of this parameter
is set to Maximum Offset, messages that are
sent to the source topic before the message
routing task is started are not routed to the
destination topic.

65

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

Parameter Description

o If no filtering rules are specified, the message
routing task routes all messages from the
source topic to the destination topic.

o |If afiltering rule is specified, the message
routing task routes messages that match the
specified conditions from the source topic to
the destination topic.

You can specify tags as conditions.

Filtering Rule If the name of a tag of the messages that you
want to route to the destination topic is
CartService, you can enter CartService in the
Filtering Rule field. If you want to filter messages
based on multiple tags, you can specify multiple
tags and separate the tags with two vertical bars
(). For example, you can enter CartServicelllnventr
oyj/Payment. For more information about how
messages are filtered based on tags, see
Message filtering.

Enter a description for the message routing task

Description
P to help you identify the task.

Modify a cloud

1. Onthe Message Route page, clickthe Cloud Information tab.

2. Inthe cloud list, find the destination cloud that you want to modify and click Modify in the
Actions column.

3. Inthe Modify Message Synchronization Cloud dialog box that appears, modify the
configuration of the cloud and click OK.

4. Inthe message that appears, read the message and click OK.

Delete a cloud

1. Onthe Message Route page, clickthe Cloud Information tab.
2. Inthe cloud list, find the cloud that you want to delete and click Delete inthe Actions column.

3. Inthe message that appears, read the message and click OK.

Start or stop a message routing task

1. Onthe Message Route page, clickthe Task tab.
2. Inthe message routing task list, find the message routing task that you want to manage and click
the » iconinthe Actions columnto start the task orclickthe () iconto stop the task.

Modify a message routing task

> Document Version: 20220816 66

User Guide- Console guide Alibaba Cloud Message Queue

> Notice After you modify the filtering rule of a task, you must stop the task and then
restart the taskto make the modification take effect.
1. Onthe Message Route page, clickthe Task tab.

2. Inthe message routing task list, find the task that you want to modify and clickthe # iconinthe
Actions column.

3. Inthe Modify T ask dialog box that appears, modify the configuration of the task and click OK.

View details of a message routing task
1. Onthe Message Route page, clickthe Task tab.
2. Inthe message routing task list, find the task that you want to view and clickthe [iconinthe

Actions column. The details of the task are displayed.

The following table describes the parameters that are included in the details of a message routing

task.
Parameter Description
o Created
Task Status © Running

o Suspended

Transactions per second (TPS) indicates the
number of messages that are routed from the

Message Synchronization TPS source topic to the destination topic per second.
The system collects the average TPS value at an
interval of 1 minute.

The time difference between the consumer offset
Message Delay of the most recent message that was routed and
the consumer offset of the latest message.

The number of messages that are not routed to

Accumulation Amount . .
the destination topic.

The point in time when the last message was

Latest Synchronization Time
routed.

Delete a message routing task
) Notice Aftera message routing task is deleted, the task stops running.

1. Onthe Message Route page, clickthe Task tab.

2. Inthe message routing task list, find the task that you want to delete and clickthe 7 iconinthe

Actions column.

3. Inthe message that appears, read the message and click OK.

67 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Console guide

References

Obtain information about the endpoint of a Message Queue for Apache RocketMQ instance
and the Message Queue for Apache RocketMQ API

When you create a destination cloud for message routing, configure the Message Queue for Apache
RocketMQ Instance Endpoint parameter and the MQ API parameter that is used specify the
interface of the RocketMQ service in the destination cloud. You can performthe following steps to
obtain the values for the parameters.

1. Log onto the Apsara Infrastructure Management Console.
i. Go to the Apsara Uni-manager Operations Console.

ii. Inthe top navigation bar, choose Products > Platforms > Apsara Infrastructure
Management Framework.

2. Inthe left-side navigation pane, clickReports.
3. Onthe All Reports page, search for Registration Vars of Services. In the report list that appears,
clickthe name of the report that you want to view.

4. Onthe Registration Vars of Services page, clickthe icon next to Service. Then, searchform

g.
5. Find the mqg-cai service, right-click the Service Registration column. Then, select Show More
from the shortcut menu.

On the Det ails page, the value that is displayed for the client.onsAddr parameter is the value of
the Message Queue for Apache RocketMQ Instance Endpoint parameter.

6. Find the mqg-console service, right-click the Service Registration column. Then, select Show
More fromthe shortcut menu.

On the Det ails page, the value that is displayed for the console.domain parameter is the value
of {console.domain} in the MQ API parameter.

> Document Version: 20220816 68

User Guide- SDK user guide Alibaba Cloud Message Queue

6.SDK user guide
6.1. Overview

This topic lists the protocols supported by Message Queue for Apache RocketMQ and the related SDKs
for multiple programming languages.

SDKs for different protocols and programming languages

The following table lists the protocols and SDKs for multiple programming languages that are
supported by Message Queue for Apache Rocket MQ.

Protocol Programming language SDK download link Sample code
Java mq-tcp-java-sdk mq-tcp-samples-java
TCP C/C++ maq-tcp-csharp-sdk maq-tcp-samples-csharp
.NET mq-tcp-.net-sdk mq-tcp-samples-.net
Java mg-http-java-sdk mg-http-samples-java
PHP mq-http-php-sdk mq-http-samples-php
Go mq-http-go-sdk mq-http-samples-go
-http- les-
Python maq-http-python-sdk mq prsampies
python
HTTP
.) mq-http-samples-
N . -http-nodejs-sdk
ode.js mq p-nodejs-s node js
C# mq-http-cpp-sdk mq-http-samples-cpp
-http- les-
C++ mq-http-csharp-sdk mq prsampies

csharp

Usage notes

e Message Queue for Apache RocketMQ provides TCP client SDKs and HTTP client SDKs for you to send
and consume messages. You cannot specify the same group ID in the code of a TCP client SDK and
the code of an HTTP client SDK at the same time. If you want to use a TCP client SDK to send and
consume messages, you must create a group forthe TCP protocol. You cannot specify a group that
is created forthe HTTP protocol in the code of the TCP client SDK.

e A Message Queue for Apache RocketMQ instance provides a TCP endpoint and an HTTP endpoint. An
endpoint for a specific protocol must be used together with an SDK for the same protocol. For
example, if you want to use a TCP client SDK to send and consume messages, you must obtain the
TCP endpoint of your Message Queue for Apache Rocket MQ instance. You cannot use the HTTP
endpoint to connect to the instance.

6.2. SDK user guide

69 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/
https://code.aliyun.com/aliware_rocketmq/mq-http-java-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/java/src/main/java
https://code.aliyun.com/aliware_rocketmq/mq-http-php-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/php
https://code.aliyun.com/aliware_rocketmq/mq-http-go-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/go
https://code.aliyun.com/aliware_rocketmq/mq-http-python-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/python
https://code.aliyun.com/aliware_rocketmq/mq-http-nodejs-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/nodejs
https://code.aliyun.com/aliware_rocketmq/mq-http-cpp-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/csharp
https://code.aliyun.com/aliware_rocketmq/mq-http-csharp-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/cpp

Alibaba Cloud Message Queue User Guide- SDK user guide

6.2.1. Demo projects

6.2.1.1. Overview

This topic helps engineers who are new to Message Queue for Apache RocketMQ to build a Message
Queue for Apache RocketMQ test project. The demo project is a Java project. It contains test code for
normal messages, transactional messages, and scheduled messages. The demo project also contains
Spring configurations.

6.2.1.2. Prepare the environment

This topic describes how to prepare an environment for a Message Queue for Apache RocketMQ demo
project.

Procedure
e Install an integrated development environment (IDE).

You can use Intelli] IDEA or Eclipse as the IDE. Intelli] IDEA is used in this example.

Download Intelljj IDEA Ultimate Edition from Intelli IDEA. Then, follow the installation instructions to
install Intellj) IDEA Ultimate Edition.

e Download a demo project.

Download a demo project from Git Hub to your on-premises machine.

Download a demo project

& AliwareMQ / mq-demo £\ Notificatic
<> Code Issues 10 Pull requests 3 Actions Projects Wiki Security Insights
¥ master ~ ¥ 4branches © 0 tags Go to file ¥ Code - I
vt Add timed-batch consumer demo Clone ®
HTTPS GitHub CLI
rocketma/java-rocketmq-demo Add timed-batch consumer demo https://github. con/Alinareng/nq-demo. git e
spring/java-spring-demo Add timed-batch consumer demo Use Git or checkout with SVN using the web URL
springboot/java-springboot-demo Add timed-batch consumer demo
B3 Open with GitHub Desktop
tep/java-tep-demo Add timed-batch consumer demo
.gitignore add demo @ Download zIP
README.md Add ReadMe 4 years ago

Afterthe downloaded package is decompressed, a folder named mg-demo-master
appears on your on-premises machine.

>
6.2.1.3. Configure a demo project
This topic describes how to configure a demo project.

Prerequisites

> Document Version: 20220816 70

https://www.jetbrains.com/idea/
https://github.com/AliwareMQ/mq-demo

User Guide- SDK user guide Alibaba Cloud Message Queue

e You have prepared the environment for the demo project.

e You have installed the JDK on your on-premises machine. For more information, visit Java SE
Downloads. We recommend that you use JDK 8.

Procedure

1. Import the demo project to Intelli IDEA.

i. Onthe Intellj IDEA page, clickImport Project and select the mg-demo-masterfolder.
Select the mg-demo-master folder

&=, B mq-demo-master °

Mame

¥ [spring

b | java-spring-demo
¥ B htip

k| java-http-demo
v B tcp

» [java-tcp-demo

ii. Select Import project from external model.
Select Import project from external model

@) Impaort Project
Create project from existing sources

© Import project from external model

& Eclipse
[& Flash Builder

A e——

iii. ClickNext until the project is imported. The JAR dependency needs to be loaded to the demo
project. Therefore, it takes two to three minutes to import the project.

2. Creates resources.

Create the required resources, such as topics and group IDs in the Message Queue for Apache
RocketMQ console and obtain the AccessKey pair in the Apsara Uni-manager Management Console
foridentity authentication.

i. For more information about how to create topics and group IDs, see Create resources.
ii. Performthe following operations to obtain the AccessKey ID and AccessKey secret:

In the Apsara Uni-manager Management Console, move your pointer over the profile picture
and select User Information. On the page that appears, view the AccessKey ID and AccessKey
secret inthe Apsara Stack AccessKey Pair section.

3. Configure the demo.

Configure the MgConfig class and the common.xmifile.

71 > Document Version: 20220816

https://www.oracle.com/java/technologies/javase-downloads.html

Alibaba Cloud Message Queue User Guide- SDK user guide

i. The following sample code provides an example on how to configure the MgConfig class:

public static final String TOPIC = "The topic that you created in the Message Queue
for Apache RocketMQ console."

public static final String GROUP ID = "The group ID that you created in the Message
Queue for Apache RocketMQ console."

public static final String ACCESS KEY = "The AccessKey ID that you created in the A
psara Uni-manager Management Console for identity authentication."

public static final String SECRET KEY = "The AccessKey secret that you created in t
he Apsara Uni-manager Management Console for identity authentication."

public static final String NAMESRV ADDR = "The TCP endpoint of your Message Queue f
or Apache RocketMQ instance. You can obtain the endpoint in the Message Queue for A

pache RocketMQ console."

@ Note Youmust usethe AccessKey ID and AccessKey secret of the account that you
use to create the topic.

ii. Configure the common.xmifile.

<props>

<prop key="AccessKey">XXX</prop> <!-- Modify the values based on your resources --
>

<prop key="SecretKey">XXX</prop>

<prop key="GROUP_ ID">XXX</prop>

<prop key="Topic">XXX</prop>

<prop key="NAMESRV ADDR">XXX</prop>

</props>

6.2.1.4. Run the demo project

Afteryou configure the demo project, you can start the corresponding classes to send and receive
messages of different types.

Call the main method to send and receive messages

1.
2.

Run the SimpleMQProducer class to send messages.

Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Message Query. On the Message Query page, click the By Topic tab. Onthe By Topic tab, select
the topic of the message that you sent. The query result shows that the message is sent to the

. Runthe SimpleMQConsumer class to receive messages. A log is printed. The log indicates that the
message is received. The class needs to be initialized. This takes several seconds. Initialization
seldomoccurs in the production environment.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Instance Details. On the Instance Details page, select your instance. In the left-side navigation pane,
click Groups. On the Groups page, find the group ID that you want to view and click Consumer Status
inthe Actions column. Inthe Consumer St atus panel, the information shows that the started
consumers are online and the subscriptions of the consumers are consistent.

Use Spring to send and receive messages

> Document Version: 20220816 72

User Guide- SDK user guide Alibaba Cloud Message Queue

1. Runthe ProducerClient class to send messages.
2. Runthe ConsumerClient class to receive messages.

Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Instance Details. On the Instance Det ails page, select your instance. In the left-side navigation pane,
click Groups. On the Groups page, find the group ID that you want to view and click Consumer Status
in the Actions column. In the Consumer Status panel, the information shows that the started
consumers are online and the subscriptions of the consumers are consistent.

Send transactional messages

Run the SimpleTransactionProducer class to send messages.

@ Note

The LocalTransactionCheckerimpl class is used to check the status of local transactions. T his class is
used to check whether a local transaction is committed. For more information, see Send and
subscribe to transactional messages.

Send and receive ordered messages
Run the SimpleOrderConsumer class to receive messages.

Run the SimpleOrderProducer class to send messages.

@ Note Ordered messages are sent and consumed in first-in-first-out (FIFO) order. For more
information, see Send and receive ordered messages.

Send scheduled or delayed messages

Run the MQTimerProducer class to send messages. These messages are delivered after a delay of 3
seconds.

@ Note Youcan specify an exact delay, which is up to 40 days. For more information, see Send
and receive scheduled messages.

6.2.2. Client parameters

This topic describes the parameters that are configured for Message Queue for Apache Rocket MQ
clients.

Client parameters

Recommende

Parameter Client Default value Description Client version
d value
The AccessKey
ID that is used
Producer or Configured b Configured b .
AccessKey 9 y 9 y to >=1.2.7.Final
consumer the user the user)
authenticate
the user.

73 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Parameter Client

Producer or

SecretKey
consumer

NAMESRV_ADD Producer or
R consumer

MsgTraceSwit Producer or
ch consumer

Producer or

GROUP_ID
consumer

Default value

Configured by
the user

Generated
after
deployment

true

Created inthe
console

Recommende
d value

Configured by
the user

Generated
after
deployment

true

Created inthe
console

Description

The AccessKey
secret that is
used to
authenticate
the user.

The endpoint
that is used to
connect to
Message
Queue for
Apache
RocketMQ.

Specifies
whether to
enable the
message
tracing feature
of Message
Queue for
Apache
RocketMQ.

The ID of the
group to
which the
producer or
consumer
client belongs.
Group IDs are
compatible
with producer
IDs (PIDs) or
consumer IDs
(CIDs) in earlier
versions.

Client version

>=1.2.7.Final

>=1.2.7.Final

>=1.7.0.Final

>=1.7.8.Final

> Document Version: 20220816

74

User Guide- SDK user guide

Alibaba Cloud Message Queue

Parameter

Producerld

SendMsgTime
outMillis

Client

Producer

Producer

Default value

Created inthe
console

5000

Recommende
d value

Created in the
console

Default

Description

The ID of the
group to
which the
producer
client belongs.
This
parameter
takes effect
only on
transactional
messages. If a
producer
client fails, the
Message
Queue for
Apache
RocketMQ
broker initiates
requests to
check the
status of
transactional
messages on
other
producer
clients in the
same group.

The timeout
period for
sending a
message. If
the Message
Queue for
Apache
RocketMQ
broker does
not return an
acknowledgm
ent to the
producer
client within
the specified
period of
time, the
producer
client
determines
that the
message
failed to send.

Client version

>=1.2.7.Final

>=1.2.7.Final

75

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Parameter Client
Consumerld Consumer
MessageModel Consumer
ConsumeThrea

Consumer
dNums

Default value

Created inthe
console

CLUSTERING

Dynamically
adjusted from
20 to 64

Recommende
d value

Created inthe
console

Default

Adjusted
based on
business
requirements

Description

The ID of the
group to
which the
consumer
client belongs.

The
consumption
mode. Valid
values:
CLUSTERING
and
BROADCASTIN
G. CLUSTERING
specifies that
each
subscribed
message is
received only
by one
consumer
client.
BROADCASTIN
G specifies
that each
subscribed
message is
received by all
consumer
clients.

The number of
consumer
threads. In
most cases,
this parameter
issettoa
larger value if
a longer time
is required to
consume a
single
message.

Client version

>=1.2.7.Final

>=1.2.7.Final

>=1.2.7.Final

> Document Version: 20220816

76

User Guide- SDK user guide Alibaba Cloud Message Queue

. Recommende L . .
Parameter Client Default value d value Description Client version

The maximum
number of
delivery retries
that can be
Consumer 16 Default performed >=1.2.7.Final
when a
message fails
to be
consumed.

MaxReconsum
eTimes

The timeout
period for
consumption
of each
message. If
the time to
consume a
message
exceeds the
specified
timeout
ConsumeTime Consumer 15 Default period, the _
out message fails
to be
consumed and
is redelivered
after aretry
interval.
Configure an
appropriate
value for each
type of
application.
Unit: minute.

>=1.2.7.Final

77 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

. Recommende L . .
Parameter Client Default value d value Description Client version

Specifies
whether to
carry the
latest
subscription
together with
each request.
If
MessageModel
is set to
BROADCASTIN
G, this
parameter
must be set to
true to
Adjusted prevent
PostSubscripti based on the messages
Consumer false . .
onwWhenPull consumption from failing to
mode be received
due to
subscription
inconsistency.
If
MessageModel
is set to
CLUSTERING,
this parameter
must be set to
false because
subscription
consistency is
required for
clustering
consumption.

>=1.2.7.Final

> Document Version: 20220816 78

User Guide- SDK user guide Alibaba Cloud Message Queue

. Recommende L . .
Parameter Client Default value d value Description Client version

The maximum
number of
messages that
can be
consumed in
each batch.
The actual
number of
Adjusted messages that
ConsumeMess based on are consumed
ageBatchMaxSi Consumer 1) in a batch can >=1.6.0.Final
business

ze requirements be smaller
than the value
of this
parameter.
The value
must be an
integer from 1
to 32. The
default value
is 1.

The maximum
number of
messages that
a consumer
client can
cache. A large
Adjusted value can
based on the cause an out
Consumer 5000 memory of of memory >=1.7.0.Final
consumer (O0OM) issue on
clients the client. The
value must be
an integer
from 100 to
50000. The
default value
is 5000.

MaxCachedMe
ssageAmount

79 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Parameter

MaxCachedMe
ssageSizelnMiB

Client

Consumer

Default value

512

Recommende
d value

Adjusted
based on the
memory of
consumer
clients

Description

The maximum
size of
messages that
a consumer
client can
cache. A large
value can
cause an out
of memory
(OOM) issue on
the client. The

Client version

>=1.7.0.Final

value ranges
from 16 to
2048. The
default value
is 512. Unit:
MB.

6.2.3. Client error codes
This topic describes error codes related to sending and subscribing to messages and their references.
Error codes related to sending and subscribing to messages

Cause and
recommended
solution

HTTP status code Status flag Description Broker version

Check whether the
message body is
empty.

Check whether the

13

MESSAGE_ILLEGAL

This error is
returned when the
message
verification fails.

length of the
message property
exceeds 32,767
bytes.

Check whether the
total size of the
message exceeds
4 MB.

>=4.0.1

> Document Version: 20220816

80

User Guide- SDK user guide

Alibaba Cloud Message Queue

HTTP status code Status flag

17 TOPIC_NOT _EXIST

SUBSCRIPTION_GR

26 OUP_NOT _EXIST

SUBSCRIPTION_NO

24
T_EXIST

Description

This error is
returned when the
specified message
topic does not
exist.

This error is
returned if the
specified group ID
does not exist.

This error is
returned when the
subscription does
not exist.

Cause and
recommended
solution

Broker version

1. Create a topic in
the Message
Queue for Apache
RocketMQ
console.

2.Restart your

application. >=4.0.1

For more

information, see
the "Nonexistent
topic" sectionin
the Nonexistent
resources topic.

1.Create a group
ID in the Message
Queue for Apache
RocketMQ
console.

2.Restart your

application. >=4.0.1

For more
information, see
the "Nonexistent
group ID" section
in the Nonexistent
resources topic.

1.Check whether
the consumers
identified by the
group ID have
been started.

2.Check whether
subscription
inconsistency
occurs between
consumers
identified by the
group ID.

>=4.0.1

81

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

HTTP status code Status flag

SUBSCRIPTION_PAR

2
3 SE_FAILED
5 SUBSCRIPTION_NO
T_LATEST
14 SERVICE_NOT_AVAI

LABLE

Description

This error is
returned when the
system failed to
parse the
subscription
expression.

This error is
returned if
subscription
inconsistency
occurs.

This error is
returned when
messages cannot
be sent.

Cause and
recommended
solution

Check the
corresponding
topic subscription
expression and
tag.

If this status
continues for a
moment, it is
automatically
restored.

For more
information, see
Subscription
inconsistency.

The requested
Message Queue
for Apache
RocketMQ broker
is discontinued,
the broker is
abnormal and
does not support
write operations,
or the brokeris a
standby broker.

For more
information, see
the "The message
failed to be sent."
sectioninthe
Usage-related
exceptions topic.

Broker version

>=4.0.1

>=4.0.1

>=4.0.1

> Document Version: 20220816

82

User Guide- SDK user guide

Alibaba Cloud Message Queue

HTTP status code

16

16

Status flag

NO_PERMISSION
(message
sending)

NO_PERMISSION
(message
subscription)

Description

This error is
returned when the
request is invalid.

This error is
returned when the
request is invalid.

Cause and
recommended
solution

The requested
Message Queue
for Apache
RocketMQ broker
disallows write
operations.

The topic on the
requested
Message Queue
for Apache
RocketMQ broker
disallows write
operations.

The requested
Message Queue
for Apache
RocketMQ broker
disallows
transactional
messages.

The requested
Message Queue
for Apache
RocketMQ broker
disallows read
operations.

The current
consumer group

does not have the
read permissions.

The pulled topic
disallows read
operations.

The current
consumer group
disallows
message
broadcasting.

Broker version

>=4.0.1

>=4.0.1

83

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

HTTP status code Status flag

1 SYSTEM_ERROR

SYSTEM_ERROR
1 (permission
verification)

2 SYSTEM_BUSY

6.2.4. SDK for Java

Description

This error is
returned when a
system exception
occurs.

This error is
returned when the
permission
verification fails.

This error is
returned when the
system is busy
and the request is
denied.

Cause and
recommended
solution

Thisis a
temporary
timeout that
results from the
restart of the
Message Queue
for Apache
RocketMQ broker
or heavy load on
the broker.

For more
information, see
the "The message
failed to be sent."
sectioninthe
Usage-related
exceptions topic.

Check whether the
user is granted
the permissions to
publish messages
to and subscribe
messages from
the topic.

Thisis a
temporary
timeout that
results from the
restart of the
Message Queue
for Apache
RocketMQ broker
or heavy load on
the broker.

For more
information, see
the "The message
failed to be sent."
section in the
Usage-related
exceptions topic.

Broker version

>=4.0.1

>=4.0.1

>=4.0.1

> Document Version: 20220816

84

User Guide- SDK user guide Alibaba Cloud Message Queue

6.2.4.1. Usage notes

Message Queue for Apache Rocket MQ provides SDK for Java for you to send and subscribe to messages.
This topic describes the parameters of Java methods and how to call these methods.

Common parameters

Parameter Description
The TCP endpoint. You can obtain the endpoint on the Instance
NAMESRV_ADDR Details page in the Message Queue for Apache RocketMQ

console.

The AccessKey ID that you created in the Apsara Uni-manager

AccessKe
y Management Console for identity authentication.

Secretke The AccessKey secret that you created in the Apsara Uni-manager
y Management Console for identity authentication.

OnsChannel The source of the user. Default value: ALIYUN.

Parameters for sending messages

Parameter Description

. - The timeout period for sending messages. Unit:
SendMsgTimeoutMillis
gn HEHIE milliseconds. Default value: 3000.
CheckimmunityTimelnSeconds (for transactional The shortest time interval before the first back-check
messages) for the status of local transaction. Unit: seconds.

The partition key that is used to determine the

shardingkey (for ordered messages) partitions to which ordered messages are distributed.

Methods and parameters for using SDK for Java to send messages

Integrated with Spring:

Configure Bean using XML

Message: P bttt e ettt
Topic, Tag, Normal Messages: Transactional Messages: ~ |-!
Key, Content ProducerBean TransactionProducerBean

Properties:

ONSAddr, ProducerlID,
AccessKey, SecretKey

ScheduIeH/DeIéyed‘Messages
1 1 1

setStartDeliverTime() Send Synchronously
T T T > send()

1 1 1 Send
! ! L Asynchronously
T Y »] sendAsysc()
. Implement SendCallBack
1 1 API
: : Send One-Way
| \ sendOneWay()
v 1 1
K | ! ; Send Synchronously
createTransactionProducer().start L > send
[1
I : Implement
i : LocalTransactionChecker API
Ordered | + Send Synchronously
Messages —P{ createOrderProducer().start() | > send()
1
ShardingKey - ---- E

\ 4

Normal Messages |
createProducer().start() |

Transactional
Messages

Parameters for subscribing to messages

85 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Parameter

GROUP_ID

MessageModel

ConsumeT hreadNums

MaxReconsumeTimes

ConsumeTimeout

suspendTimeMillis (for ordered
messages)

maxCachedMessageAmount

maxCachedMessageSizelnMiB

Description

The group ID that you created in the Message Queue for Apache
RocketMQ console.

The mode in which a consumer instance consumes messages.
Valid values: CLUSTERING and BROADCASTING. Default value:
CLUSTERING.

The number of consumer threads for a consumer instance.
Default value: 64.

The maximum number of delivery retries for a message that
fails to be consumed. Default value: 16.

The maximum timeout period for consuming a message. If a
message fails to be consumed within this period, the
consumption fails and the message can be redelivered. A
proper value must be set for each type of business. Unit:
minutes. Default value: 15.

The interval between delivery retries for an ordered message
that fails to be consumed.

The maximum number of messages cached on the on-premises
client. Default value: 1000.

The maximum size of messages cached on the on-premises
client. Valid values: 16 MB to 2 GB. Default value: 512 MB.

Methods and parameters for using SDK for Java to subscribe to messages

AccessKeySecret, NAMESRV_ADDR]
L _| Normal Messages: ’_ __________ !
Clustering Consumption ! Broadcasting C i ConsumerBean

Integrated with Spring:

Properties:

Configure Bean using XML

Group ID, AccessKeyld,

1

1

1

I MessageModel:
1 BROADCASTING

1

1

1

lormal Messages
prw—— ="
‘ Implement Messagelistener API ‘

4______—__

7y
I

v

4_________

2
N

N
g
Ordered Messages

0 subscribe ()
Implement MessageOrderListener APl

Sample code for sending and subscribing to messages

e Send and subscribe to normal messages

Send and receive ordered messages

Send and receive delayed messages

Send and receive scheduled messages

Send and subscribe to transactional messages

> Document Version: 20220816

86

User Guide- SDK user guide Alibaba Cloud Message Queue

6.2.4.2. Prepare the environment

Before you run the Java code provided in this topic, prepare the environment based on the following
instructions:

Procedure

1. Introduce the dependency by using one of the following methods:

o Introduce the dependency by using Maven:

<dependency>
<groupld>com.aliyun.openservices</groupId>
<artifactId>ons-client</artifactId>
<version>1.8.4.Final</version>

</dependency>
o Download the JAR dependency.

2. Gotothe console to create the topics and group IDs involved in the code.

You can customize message tags in your application. For more information about how to create a
message tag, see Create resources.

3. For applications that use the TCP client SDK to access Message Queue for Apache Rocket MQ, make
sure that the applications are deployed on Elastic Compute Service (ECS) instances in the same
region.

6.2.4.3. Configure logging

Client logs record exceptions that occur when the Message Queue for Apache RocketMQ clients are
running. Client logs help you locate and handle these exceptions in a quick manner. T his topic describes
how to print the logs of a Message Queue for Apache RocketMQ client and provides the default and
custom configurations.

Print client logs

TCP client SDK for Java of Message Queue for Apache RocketMQ is programmed by using the Simple
Logging Facade for Java (SLF4)).

e Message Queue for Apache RocketMQ SDK for Java 1.7.8.Final or later

Message Queue for Apache RocketMQ SDK for Java 1.7.8.Final has a built-in framework for logging.
You do not need to add a dependency on the corresponding logging framework for an application
onthe client before you print the logs of a Message Queue for Apache RocketMQ client.

For information about the default logging configuration for a Message Queue for Apache RocketMQ
client and how to modify this configuration, see Configure client logs.

e Message Queue for Apache RocketMQ SDK for Java versions earlier than 1.7.8.Final

Message Queue for Apache Rocket MQ SDK for Java versions earlier than 1.7.8.Final support only Log4j
and Logback. These versions do not support Log4j2. For these versions, you must add a dependency
on the corresponding logging framewaork to the pom.xmifile or the .lib file before you print the logs
of a Message Queue for Apache Rocket MQ client.

The following sample code provides examples on how to add dependencies on Log4j and Logback:

87 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.4.Final/ons-client-1.8.4.Final.jar?spm=a2c4g.11186623.2.17.32c5115dXaU1ip&file=ons-client-1.8.4.Final.jar

Alibaba Cloud Message Queue User Guide- SDK user guide

o Method 1: Use Log4j as the logging framework

<dependency>
<groupId>org.slf4j</groupId>
<artifactId>jcl-over-slfdj</artifactId>
<version>1.7.7</version>

</dependency>

<dependency>
<groupId>org.slfdj</groupIld>
<artifactId>slf4j-log4jl2</artifactId>
<version>1.7.7</version>

</dependency>

<dependency>
<groupId>log4j</groupld>
<artifactId>log4j</artifactId>
<version>1.2.17</version>

</dependency>

o Method 2: Use Logback as the logging framewaork

<dependency>
<groupId>ch.qgos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>1.1.2</version>

</dependency>

<dependency>
<groupId>ch.qgos.logback</groupId>
<artifactId>logback-classic</artifactId>

<version>1.1l.2</version>

</dependency>

@ Note

If an application uses both Log4j and Logback as logging frameworks, client logs cannot be
properly printed due to logging conflicts. To properly print the logs of a Message Queue for
Apache RocketMQ client, make sure that you add only one dependency on one logging
framework for the application. We recommend that you run the mvn clean
dependency:tree | grep log command to check whether your application uses only one of
the logging frameworks.

Configure logging for a Message Queue for Apache RocketMQ client

You can customize the following settings for a Message Queue for Apache RocketMQ client: the path
for storing log files , log level, and maximum number of historical log files retained.To
facilitate log transmission and viewing, the maximum size of a single log file retains the default
value of 64 MB. T his value cannot be changed.

The following table describes these parameters that you can configure.

Parameter Description

> Document Version: 20220816 88

User Guide- SDK user guide Alibaba Cloud Message Queue

Parameter Description

Make sure that the application has the write
The path to store log files permissions for this path. Otherwise, logs cannot be
printed.

You can set this parameter to a value between 1
The maximum number of historical log files that are and 100. If you enter a value that is not within this
retained range or a value that is in an invalid format, the

system retains 10 historical log files by default.

You can set this parameter to one of the following
values: ERROR, WARN, INFO, and DEBUG. If this
parameter is set to an invalid value, the system uses
the default value INFO.

The log level

e Default configuration

Afteryou start a Message Queue for Apache RocketMQ client, the client generates log files based on
the following default configuration:

o The pathto store log files: /{user.home}/logs/ons.log ,where {user.home} isthe root
directory of the account that runs the current Java process.

o The maximum number of historical log files that are retained: 10
o Log level: INFO

o The maximum size of a single log file: 64 MB

e Custom configuration

@ Note

To customize the logging configuration of a Message Queue for Apache Rocket MQ client,
update the SDK forJavato V1.2.5 or later.

To customize the logging configuration of a Message Queue for Apache Rocket MQ client in the SDK
forJava, configure the following system parameters:

o ons.client.logRoot: the pathto store log files

o ons.client.logFileMaxindex: the maximum number of historical log files that are retained
o ons.client.logLevel: the log level

Examples

Add the following system parameters to the startup script orintegrated development environment
(IDE) virtual machine (VM) options:

o Linux

-Dons.client.logRoot=/home/admin/logs -Dons.client.logLevel=WARN -Dons.client.logFileMa
xIndex=20

89 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

o Windows

-Dons.client.logRoot=D:\logs -Dons.client.logLevel=WARN -Dons.client.logFileMaxIndex=20
/home/admin/ and D:\ are only examples. Replace them with your system direct ories.
6.2.4.4. Spring integration
6.2.4.4.1. Overview

This topic describes how to send and subscribe to messages by using Message Queue for Apache
RocketMQ in the Spring framework. T his topic includes three parts: the integration of a normal message
producer and Spring, the integration of a transactional message producer and Spring, and the
integration of a message consumer and Spring.

The subscriptions of all consumer instances identified by the same group ID must be consistent. For
more information, see Subscription consistency.

The configuration parameters supported in the Spring framework are the same as those used in TCP
client SDK for Java. For more information, see How to use the Java SDK.

6.2.4.4.2. Integrate a producer with Spring
This topic describes how to integrate a producer with Spring.

Procedure
1. Define information such as the producer bean in producer.xmi.

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">
<bean id="producer" class="com.aliyun.openservices.ons.api.bean.ProducerBean" init
-method="start" destroy-method="shutdown">

<!-- The Spring framework supports all the configuration items that SDK for Java s
upports. —-->
<property name="properties" > <! -- Configurations of the producer -->
<props>

<prop key="AccessKey">XXX</prop>
<prop key="SecretKey">XXX</prop>
<!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
<prop key="NAMESRV ADDR">XXX</prop>
==
</props>
</property>
</bean>
</beans>

2. Produce messages by using the producer that is integrated with Spring.

> Document Version: 20220816 90

User Guide- SDK user guide Alibaba Cloud Message Queue

package demo;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.exception.ONSClientException;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class ProduceWithSpring {

public static void main(String[] args) {

Jx*

* The producer bean is configured in producer.xml. You can call the Applicati
onContext class to obtain the bean or inject the bean to other classes, such as a speci
fic controller.

wy

ApplicationContext context = new ClassPathXmlApplicationContext ("producer.xml"

Producer producer = (Producer) context.getBean ("producer");
// Cyclically send messages.
for (int 1 = 0; 1 < 100; i++) {

Message msg = new Message(//

// The topic of the message.

"TopicTestMQ",

// The message tag, which is similar to a Gmail tag. The message t
ag is used to sort messages and helps the consumer filter messages on the Message Queue
for Apache RocketMQ broker based on specified conditions.

"TagA",

// The message body in the binary format. Message Queue for Apache
RocketMQ does not process the message body.

// The producer and consumer must agree on the serialization and d
eserialization methods.

"Hello MQ".getBytes());

// The key of the message. The key is the business-specific attribute of t
he message and must be globally unique whenever possible.

// A unique key helps you query and resend a message in the Message Queue
for Apache RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not set this par
ameter.

msg.setKey ("ORDERID 100");

// Send the message. If no error occurs, the message is sent.

try {
SendResult sendResult = producer.send(msqg) ;
assert sendResult != null;
System.out.println("send success: " + sendResult.getMessageId()):;

}catch (ONSClientException e) {

System.out.println("failed to send the message");

91 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

6.2.4.4.3. Integrate a transactional message producer
with Spring
This topic describes how to integrate a producer that produces transactional messages with Spring.

Context

For more information about transactional messages, see Send and subscribe to transactional messages.

Procedure

1. Implement the LocalTransactionChecker class. A producer can have only one
LocalTransactionChecker class.

package demo;

import com.aliyun.openservices.ons.api.Message;

import com.aliyun.openservices.ons.api.transaction.LocalTransactionChecker;

import com.aliyun.openservices.ons.api.transaction.TransactionStatus;

public class DemoLocalTransactionChecker implements LocalTransactionChecker ({

public TransactionStatus check (Message msg) {

System.out.println ("Start to back-check the status of local transaction.");
return TransactionStatus.CommitTransaction; // Returns different values for Tra

nsactionStatus based on the status check result of the local transaction.

}

2. Define information such as the producer bean in transactionProducer.xml.

> Document Version: 20220816 92

User Guide- SDK user guide Alibaba Cloud Message Queue

<?xml version="1.0" encoding="UTF-8"7?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">

<bean id="localTransactionChecker" class="demo.DemoLocalTransactionChecker"></bean

<bean id="transactionProducer" class="com.aliyun.openservices.ons.api.bean.Transac
tionProducerBean”" init-method="start" destroy-method="shutdown">
<property name="properties" > <! -- Configurations of the transactional messag
e producer -—>
<props>
<prop key="AccessKey">AKDEMO</prop>
<prop key="SecretKey">SKDEMO</prop>
<prop key="GROUP_ ID">GID DEMO</prop>
<!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
<prop key="NAMESRV ADDR">XXX</prop>
==>
</props>
</property>
<property name="localTransactionChecker" ref="localTransactionChecker"></prope
rty>
</bean>

</beans>

3. Produce transactional messages by using the producer that is integrated with Spring.

93 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

package demo;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionExecuter;
import com.aliyun.openservices.ons.api.transaction.TransactionProducer;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class ProduceTransMsgWithSpring {

public static void main (String[] args) {

/**

* The bean of the transactional message producer is configured in transaction
Producer.xml. You can call the ApplicationContext class to obtain the bean or inject th
e bean to other classes, such as a specific controller.

* Send transactional messages.

=y

ApplicationContext context = new ClassPathXmlApplicationContext ("transactionPr
oducer.xml") ;

TransactionProducer transactionProducer = (TransactionProducer) context.getBea
n ("transactionProducer") ;

Message msg = new Message ("XXX", "TagA", "Hello MQ transaction===".getBytes())

SendResult sendResult = transactionProducer.send (msg, new LocalTransactionExec
uter () {
@Override
public TransactionStatus execute (Message msg, Object arg) {
System.out.println ("A local transaction is executed.");
return TransactionStatus.CommitTransaction; // Returns different value
s for TransactionStatus based on the execution result of the local transaction.
}
}, null);

6.2.4.4.4. Integrate a consumer with Spring
This topic describes how to integrate a consumer with Spring.

Procedure

1. Create a message listener. The following sample code provides an example:

> Document Version: 20220816 94

User Guide- SDK user guide Alibaba Cloud Message Queue

package demo;
import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
public class DemoMessagelistener implements Messagelistener ({
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message.getMsgID()) ;
try {
//do something. .
return Action.CommitMessage;
}catch (Exception e) {
// The message failed to be consumed.

return Action.Reconsumelater;

2. Define information such as the consumer bean in consumer.xml.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">
<bean id="msgListener" class="demo.DemoMessagelListener"></bean> <!--Configurations
of the message listener-->
<!-- When multiple consumers identified by the same group ID subscribe to the same top
ic, you can create multiple consumer beans. -->
<bean id="consumer" class="com.aliyun.openservices.ons.api.bean.ConsumerBean" init
-method="start" destroy-method="shutdown">

<property name="properties" > <!-- Configurations of the consumer -->
<props>
<prop key="GROUP ID">GID DEMO</prop> <!-- Replace the value with the g
roup ID that you created in the console. -->

<prop key="AccessKey">AKDEMO</prop>
<prop key="SecretKey">SKDEMO</prop>
<!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
<prop key="NAMESRV ADDR">XXX</prop>
-—>
<!-- Set the number of consumer threads to 50.
<prop key="ConsumeThreadNums">50</prop>
——>
</props>
</property>
<property name="subscriptionTable">
<map>
<entry value-ref="msgListener">
<key>
<bean class="com.aliyun.openservices.ons.api.bean.Subscription
W

<property name="topic" value="TopicTestMQ"/>

95 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

<property name="expression" value="*"/><!--The expression
is the tag. You can set the value to a specific tag or *. For example, a specific tag c

an be tagal |tagb||tagc. * indicates that all tags are subscribed to. Wildcards are not

supported. -->
</bean>
</key>
</entry>
<!-- Add entry nodes to subscribe to more tags. -->
<entry value-ref="msgListener">
<key>
<bean class="com.aliyun.openservices.ons.api.bean.Subscription
">
<property name="topic" value="TopicTestMQ-Other"/> <!--Sub
scribe to another topic. —-->
<property name="expression" value="tagal| |tagb"/> <!-- Subs
cribe to multiple tags. --—>
</bean>
</key>
</entry>
</map>
</property>
</bean>
</beans>

3. Runthe consumerthat is integrated with Spring.

package demo;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class ConsumeWithSpring {
public static void main(String[] args) {
/**

* The consumer bean is configured in consumer.xml. You can call the Applicatio
nContext class to obtain the bean or inject the bean to other classes, such as a specif
ic controller.

=y

ApplicationContext context = new ClassPathXmlApplicationContext ("consumer.xml")

System.out.println ("Consumer Started");

6.2.4.5. Three modes for sending messages

6.2.4.5.1. Overview

In Message Queue for Apache RocketMQ, messages can be sent in reliable synchronous mode, reliable
asynchronous mode, and one-way mode. T his topic describes the principles, scenarios, and differences
of these modes, and provides sample code for your reference.

@ Note Ordered messages can be sent only in reliable synchronous mode.

> Document Version: 20220816 96

User Guide- SDK user guide Alibaba Cloud Message Queue

6.2.4.5.2. Reliable synchronous transmission
This topic describes the principle and scenarios of the reliable synchronous transmission mode.

How it works

Synchronous transmission means that the message producer sends the next message only after it
receives a response to the previous message fromthe broker.

Synchronous transmission

Message
9 RocketMQ
Sender
1. Sending Message 1
>
< 2. Synchronous Response to Message 1
3. Sending Message 2
>
< 4. Synchronous Response to Message 2
5. Sending Message 3
>
p 6. Synchronous Response to Message 3
Scenarios

This mode is applicable to various scenarios, such as important notification emails, short message
service (SMS) notifications for registration results, and SMS marketing systems.

Sample code

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ProducerTest ({
public static void main(String[] args) {
Properties properties = new Properties();
// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
properties.put (PropertyKeyConst.AccessKey, "XXX") ;

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso

Ta Far dAdantider mablamed masd A

97 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

1€ LUL LUCSLILLLY AULLICIILLCALLULL.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The timeout interval for sending a message, in milliseconds.

properties.setProperty (PropertyKeyConst.SendMsgTimeoutMillis, "3000");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;

Producer producer = ONSFactory.createProducer (properties) ;

// Before you use the producer to send a message, call the start() method once to s
tart the producer.

producer.start();

// Cyclically send messages.

for (int 1 = 0; 1 < 10; i++){

Message msg = new Message(//
// The topic of the message.
"TopicTestMQ",
// The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.
"TagA",
// The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body.
// The producer and consumer must agree on the serialization and deserializ
ation methods.
"Hello MQ".getBytes());
// The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
// A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not specify the messa

ge key.
msg.setKey ("ORDERID " + 1i);
try {
SendResult sendResult = producer.send (msg) ;
// Send the message in synchronous mode. If no error occurs, the message is
sent.
if (sendResult != null) {
System.out.println (new Date() + " Send mg message success. Topic is:" +
msg.getTopic () + " msgIld is: " + sendResult.getMessageId()):;

}
}
catch (Exception e) {
// Specify the logic to resend or persist the message if the message fails
to be sent.
System.out.println(new Date() + " Send mg message failed. Topic is:" + msg.
getTopic()) ;

e.printStackTrace () ;

}
// Before you exit the application, shut down the producer object.
// Note: You can choose not to shut down the producer object.

producer.shutdown () :

> Document Version: 20220816

98

User Guide- SDK user guide

Alibaba Cloud Message Queue

6.2.4.5.3. Reliable asynchronous transmission

This topic describes the principle and scenarios of the reliable asynchronous transmission mode.

How it works

In reliable asynchronous transmission mode, a producer sends the next message without waiting for a
response to the previous message fromthe Message Queue for Apache RocketMQ broker. This mode
uses the SendCallback method to fire a callback after a message is sent. An application sends the next
message before it receives a response to the previous message fromthe Message Queue for Apache
RocketMQ broker. After the SendCallback method is called, the application receives the response to the
previous message from the Message Queue for Apache RocketMQ broker and processes the response.

Asynchronous transmission

Message
9 RocketMQ
Sender
1. Sending Message 1
>
2. Asynchronous Response to Message 1
3. Sending Message 2
>
< 4. Asynchronous Response to Message 2
5. Sending Message 3
>
b 6. Asynchronous Response to Message 3
Scenarios

This mode is used for time-consuming processes in business scenarios that are sensitive to the response
time. For example, after you upload a video, a callback s fired to enable transcoding. After the video is
transcoded, a callback is fired to push transcoding results.

Sample code

import com.
import com.
import com.

import com.

aliyun.
aliyun.
aliyun.

aliyun.

openservices.ons.api.Message;
openservices.ons.api.OnExceptionContext;
openservices.ons.api.Producer;

openservices.ons.api.SendCallback;

99

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

import com.allyun.openservices.ons.apl.sendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;

public static void main(String[] args) {

Properties properties = new Properties|();

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The timeout interval for sending a message, in milliseconds.

properties.setProperty (PropertyKeyConst.SendMsgTimeoutMillis, "3000");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;

Producer producer = ONSFactory.createProducer (properties) ;

// Before you use the producer to send a message, call the start() method once to s
tart the producer.

producer.start();

Message msg = new Message (

// The topic of the message.

"TopicTestMQ",

// The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.

"TagA",

// The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.

"Hello MQ".getBytes());

// The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible. // A unique key helps you query and resen
d a message in the Message Queue for Apache RocketMQ console if the message fails to be rec
eived.

// Note: Messages can be sent and received even if you do not set this parameter.

msg.setKey ("ORDERID 100") ;

// Send the message in asynchronous mode. The result is returned to the producer af
ter the producer calls the callback function.

producer.sendAsync (msg, new SendCallback() {

@Override
public void onSuccess (final SendResult sendResult) {

// The message is sent to the consumer.

System.out.println ("send message success. topic=" + sendResult.getTopic() +
", msgId=" + sendResult.getMessageld()):;

}
@QOverride
public void onException (OnExceptionContext context) {
// Specify the logic to resend or persist the message if the message fails

to be sent.

Qiretam A1t mrintIn (Mecand maccarna fadilad +tAniAa=" oL ~AAantavt ~A~atTAani~ () 4+ 0

> Document Version: 20220816 100

User Guide- SDK user guide Alibaba Cloud Message Queue

S S0 R O [FRE SERRSEIR N SR ISR EEle SEes RS Rio T PR Lt bem L o) S bR N ' 4
msgId=" + context.getMessageld());
}
1)
// The message ID can be obtained before the callback function returns the result.
System.out.println ("send message async. topic=" + msg.getTopic() + ", msgId=" + msg
.getMsgID());
// Before you exit the application, shut down the producer object. Note: You can c
hoose not to shut down the producer object.

producer.shutdown () ;

6.2.4.5.4. One-way transmission

This topic describes the principle and scenarios of the one-way transmission mode, and provides sample
code.

How it works

In one-way transmission mode, a producer only sends messages and does not wait for a response from
the Message Queue for Apache RocketMQ broker. In addition, no callback function is triggered. In this
mode, a message can be sent within microseconds.

One-way transmission

Message
N RocketMQ
Sender

1. Sending Message 1
>

2. Sending Message 2
>

3. Sending Message 3
>

Scenarios

This mode is applicable to scenarios where message transmission takes a short time and has no
demanding reliability requirements. For example, this mode can be used for log collection.

The following table summarizes the features and major diff erences among the three modes.

101 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Transactions per

Transmission mode Response Reliabilit
second (TPS) P y

Synchronous

Y L High Supported No message loss
transmission
Asynchronous)

y L High Supported No message loss

transmission
One-way transmission Highest None Possible message loss

Sample code

import com.aliyun.openservices.ons.api.Message;

import com.aliyun.openservices.ons.api.Producer;

import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;

public static void main(String[] args) {

Properties properties = new Properties();

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The timeout interval for sending a message, in milliseconds.

properties.setProperty (PropertyKeyConst.SendMsgTimeoutMillis, "3000");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;

Producer producer = ONSFactory.createProducer (properties) ;

// Before you use the producer to send a message, call the start() method once to s
tart the producer.

producer.start();

// Cyclically send messages.

for (int 1 = 0; i < 10; 1i++){

Message msg = new Message (

// The topic of the message.

"TopicTestMQ",

// Message Tag,

// The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.

"TagA",

// Message Body

// The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body. The producer and consumer must agree on the seriali
zation and deserialization methods.

"Hello MQ".getBytes());

/) MhA Tass AF FhA mAacaa~A MhA barr 440 +ha hoaadmAana_crmAand £ A akdkardilhaiba AF Flha mmna

> Document Version: 20220816 102

User Guide- SDK user guide Alibaba Cloud Message Queue

/7 LS RSy UL LIS WESSAYS. LS KRSy 1o LIS UUSLICSDS SPESULLLIC dLLLLIUULE UL LS LS
ssage and must be globally unigque whenever possible.

// A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not specify the messa
ge key.

msg.setKey ("ORDERID " + 1) ;

// In one-way transmission mode, the producer does not wait for the response fr
om the Message Queue for Apache RocketMQ broker. Therefore, data loss occurs if messages th
at fail to be delivered are not redelivered. If data loss is not acceptable, we recommend t
hat you use the reliable synchronous or asynchronous transmission mode.

producer.sendOneway (msg) ;

}
// Before you exit the application, shut down the producer object.
// Note: You can choose not to shut down the producer object.

producer.shutdown () ;

6.2.4.6. Send messages by using multiple threads

This topic describes how to send messages by using multiple threads and provides sample code.

The consumer and producer objects of Message Queue for Apache RocketMQ are thread-secure and
can be shared among threads.

You can deploy multiple producer and consumer instances on one or more cloud servers. A producer or
consumer instance can also run multiple threads to send or receive messages. T his improves the
transactions per second (TPS) for sending or receiving messages. Do not create a producer instance or
consumer instance for every thread.

The following sample code provides an example on how to share a producer among threads:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;
public class SharedProducer ({
public static void main(String[] args) {
// Initialize the configuration of the producer instance.
Properties properties = new Properties();
// The group ID that you created in the Message Queue for Apache RocketMQ console.
properties.put (PropertyKeyConst.GROUP ID, "XXX");
// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
properties.put (PropertyKeyConst.AccessKey, "XXX") ;
// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
properties.put (PropertyKeyConst.SecretKey, "XXX");
// The timeout interval for sending a message, in milliseconds.
properties.setProperty (PropertyKeyConst.SendMsgTimeoutMillis, "3000");
// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance

Netaila nacea aalart wvAnr inatance On the Tnaetance Tnfarmatinn tah wiew the endnaint in +

103 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

MMMMMMM YT/ Bl i Ly s erio e UaE R i A U ee CUah] VY Caie iAo aiie aas o
he Obtain Endpoint Information section.
properties.put (PropertyKeyConst.NAMESRV ADDR,
"XXX") ;
final Producer producer = ONSFactory.createProducer (properties) ;
// Before you use the producer to send a message, call the start() method once to s
tart the producer.
producer.start () ;
// The created producer and consumer objects are thread-secure and can be shared am
ong threads. Do not create a producer instance or consumer instance for every thread.
// Two threads share the producer object and concurrently send messages to Message
Queue for Apache RocketMQ.
Thread thread = new Thread(new Runnable () {
@override
public void run() {
try {

Message msg = new Message(//

// The topic of the message.

"TopicTestMQ",

// The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.

"TagA",

// The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body.

// The producer and consumer must agree on the serialization and deseri
alization methods.

"Hello MQ".getBytes());

SendResult sendResult = producer.send(msqg) ;

// Send the message in synchronous mode. If no error occurs, the messag
e is sent.

if (sendResult != null) {

System.out.println(new Date() + " Send mg message success. Topic is
:" + MgConfig.TOPIC + " msgId is: " + sendResult.getMessageId()):;
}
} catch (Exception e) {

// Specify the logic to resend or persist the message if the message fa
ils to be sent.

System.out.println(new Date() + " Send mg message failed. Topic is:" +
MgConfig.TOPIC) ;

e.printStackTrace () ;

});
thread.start () ;
Thread anotherThread = new Thread(new Runnable () {
@override
public void run() {
try {
Message msg = new Message ("TopicTestMQ", "TagA", "Hello MQ".getBytes())

SendResult sendResult = producer.send(msqg) ;

// Send the message in synchronous mode. If no error occurs, the messag
e is sent.

if (sendResult != null) {

> Document Version: 20220816 104

User Guide- SDK user guide Alibaba Cloud Message Queue

System.out.println(new Date() + " Send mg message success. Topic is

:" + MgConfig.TOPIC + " msglId is: " + sendResult.getMessageId()):;

}

} catch (Exception e) {

// Specify the logic to resend or persist the message if the message fa
ils to be sent.

System.out.println(new Date() + " Send mg message failed. Topic is:" +
MgConfig.TOPIC) ;

e.printStackTrace () ;

}) i
anotherThread.start () ;
// If the producer instance is no longer used, shut it down to release resources.

// producer.shutdown () ;

6.2.4.7. Send and subscribe to ordered messages

This topic describes how to send and subscribe to ordered messages and provides sample code.

Ordered messages, also known as first -in-first-out (FIFO) messages, are a type of message provided by
Message Queue for Apache RocketMQ. Such messages are published and consumed in a strict order.
This topic provides the sample code for using TCP client SDK for Java to send and subscribe to ordered
messages. For more information, see Ordered messages.

Use SDK forJava 1.2.7 or later to send and subscribe to ordered messages.

The methods of sending and subscribing to globally ordered messages and partitionally ordered
messages are the same. The following code provides examples on how to send and subscribe to
ordered messages:

Sample code for sending ordered messages

package com.aliyun.openservices.ons.example.order;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.order.OrderProducer;
import java.util.Properties;
public class ProducerClient ({
public static void main(String[] args) {
Properties properties = new Properties();
// The group ID that you created in the Message Queue for Apache RocketMQ console.
properties.put (PropertyKeyConst.GROUP ID, "XXX");
// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
properties.put (PropertyKeyConst.AccessKey, "XXX");
// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
properties.put (PropertyKeyConst.SecretKey, "XXX");
// The TCP endpoint. To obtain the endpoint, loa on to the Message Queue for Apache

105 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
properties.put (PropertyKeyConst.NAMESRV ADDR,
"XXX") ;
OrderProducer producer = ONSFactory.createOrderProducer (properties) ;
// Before you use the producer to send a message, call the start() method once to s
tart the producer.
producer.start();
for (int 1 = 0; i < 10; i++) {
String orderId = "biz " + i % 10;
Message msg = new Message (//

// The topic of the message.

"Order global topic",

// The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.

"TagA",

// The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body. The producer and consumer must agree on the seriali
zation and deserialization methods.

"send order global msg".getBytes ()

)7
// The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
// A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.
// Note: Messages can be sent and received even if you do not specify the messa
ge key.
msg.setKey (orderId) ;
// The key field that is used in ordered messages to distinguish among differen
t partitions. A partition key is different from the key of a normal message.
// This field can be set to a non-empty string for globally ordered messages.
String shardingKey = String.valueOf (orderId) ;
try {
SendResult sendResult = producer.send(msg, shardingKey) ;
// Send the message. If no error occurs, the message is sent.
if (sendResult != null) {
System.out.println (new Date() + " Send mg message success. Topic is:" +
msg.getTopic () + " msgId is: " + sendResult.getMessageId()):;
}
}
catch (Exception e) {
// Specify the logic to resend or persist the message if the message fails
to be sent.
System.out.println(new Date() + " Send mg message failed. Topic is:" + msg.
getTopic()) ;

e.printStackTrace () ;

}
// Before you exit the application, shut down the producer object.
// Note: You can choose not to shut down the producer object.

producer.shutdown () ;

> Document Version: 20220816 106

User Guide- SDK user guide

Sample code for subscribing to ordered messages

package com.aliyun.openservices.ons.example.order;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.order.ConsumeOrderContext;
import com.aliyun.openservices.ons.api.order.MessageOrderListener;
import com.aliyun.openservices.ons.api.order.OrderAction;
import com.aliyun.openservices.ons.api.order.OrderConsumer;
import java.util.Properties;
public class ConsumerClient {
public static void main(String[] args) {

Properties properties = new Properties();

// The group ID that you created in the Message Queue for Apache RocketMQ console.

properties.put (PropertyKeyConst.GROUP ID, "XXX");

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;
// The time to wait to redeliver the ordered message when the message fails to be
consumed. Valid values: 10 to 1800. Unit: milliseconds.

properties.put (PropertyKeyConst.SuspendTimeMillis, "100");

// The maximum number of delivery retries when the message fails to be consumed.

properties.put (PropertyKeyConst .MaxReconsumeTimes, "20");

// Before you use the consumer to subscribe to a message, call the start() method o
nce to start the consumer.

OrderConsumer consumer = ONSFactory.createOrderedConsumer (properties) ;

consumer . subscribe (

// The topic of the message.
"Jodie Order Topic",
// Subscribe to messages with specified tags in the specified topic.
// 1. * indicates that the consumer subscribes to all messages in the speci
fied topic.
// 2. TagA || TagB || TagC indicates that the consumer subscribes to messag
es with TagA, TagB, or TagC.
e
new MessageOrderListener () {
/**
* 1. OrderAction.Suspend is returned if a message fails to be consumed
or an exception occurs during message processing.

* 2. OrderAction.Success is returned if a message is processed.
wY

107

Alibaba Cloud Message Queue

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

@Override

public OrderAction consume (Message message,

System.out.println (message) ;

return OrderAction.Success;

});

consumer.start () ;

6.2.4.8. Send and subscribe to transactional messages

ConsumeOrderContext context

This topic describes the interaction process and the back-check mechanism of transactional messages.
This topic also shows you how to send and subscribe to transactional messages, and provides sample

code.

Interaction

process

Interaction process of transactional messages shows the interaction process of transactional messages
in Message Queue for Apache RocketMQ.

Interaction process of transactional messages

Local
Transaction

7. Commit or Rollback based

on the transaction’s status

3. Execute

[&——local — Sender
transaction

A
6. Check status of _ 5. Check the transaction’s status again

——1. Send half message —pp|

2. Half message
sent successfully

—4. Commit or Rollback —p»!

Server

the local transaction

Commit: Deliver
["the message

Rollback:

if not receiving confirmation from Step 4

Send transactional messages

Performthe following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides an example:

package com.alibaba.webx.TryHsf.appl;

import com

import com.
import com.
import com.
import com.

import com.

.aliyun.openservices.
aliyun.openservices
aliyun.openservices
aliyun.openservices
aliyun.openservices

aliyun.openservices

import java.util.Properties;

ons

.ons

.ons

.ons

.ons

.ons

.api.Message;

.api.PropertyKeyConst;

.api.SendResult;

.api.transaction
.api.transaction

.api.transaction

import java.util.concurrent.TimeUnit;

public class TransactionProducerClient {

private final static Logger log = ClientLogger.getLog() ;

itate troubleshooting.

public static void main (Stringl[]

final BusinessService businessService = new BusinessService();

args)

Subscriber

Not deliver the message and it
will be deleted after being

stored for three days

.TransactionProducer;

.TransactionStatus;

throws InterruptedException {

.LocalTransactionExecuter;

// Configure logging to facil

// Your on-premises

> Document Version: 20220816

108

User Guide- SDK user guide Alibaba Cloud Message Queue

business.

Properties properties = new Properties();

// The group ID that you created in the Message Queue for Apache RocketMQ console.
Note: Transactional messages cannot share group IDs with other types of messages.

properties.put (PropertyKeyConst.GROUP ID, "XXX");

// The AccessKey ID that you created in the Apsara Uni-manager Management Console
for identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Cons
ole for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apach
e RocketMQ console. In the left-side navigation pane, click Instance Details. On the In
stance Details page, select your instance. On the Instance Information tab, view the en
dpoint in the Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;
TransactionProducer producer = ONSFactory.createTransactionProducer (properties,
new LocalTransactionCheckerImpl ()) ;

producer.start();

Message msg = new Message ("Topic", "TagA", "Hello MQ transaction===".getBytes());

try {

SendResult sendResult = producer.send(msg, new LocalTransactionExecuter ()

@Override
public TransactionStatus execute (Message msg, Object arg) {

// The ID of the message. Two messages may have the same message b
ody but cannot have the same ID. The current message ID cannot be queried in the consol
e.

String msgId = msg.getMsgID() ;

// Calculate the message body by using CRC32 or other algorithms,
such as MD5.

long crc32Id = HashUtil.crc32Code (msg.getBody ()) ;

// The message ID and CRC32 ID are used to prevent duplicate messa
ges.

// You do not need to specify the message ID or CRC32 ID if your b
usiness itself achieves idempotence. Otherwise, specify the message ID or CRC32 ID to e
nsure idempotence.

// To prevent duplicate messages, calculate the message body by us
ing the CRC32 or MD5 algorithm.

Object businessServiceArgs = new Object () ;

TransactionStatus transactionStatus = TransactionStatus.Unknow;

try {

boolean isCommit =
businessService.execbusinessService (businessServiceArgs) ;
if (isCommit) {
// Commit the message if the local transaction succeeds.
transactionStatus = TransactionStatus.CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {

log.error ("Message Id:{}", msgld, e);

109 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

i
System.out.println (msg.getMsgID()) ;
log.warn ("Message Id:{}transactionStatus:{}", msgId, transactionSt

atus.name()) ;

return transactionStatus;

}
}, null);

}
catch (Exception e) {
// Specify the logic to resend or persist the message if the message fails

to be sent.
System.out.println(new Date() + " Send mg message failed. Topic is:" + msg

.getTopic());
e.printStackTrace () ;

}

// Use the demo example to prevent the process from exiting. This is not required

in actual use.
TimeUnit .MILLISECONDS.sleep (Integer.MAX VALUE) ;

2. Commit the status of the transactional message.

Afterthe local transaction is executed, the Message Queue for Apache Rocket MQ broker must be
notified of the transaction status of the current message no matter whether the execution is
successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

o Commit the status afterthe local transaction is executed.
o Wait until the Message Queue for Apache Rocket MQ broker sends a request to checkthe
transaction status of the message.

A transaction can be in one of the following states:

o TransactionStatus.CommitTransaction: The transaction is committed. The consumer can
consume the message.

o TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.
o TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for

Apache RocketMQ broker is expected to send a request again to the producerto query the
status of the local transaction that corresponds to the message.

> Document Version: 20220816 110

User Guide- SDK user guide Alibaba Cloud Message Queue

public class LocalTransactionCheckerImpl implements LocalTransactionChecker ({
private final static Logger log = ClientLogger.getLog() ;
final BusinessService businessService = new BusinessService () ;
@Override
public TransactionStatus check (Message msg) {

// The ID of the message. Two messages may have the same message body but cannot
have the same ID. The current message is a half message. Therefore, its message ID cann
ot be queried in the console.

String msgId = msg.getMsgID() ;

// Calculate the message body by using CRC32 or other algorithms, such as MD5.

long crc32Id = HashUtil.crc32Code (msg.getBody()) ;

// The message ID and CRC32 ID are used to prevent duplicate messages.

// You do not need to specify the message ID or CRC32 ID if your business itself
achieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure idempoten
ce.

// To prevent duplicate messages, calculate the message body by using the CRC32
or MD5 algorithm.

// The parameter object of your business. Specify the object based on your busin
ess.

Object businessServiceArgs = new Object();

TransactionStatus transactionStatus = TransactionStatus.Unknow;

try {

boolean isCommit = businessService.checkbusinessService (businessServiceArgs)

if (isCommit) {
// Commit the message if the local transaction succeeds.
transactionStatus = TransactionStatus.CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {
log.error ("Message Id:{}", msgId, e);
}
log.warn ("Message Id:{}transactionStatus:{}", msgId, transactionStatus.name());

return transactionStatus;

Utility class

import java.util.zip.CRC32;
public class HashUtil {

public static long crc32Code (byte[] bytes) {
CRC32 crc32 = new CRC32();
crc32.update (bytes) ;

return crc32.getValue();

Back-check mechanism for transaction status

e Why must the back-check mechanism for transaction status be implemented when transactional

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache Rocket MQ broker periodically requests the producerto
check and report the status of the half message.

e What does the business logic do when the check method is called back?

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache RocketMQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

i. Checkthe status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache RocketMQ broker.

Subscribe to transactional messages

The method for subscribing to transactional messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

6.2.4.9. Send and subscribe to delayed messages

This topic describes how to send and subscribe to delayed messages and provides sample code.

Delayed messages are delivered to a consumer after a specified period of time fromwhen they are sent
to the Message Queue for Apache Rocket MQ broker. For example, the specified period of time can be 3
seconds. Delayed messages are used in scenarios where a time window between message production
and consumption is required or tasks need to be triggered after a delay. Delayed messages are used in a
similar way to delay queues.

For more information about the concepts and usage notes of delayed messages, see Scheduled
messages and delayed messages.

Send delayed messages

The following sample code provides an example on how to send delayed messages:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;
public class ProducerDelayTest {
public static void main (String[] args) {
Properties properties = new Properties();
// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso

> Document Version: 20220816 112

User Guide- SDK user guide Alibaba Cloud Message Queue

le tor 1dentity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;

Producer producer = ONSFactory.createProducer (properties) ;

// Before you use the producer to send a message, call the start() method once to s
tart the producer.

producer.start () ;

Message msg = new Message(//

// The topic that you created in the Message Queue for Apache RocketMQ cons
ole.

"Topic",

// The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.

"tag",

// The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.

"Hello MQ".getBytes());

// The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible.

// A unique key helps you query and resend a message in the Message Queue for Apach
e RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not specify the message k
ey.

msg.setKey ("ORDERID 100") ;

try {

// The specified period of time, in milliseconds. After the specified period of
time elapses, the Message Queue for Apache RocketMQ broker delivers the message to the cons
umer. For example, you can set this parameter to 3 and the Message Queue for Apache RocketM
Q broker delivers the message to the consumer after 3 seconds. The value must be later than
the current time.

long delayTime = System.currentTimeMillis() + 3000;

// The time when the Message Queue for Apache RocketMQ broker starts to deliver
the message.

msg.setStartDeliverTime (delayTime) ;

SendResult sendResult = producer.send(msg) ;

// Send the message in synchronous mode. If no error occurs, the message is sen

t.

if (sendResult != null) {

System.out.println (new Date() + " Send mg message success. Topic is:" + msg.get
Topic() + " msgId is: " + sendResult.getMessageId()):;

}

} catch (Exception e) {

// Specify the logic to resend or persist the message if the message fails to b
e sent.

System.out.println(new Date() + " Send mg message failed. Topic is:" + msg.getT
opic());

e.printStackTrace () ;

113 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

J
// Before you exit the application, shut down the producer object.

// Note: You can choose not to shut down the producer object.

producer.shutdown () ;

Subscribe to delayed messages

The method for subscribing to delayed messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

6.2.4.10. Send and subscribe to scheduled messages

This topic describes the scenarios for sending and subscribing to scheduled messages and provides
sample code.

Scheduled messages are consumed after a specified timestamp. Such messages are used in scenarios
where a time window between message production and consumption is required or tasks need to be
triggered at a scheduled time.

For more information about the concepts and usage notes of scheduled messages, see Scheduled
messages and delayed messages.

Send scheduled messages

The following sample code provides an example on how to send scheduled messages:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Properties;
public class ProducerDelayTest {

public static void main(String[] args) {

Properties properties = new Properties|();

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

properties.put (PropertyKeyConst.NAMESRV ADDR,

"XXX") ;

Producer producer = ONSFactory.createProducer (properties);

// Before you use the producer to send a message, call the start() method once to s
tart the producer.

producer.start () ;

> Document Version: 20220816 114

User Guide- SDK user guide Alibaba Cloud Message Queue

Message msg = new Message(//

// The topic of the message.

"Topic",

// The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.

"tag",

// The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.

"Hello MQ".getBytes());

// The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible.
// A unique key helps you query and resend a message in the Message Queue for Apach
e RocketMQ console if the message fails to be received.
// Note: Messages can be sent and received even if you do not specify the message k
ey.
msg.setKey ("ORDERID 100");
try {
// The time when the Message Queue for Apache RocketMQ broker delivers the mess
age to the consumer, in milliseconds. For example, you can set this parameter to 2016-03-07
16:21:00 and the broker delivers the message at 16:21:00 on March 7, 2016. The value must b
e later than the current time. If the scheduled time is earlier than the current time, the
message is immediately delivered to the consumer.
long timeStamp = new SimpleDateFormat ("yyyy-MM-dd HH:mm:ss") .parse ("2016-03-07
16:21:00") .getTime () ;
msg.setStartDeliverTime (timeStamp) ;
// Send the message. If no error occurs, the message is sent.
SendResult sendResult = producer.send(msqg) ;
System.out.println ("Message Id:" + sendResult.getMessageId()):;
}
catch (Exception e) {
// Specify the logic to resend or persist the message if the message fails to b
e sent.
System.out.println (new Date() + " Send mg message failed. Topic is:" + msg.getT
opic());
e.printStackTrace () ;
}
// Before you exit the application, shut down the producer object.
// Note: You can choose not to shut down the producer object.

producer.shutdown () ;

Subscribe to scheduled messages

The method for subscribing to scheduled messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

6.2.4.11. Subscribe to messages

T his topic describes message subscription modes and provides sample code.

115 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

@ Note The subscriptions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscription consistency.

Subscription modes
Message Queue for Apache RocketMQ supports the following message subscription modes:

e Clustering subscription: Inthis mode, all the consumer instances identified by the same group ID
evenly share messages. Assume that a topic contains nine messages and a group ID identifies three
consumer instances. In clustering consumption mode, each instance consumes three messages.

// Configure clustering subscription, which is the default mode.

properties.put (PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING) ;

e Broadcasting subscription: In this mode, each consumer instance identified by a group ID
consumes each message once. Assume that a topic contains nine messages and a group ID identifies
three consumer instances. In broadcasting consumption mode, each instance consumes nine
messages.

// Configure broadcasting subscription.

properties.put (PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING) ;

Sample code

> Document Version: 20220816 116

User Guide- SDK user guide

Alibaba Cloud Message Queue

import
import
import
import
import
import
import
import

public

public static void main (Stringl[]

com.

com.

com.

com.

com.

com.

com.

aliyun.
aliyun.
aliyun.
aliyun.
aliyun.
aliyun.

aliyun.

openservices
openservices
openservices
openservices
openservices
openservices

openservices

java.util.Properties;

class ConsumerTest {

Properties properties

.ons

.ons

.ons

.ons

.ons

.ons

.ons

.api.
.api
.api.
.api.
.api.
.api.

.api.

Action;

.ConsumeContext;

Consumer;
Message;
MessageListener;
ONSFactory;
PropertyKeyConst;

args) {

new Properties|();

// The group ID that you created in the Message Queue for Apache RocketMQ console.

properties.put (PropertyKeyConst.GROUP ID, "XXX");

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f

or identity authentication.

le for identity authentication.

properties.put (PropertyKeyConst.AccessKey, "XXX");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso

properties.put (PropertyKeyConst.SecretKey, "XXX");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache

RocketMQ console.

Details page,

he Obtain Endpoint Information section.

In the left-side navigation pane, click Instance Details. On the Instance

select your instance. On the Instance Information tab, view the endpoint in t

properties.put (PropertyKeyConst.NAMESRV ADDR,
lIXXX") ,.

// Clustering subscription, which is the default mode.

// properties.put (PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING) ;

// Broadcasting subscription.

// properties.put (PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING)

Consumer consumer = ONSFactory.createConsumer (properties);

consumer.subscribe ("TopicTestMQ", "TagA||TagB", new MessagelListener() { // Subscrib

e to multiple tags.

});

public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message) ;

return Action.CommitMessage;

// Subscribe to another topic.

consumer. subscribe ("TopicTestMQ-Other", "*", new Messagelistener() { // Subscribe t

o all tags.

});

public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message) ;

return Action.CommitMessage;

consumer.start () ;

System.out.println ("Consumer Started");

117

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

@ Note In broadcasting consumption mode, you cannot query message accumulation

information in the Message Queue for Apache RocketMQ console. You can create multiple group IDs

to achieve the effect of broadcasting consumption. For more information, see Clustering
consumption and broadcasting consumption.

6.2.5. SDK for C or C++
6.2.5.1. Prepare the SDK for C or C++ environment

6.2.5.1.1. Overview

Make sure that the following prerequisites are met before you use SDK for C++ to access Message
Queue for Apache RocketMQ:

® Note

e You have created the topics and group IDs involved in the code in the Message Queue for
Apache RocketMQ console. You can customize message tags in your application. For more
information about how to create a message tag, see Create resources.

e Applications that use Message Queue for Apache RocketMQ are deployed on Elastic
Compute Service (ECS) instances.

6.2.5.1.2. Download SDK for C++

This topic describes the preparations, instructions, and usage notes for using SDK for C++ to access
Message Queue for Apache RocketMQ so that you can use SDK for C++ to send and subscribe to
messages.
Procedure

1. Download SDK for C++ used in Linux.

2. Decompress the downloaded package.

After the package is decompressed, the following directory structure appears:

o demos/

Contains examples on how to send and consume normal messages and ordered messages and

how to send messages in one-way transmission mode. T his directory also contains the CMakeList.

txt file that is used to compile and manage demos.
o include/

Contains header files that are required by your own programs.
o lib/

Contains dynamic libraries based on x86_64. T he libraries include the libonsclient4cpp.so
interface library and the librocketmqg_client_core.so core library.

o changelog

Contains bug fixes and new features in the new releases.

> Document Version: 20220816

118

https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.24a52bb7BPqMEK&file=aliyun-mq-linux-cpp-sdk.tar.gz

User Guide- SDK user guide Alibaba Cloud Message Queue

6.2.5.1.3. Use SDK for C++ in Linux

This topic describes how to use SDK for C++ in Linux.

Starting June 28, 2019, the new SDK version provides only dynamic library solutions. The library file of
Message Queue for Apache RocketMQ is stored in the /ib/ directory. You must link

librocketmq_client core.so with libonsclient4cpp.so when you generate executable files. demos has
introduced the features of C++ 11 and uses CMake for management. Therefore, you must install CMake
3.0 or later and g++ 4.8 or later in advance.

Dynamic solution

GCC 5.x or later has introduced Dual ABI. Therefore, you must add the -D_GLIBCXX_USE_CXX11_ABI=0
option when you compile the preceding links.

The following sample code provides an example on how to use demos:

cd aliyun-mg-linux-cpp-sdk // The path to which the downloaded SDK package is decompressed.
cd demos // Go to the demos directory and modify the demos file by entering information suc
h as the topic and key that you created in the Message Queue for Apache RocketMQ console.
cmake . // Check the dependencies and generate a compilation script.

make // Compile the code.

cd bin // Run the program in the directory where the generated executable files are located

6.2.5.2. Send and subscribe to normal messages
This topic provides the sample code for sending and subscribing to normal messages.

Send normal messages

The following sample code provides an example on how to send normal messages:

Subscribe to normal messages
For more information about how to subscribe to normal messages and about relevant sample code, see

Subscribe to messages.

6.2.5.3. Send and subscribe to ordered messages
This topic provides the sample code for sending and subscribing to ordered messages.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

#include "ONSFactory.h"
#include "ONSClientException.h"
#include <iostream>

using namespace ons;

int main ()

{

119 > Document Version: 20220816

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html?spm=a2c4g.11186623.2.16.361e1c71c6f9oA

Alibaba Cloud Message Queue User Guide- SDK user guide

// Set the parameters that are required to create and use a producer.

ONSFactoryProperty factoryInfo;

.factoryInfo.setFactoryProperty (ONSFactoryProperty: :ProducerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "XXX"); // The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance
s. On the Instances page, click the name of your instance. On the Instance Details page, sc
roll to the Basic Information section and view the TCP endpoint on the Endpoints tab.

factoryInfo.setFactoryProperty (ONSFactoryProperty: :PublishTopics, "XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty: :MsgContent, "XXX");// The message co
ntent.

factoryInfo.setFactoryProperty (ONSFactoryProperty: :AccessKey, "XXX");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty: :SecretKey, "XXX");// The AccessKey

secret that you created in the Alibaba Cloud Management Console for identity authentication

// Create a producer.
OrderProducer *pProducer = ONSFactory::getInstance () ->createOrderProducer (factoryInfo) ;
//Before you send a message, call the start() method to start the producer. You can cal
1 the start() method only once.
pProducer->start () ;
Message msg (
//Message Topic
factoryInfo.getPublishTopics (),
// The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and filter messages for the consumer on the
Message Queue for Apache RocketMQ broker based on specified conditions.
"TagA",
// The message body in the binary format.
Message Queue for Apache RocketMQ does not process the message body. The producer and the c
onsumer must agree on the serialization and deserialization methods.
factoryInfo.getMessageContent ()
) 7
// The key of the message. The key is the business-specific attribute of the message an
d must be globally unique.
// A unique key helps you query and resend a message in the
Message Queue for Apache RocketMQ console if the message fails to be received.
// Note: Messages can be sent and received even if you do not specify the message key.
msg.setKey ("ORDERID 100") ;
// The key field that is used to identify partitions for partitionally ordered messages

// This field can be set to a non-empty string for globally ordered messages.

std::string shardingKey = "abc";

// Messages that have the same Sharding Key are sent in order.

try

{
// Send the message. If no exception is thrown, the message is sent.
SendResultONS sendResult = pProducer->send(msg, shardingKey) ;

std::cout << "send success" << std::endl;

> Document Version: 20220816 120

User Guide- SDK user guide Alibaba Cloud Message Queue

catcn (UnsCllentsxception & e)
{
// Add the exception handling operation.
}
// Before you exit your application, shut down the producer. If you do not shut down th
e producer, issues such as memory leaks may occur.
pProducer->shutdown () ;

return 0;

Subscribe to ordered messages

The following sample code provides an example on how to subscribe to ordered messages:

#include "ONSFactory.h"
using namespace std;
using namespace ons;
// Create a consumer instance.
//After pushConsumer pulls the message, pushConsumer calls the consumeMessage function of t
he instance.
class ONSCLIENT API MyMsgListener : public MessageOrderListener
{
public:
MyMsgListener ()
{
}
virtual ~MyMsgListener ()
{
}
virtual OrderAction consume (Message &message, ConsumeOrderContext &context)
{
// Consume messages based on business requirements.
return Success; //CONSUME SUCCESS;

bi
int main(int argc, char* argv[])
{
// Set the parameters that are required to create and use orderConsumer.
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty (ONSFactoryProperty: :ConsumerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :PublishTopics, "XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :AccessKey, "XXX");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :SecretKey, "XXX");// The AccessKey

secret that you created in the Alibaba Cloud Management Console for identity authentication

factoryInfo.setFactoryProperty (ONSFactoryProperty: :NAMESRV ADDR, "XXX");// The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance

s. On the Instances page, click the name of your instance. On the Instance Details page, sc

121 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

roll to the Basic Information section and view the TCP endpoint on the Endpoints tab.

// Create orderConsumer.

OrderConsumer* orderConsumer = ONSFactory::getInstance () ->createOrderConsumer (factoryIn
fo);

MyMsgListener msglistener;

// Specify the message topic and tag to which orderConsumer subscribes.

orderConsumer->subscribe (factoryInfo.getPublishTopics (), "*", &msglistener);

// Register the instance to listen to messages. After orderConsumer pulls the messages,
orderConsumer calls the consumeMessage function of the message listening class.

//Start orderConsumer.

orderConsumer->start () ;

for (volatile int i = 0; i < 1000000000; ++i) {

//wait

}

// Shut down orderConsumer. Before you exit the application, shut down orderConsumer. I
f you do not shut down orderConsumer, issues such as memory leaks may occur.

orderConsumer—->shutdown () ;

return 0;

6.2.5.4. Send and subscribe to scheduled messages

This topic provides the sample code for sending and subscribing to scheduled messages.

Scheduled messages are consumed by consumers after a specified period of time. Such messages are
used in scenarios where a time window between message production and consumption is required or
tasks need to be triggered at a scheduled time. Scheduled messages are used in a similar way to delay
queues.

Send scheduled messages

The following sample code provides an example on how to send scheduled messages:

#include "ONSFactory.h"
#include "ONSClientException.h"
#include <windows.h>
using namespace ons;
int main ()
{
// Create a producer and set the parameters that are required to send messages.
ONSFactoryProperty factoryInfo;
factoryInfo.setFactoryProperty (ONSFactoryProperty: :ProducerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "XXX"); // The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance
s. On the Instances page, click the name of your instance. On the Instance Details page, vi
ew the endpoint on the Endpoint Information tab.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :PublishTopics, "XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :MsgContent, "xxx");// The content of

the message.

> Document Version: 20220816 122

User Guide- SDK user guide Alibaba Cloud Message Queue

factoryInfo.setFactoryProperty (ONSFactoryProperty: :AccessKey, "xxx");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty: :SecretKey, "xxx");// The AccessKey
secret that you created in the Alibaba Cloud Management Console for identity authentication

//create producer;

Producer *pProducer = ONSFactory::getInstance ()->createProducer (factoryInfo);

// Before you send messages, call the start method once to start the producer.

pProducer->start () ;

Message msg (

//Message Topic

factoryInfo.getPublishTopics (),

// The tag of the message, which is similar to a Gmail tag. Message tags are us
ed to sort messages and filter messages for the consumer on the
Message Queue for Apache RocketMQ broker based on specified conditions.

"TagA",

// The body of the message. This parameter is required.
Message Queue for Apache RocketMQ does not process the message body. The producer and consu
mer must agree on the methods to serialize and deserialize the message body.

factoryInfo.getMessageContent ()

)i

// The key of the message. The key is the business-specific attribute of the message an
d must be globally unique whenever possible.

// The key helps you query and resend a message in the
Message Queue for Apache RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not specify message keys.

msg.setKey ("ORDERID 100") ;

// The time when the Message Queue for Apache RocketMQ broker delivers the message to t
he consumer. Unit: milliseconds. The message can be consumed only after the specified time.
In this example, the message can be consumed 3 seconds later.

long deliverTime = GetTickCount64 () + 3000;

msg.setStartDeliverTime (deliverTime) ;

// Send the message. If no exception occurs, the message is sent.

try

{

SendResultONS sendResult = pProducer->send (msg) ;

}

catch (ONSClientException & e)

{

// Specify the logic to process the exception.

}

// Before you exit the application, shut down the producer. Otherwise, issues such as m
emory leaks occur.

pProducer->shutdown () ;

return 0;

Subscribe to scheduled messages

For more information about how to subscribe to scheduled messages and about relevant sample code,
see Subscribe to messages.

123 > Document Version: 20220816

Alibaba Cloud Mess

age Queue

User Guide- SDK user guide

6.2.5.5. Send and subscribe to transactional messages

This topic describes the interaction process and the back-check mechanism of transactional messages.

This topic also shows you how to send and subscribe to transactional messages, and provides sample

code.

Interaction process

Transactional message interaction flowchart shows the interaction process of transactional messages

in Message Queue for Apache RocketMQ.

Interaction process of transactional messages

7. Commit or Rollback based
on the transaction’s status

Local
Transaction

3. Execute

(¢—Iocal —
transaction

Sender

——1. Send half message —p!

2. Half message
< sent successfully

—4. Commit or Rollback ——p»!

Server

Commit: Deliver -
Fthe message P Subscriber

Rollback:

6. Check status of L 5. Check the transaction’s status again J

if not receiving confirmation from Step 4

the local transaction

Send transactional messages

Performthe following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides examples on

how to send and subscribe to transactional messages:

2. Commit the status of the transactional message.

Afterthe local transaction is executed, the Message Queue for Apache RocketMQ broker must be
notified of the transaction status of the current message no matter whether the execution is

Not deliver the message and it
will be deleted after being
stored for three days

successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

o Commit the status afterthe local transaction is executed.

o Wait until the Message Queue for Apache Rocket MQ broker sends a request to checkthe
transaction status of the message.

A transaction can be in one of the following states:

e TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume the

message.

e TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded and

cannot be con

e TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for

sumed.

Apache RocketMQ broker is expected to send a request again to the producerto query the status of
the local transaction that corresponds to the message.

> Document Version: 20220816

124

User Guide- SDK user guide Alibaba Cloud Message Queue

class MyLocalTransactionChecker : LocalTransactionChecker
{
MyLocalTransactionChecker ()
{
}
~MyLocalTransactionChecker ()
{
}
virtual TransactionStatus check (Message &value)
{
// The ID of the message. The current message ID cannot be queried in the console.
Two messages may have the same message body but cannot have the same ID.
string msgId = value.getMsgID() ;
// Calculate the message body by using CRC32 or other algorithms, such as MD5.
// The message ID and CRC32 ID are used to prevent duplicate messages.
// You do not need to specify the message ID or CRC32 ID if your business itself a
chieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure idempotence.
// To prevent duplicate messages, calculate the message body by using the CRC32 or
MD5 algorithm.
TransactionStatus transactionStatus = Unknow;
try {
boolean isCommit = Execution result of the local transaction;
if (isCommit) {
// Commit the message if the local transaction succeeds.
transactionStatus = CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = RollbackTransaction;
}
} catch(...) {
//exception error
}

return transactionStatus;

Back-check mechanism for transaction status

e Why must the back-check mechanism for transaction status be implemented when transactional
messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache Rocket MQ broker periodically requests the producerto
check and report the status of the half message.

e What does the business logic do when the check method is called back?

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache RocketMQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

125 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

i. Checkthe status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache RocketMQ broker.

e How do different states of the local transaction affect the half message?

o TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume
the message.

o TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

o TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producerto query the status
of the local transaction that corresponds to the message.

For more information about the code, see the implementation of MyLocalT ransactionChecker.

Subscribe to transactional messages

For more information about how to subscribe to transactional messages and about relevant sample
code, see Subscribe to messages.

6.2.5.6. Subscribe to messages

This topic describes how to subscribe to messages by using SDK for C or C++ provided by Message
Queue for Apache RocketMQ.

@ Note The subscriptions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscription consistency.

Subscription modes

Message Queue for Apache RocketMQ supports the following message subscription modes:
e Clustering subscription:

This mode is used to implement clustering consumption. In clustering consumption mode, all the
consumer instances identified by the same group ID evenly share messages. Assume that a topic
contains nine messages and a group ID identifies three consumer instances. In clustering consumption
mode, each instance consumes three messages.

// Configure clustering subscription, which is the default mode.
factoryInfo.setFactoryProperty (ONSFactoryProperty:: MessageModel, ONSFactoryProperty::CL
USTERING) ;

e Broadcasting subscription:

This mode is used to implement broadcasting consumption. In broadcasting consumption mode, each
consumer instance identified by a group ID consumes a message once. Assume that a topic contains
nine messages and a group ID identifies three consumer instances. In broadcasting consumption
mode, each instance consumes nine messages.

> Document Version: 20220816 126

User Guide- SDK user guide Alibaba Cloud Message Queue

// Configure broadcasting subscription.
factoryInfo.setFactoryProperty (ONSFactoryProperty:: MessageModel, ONSFactoryProperty::BR
OADCASTING) ;

Sample code

#include "ONSFactory.h"
#include <iostream>
finclude <thread>
#include <mutex>
using namespace ons;
std::mutex console mtx;
class ExampleMessagelistener : public Messagelistener ({
public:
Action consume (Message& message, ConsumeContexté& context) {

// The consumer receives the message and attempts to consume it. After the message
is consumed, CommitMessage is returned.

// If the consumer fails to consume the message or wants to consume the message aga
in, Reconsumelater is returned. Then, the message is delivered to the consumer again after
a predefined period of time.

std::lock guard<std::mutex> lk(console mtx) ;

std::cout << "Received a message. Topic: " << message.getTopic() << ", MsgId: "

<< message.getMsgID() << std::endl;

return CommitMessage;

bi
int main(int argc, char* argv[]) {
std: :cout << "=======Before consuming messages=======" << std::endl;
ONSFactoryProperty factoryInfo;
// Specify the group ID that you created in the
Message Queue for Apache RocketMQ console. Message Queue for Apache RocketMQ instances use
the group ID instead of the producer ID and consumer ID. Specifying this value ensures comp
atibility with earlier versions.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :ConsumerId, "GID XXX");
// Specify the AccessKey ID of your Alibaba Cloud account.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :AccessKey, "Your Access Key");
// Specify the AccessKey secret of your Alibaba Cloud account.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :SecretKey, "Your Secret Key");
// Specify the TCP endpoint of your Message Queue for Apache RocketMQ instance. You can
view the endpoint in the
Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty: :NAMESRV ADDR,
"http://XXXXXXXKKXXXXXKXX .aliyuncs.com:80") ;
PushConsumer *consumer = ONSFactory::getInstance () ->createPushConsumer (factoryInfo);
// Specify a topic that you created in the
Message Queue for Apache RocketMQ console.
const char* topic 1 = "topic-1";
// Subscribe to the messages attached with tag-1 in topic-1.
const char* tag 1 = "tag-1";
const char* topic 2 = "topic-2";
// Subscribe to all messages in topic-2.
const char* tag 2 = "*";

// Use a custom listener function to process the received messages and return the resul

127 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Lo
ExampleMessagelListener * message listener = new ExampleMessageListener () ;
consumer->subscribe (topic 1, tag 1, message listener);
consumer->subscribe (topic 2, tag 2, message listener);

// The preparation is complete. You must invoke the startup function to start the consu
mer.

consumer->start () ;

// Keep the thread running and do not shut down the consumer.

std::this thread::sleep for(std::chrono::milliseconds (60 * 1000));

consumer->shutdown () ;

delete message listener;

std::cout << "=======After consuming messages======" << std::endl;

return 0;

6.2.6. SDK for .NET
6.2.6.1. .Prepare the SDK for .NET environment

6.2.6.1.1. Overview

Before you use SDK for . NET to access Message Queue for Apache RocketMQ and send and subscribe
to messages, make sure that the following prerequisites are met:

@ Note

e You have created the topics and group IDs involved in the code in the Message Queue for
Apache RocketMQ console. You can customize message tags in your application. For more
information about how to create a message tag, see Create resources.

e Applications that use Message Queue for Apache Rocket MQ are deployed on Elastic
Compute Service (ECS) instances.

6.2.6.1.2. Download SDK for .NET

Message Queue for Apache RocketMQ SDK for .NET is a managed wrapper based on Apache RocketMQ
Client CPP.Message Queue for Apache RocketMQ SDK for .NET is independent of Windows .NET public
library.Multit hreading and parallel processing in C++ are used to ensure the efficiency and st ability of
Message Queue for Apache RocketMQ SDK for .NET.

Context

If Visual Studio is used to develop .NET applications and class libraries, the default target platformis
Any CPU. This means that x86 or x64 is automatically selected based on the CPU type at runtime. This
capability is provided because the assembly compiled by using .NET is based on the intermediate
language (IL). At runtime, the just in-time compiler (JIT) in the common language runtime (CLR) of .NET
convertsthe IL code into the x86 or x64 machine code. The DLL generated by the C or C++ compiler is
the machine code. Therefore, a target platformis selected during compilation. The C or C++ project is
compiled as an x64 64-bit DLL by configuring compilation options. Therefore, the 64-bit DLL in release
mode compiled by using Visual Studio 2015 is provided. The 64-bit DLL in release mode is also available
to other Visual Studio versions.

> Document Version: 20220816 128

User Guide- SDK user guide Alibaba Cloud Message Queue

@ Note C++ DLLfiles require the installation package of the Virtual C++ 2015 runtime
environment. If the Visual Studio 2015 runtime environment is not installed, run the
vc_redist.x64.exe program provided in the SDK.

Procedure

1.

Download the SDK package.

We recommend that both new users and existing users that are not concerned with upgrade costs
download the latest SDK. Download the latest version of SDK for .NET that are used in Windows

. Decompress the downloaded package.

After the package is decompressed, the following directory structure appears:

o demo/

Contains examples on how to send normal messages, send messages in one-way mode, send
ordered messages, consume normal messages, and consume ordered messages.

o lib/

Contains files related to the underlying C++ DLL and the installation package of the Virtual C++
2015 runtime environment. If Visual Studio 2015 is not installed, copy and run the
vc_redist.x64.exe program, as shown in the following information:

64/
NSClient4CPP.1lib
ONSClient4CPP.d11l
ONSClient4CPP.pdb
vc_redist.x64.exe

o interface/

Encapsulates P/Invoke code. The code must be included in the user project code.

o SDK GUIDEpdf

Contains the documentation and frequently asked questions (FAQ) about how to prepare the
SDK environment.

o changelog

Contains bug fixes and new features in the new releases.

6.2.6.1.3. .Configure SDK for .NET

T his topic shows you how to use SDK for .NET in Windows.

Procedure

1.

Use SDK for .NET in Visual Studio 20T5NET SDK
Use Visual Studio 2015 to create your project.
.NET SDK-1

129

> Document Version: 20220816

https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.9e15b0c8mYwCB6&file=aliyun-mq-windows-net-sdk.rar

Alibaba Cloud Message Queue User Guide- SDK user guide

tart Page & X

. . Discover Visual Studio Community 2015
Visual Studio —y—“.,-

Visual C#

ble for iOS, Android and Wi
News

Updating the ne,

tudio 2015\Projects

2. Right-clickthe project and choose Add > Add Existing Item to add allfiles inthe interface
directory of the downloaded SDK package.

.NET SDK-2

@ Actioncs
B ConsumeContextcs 2016/12/20 10:57 Visual C#
B ConsumeOrderContext.cs 2016/12/20 1 Visual C# §
B LecalTransactionChecker.cs

B LocalTransactionExecuter.cs 2016/12/20 10:57 Vizual C®
B Message.cs

[Messagelistener.cs

B MessageOrderlistener.cs
B ONSChannel.cs

B ONSCRentdCPP.cs 2016/12/20 1 7 Vizual C#
B ONSChentdCPPPINVOKE.cs 2016/12/20 1 Visual C#
B ONSChentException.cs 2016/12/20 1 Visual C#
B OMNSFactory.cs 2016/12/20 10:57 v al C=
B AR EsrtnmA D e

I “Actioncs” “ConsumeContextce” “ConsumeOrderContextes” “LocalTransactionCheckers = | Visual OF Files (“.cx".resg®n =

add || KA

3. Right-clickthe project and choose Properties > Configuration Manager. Set Active solution
configuration to Release and set Active solution platformto x64.

4. Write and compile the test program, save the DLL file of the SDK to the directory of the executable
file orto the systemdirectory, and then run the program.

.NET SDK-3

> Document Version: 20220816 130

User Guide- SDK user guide Alibaba Cloud Message Queue

- This directory varies with your
= ‘ compiler platform and the
- mode can be release or debug
[ConsoleApplication2 51 KB
¥ ConsoleApplication2.exe 1KB
& ConsoleApplication2 200 KB
m ConsoleApplication2.vshost 23 KB
¥ ConsoleApplication2.vshost.exe 1KB
| | ConsoleApplication2.vshost.exe.manif... 2013/3/18 17:00 1 KB
m 2016/12/20 10:57 2,308 KB
§8 ONSClient4CPP 2016/12/20 10:57 770 KB
Eﬂ ONSClient4CPP 2016/12/20 10:58 . > 20,532 KB

(@ Note The SDK provides a preconfigured demo project. You can directly open the project
and compile it. When you run the project, copy the related DLL file to the directory of the
executable file, as shown in the following figure.

.NET SDK-4

After compiling, copy the dll
file from the lib directory to
the same directory of the exe.

2 dem.
B dema

"7 demo.vshost

¥ demo.vshost.exe

_| demowvshostexe.manifest 1 18 17:00 1 KE me' Then‘ you can run the
[ONCChertacFr al RS TIE K client.

B ONSClientaCPP
& ONSClientaCPP

Configure ASP.NET in Visual Studio 2015 to use Message Queue for Apache RocketMQ
SDK

5. Create aWeb Forms project for ASP.NET by using Visual Studio 2015.
.NET SDK-5

131 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

0 al

' tartPage & X

Visual Studio

6. Right-clickthe project and choose Properties > Configuration Manager. Set Active solution
configuration to Release and set Active solution platformto x64.

.NET SDK-6

e o B P R T D T e
Projec Confguraion__ Platiorm
WebApplcstiond Relesse [=] et

7. Right-click the project and choose Add > Add Existing Iltem to add allfiles in the interface
directory of the downloaded SDK package.

For more information about how to configure a common .NET project, see Step 2.

8. Add the code forstarting and stopping the SDK to the Global.asax.cs file.

@ Note We recommend that you encapsulate the SDK code as a singleton class so that the
code cannot be recycled by the garbage collector due to scope problems. The example
directory of the SDK contains the Example.cs file for implementing a simple singleton class. To
use Example.cs, you must include it in your own project.

> Document Version: 20220816 132

User Guide- SDK user guide Alibaba Cloud Message Queue

using
using
using
using
using
using
using
using
using

using

cated.

System
System

System.
System.
System.
System.

System

System.

ons;
test;
See t

.Collections.Generic;
Ling;
Web;
Web.Optimization;
Web.Routing;
.Web.Security;
Web.SessionState;
// The namespace where the SDK is located.
// The namespace where the class with the roughly encapsulated SDK is lo

he Example.cs file in the example directory of the SDK.

namespace WebApplication4

{

public class Global : HttpApplication

{

void

{

Application Start (object sender, EventArgs e)

// Code that runs on application startup
RouteConfig.RegisterRoutes (RouteTable.Routes) ;
BundleConfig.RegisterBundles (BundleTable.Bundles) ;
try
{
// The code for starting the SDK. The following code is the code after

the SDK is roughly encapsulated.

}
prot
{

OnscSharp.CreateProducer () ;
OnscSharp.StartProducer () ;
}

catch (Exception ex)

{
// Specify the logic for handling errors.

ected void Application End(object sender, EventArgs e)

try
{
// The code for stopping the SDK.
OnscSharp.ShutdownProducer () ;

}

catch (Exception ex)

{
// Specify the logic for handling errors.

9. Write and compile the test program.

10. Save the DLL file of the SDK to the directory of the executable file orto the system directory and
run the program.

.NET SDK-7

133

> Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Your ASP.NET application

+ #g WebApplicationd.Global

2, Application_End(object sender, EventArgs e)

Standalone Pr * =

Tencent Files

4 WebApplicationd.dll
8 WebApplicationd
¥ WebApplicationd.dll

Visual Studio

Visual Studio
Architecture
Backup Files & ONSClientdCPP
Code Snipp [ONSClient4cPP.dil
Projects ONSClientdCPP

ConsoleAy % Microsoft.ALPerfCounterCollector.dll

% Microsoft.ALWeb.dIl

] MicrosoftALWeb

%/ Microsoft.Al WindowsServer.dll

Microsoft.ALWindowsServer

ConsoleAy
WebAppli|
WebAppli
WebApplis

{4 Microsoft.Al DependencyCollector.dll
WebApplis

Microsoft.Al DependencyCollector
package % Microsoft.AlLServerTelemetryChannel...
WebApg Microsoft.ALServerTelemetryChannel

WebSitel . (4 MicrosoftApplicationlnsights.dll

11. Choose Tools >0ptions > Projects and Solutions > Web Projects. Then, select the Use the
64 bit version of IIS Express for websites and projects check box.

.NET SDK-8

Debug Team | Tools |[Test Analyze Window
Release 1] ClangFormat
: 5 Connect to Da
Your A
Connect to Serw
Code Snippets Manager...
ptimization;
Routing; Choose Toolbox Items...

- MuGet Package Manager
Extensions and Updates...
besisern Create GUID

Error Lookup

PreEmptive Protection - Dotfuscator

ication Start(

RegisterRoute
.RegisterBund
External Tools...

Import and Export
CreateProdu
artProdud {e}

)

.NET SDK-9

onfiguration Editor

> Document Version: 20220816

134

User Guide- SDK user guide Alibaba Cloud Message Queue

Search Options (Ctrl+E) I Use the 64 bit version of IIS Express for web sites and projects I

I Environment S X x _— A .
Dth:r:rr;tl:;: running web applications when there are errars in
eneral
Build and Run
DNX Projects
External Web Tools
VB Defaults
VC++ Directories

Web Projects

ource Contro
Text Editor
Debugging
Performance Tools
Database Tools
LLVM/Clang
MNuGet Package Manager

Tevt Temnlatinn

OK l I Cancel

6.2.6.2. Send and subscribe to normal messages
This topic provides the sample code for sending and subscribing to normal messages.

Send normal messages

The following sample code provides an example on how to send normal messages: Set related
parameters based on the instructions.

using System;
using ons;
public class ProducerExampleForEx
{
public ProducerExampleForEx ()
{
}
static void Main(string[] args) {
// Configure your account based on the resources that you created in the console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
factoryInfo.setFactoryProperty (ONSFactoryProperty.AccessKey, "Your access key");
// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
factoryInfo.setFactoryProperty (ONSFactoryProperty.SecretKey, "Your access secret");
// The group ID that you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty.ProducerId, "GID example");
// The topic that you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (ONSFactoryProperty.PublishTopics, "T example topic n
ame") ;

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache

135 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "NameSrv Addr");
// Specify the log path.
factoryInfo.setFactoryProperty (ONSFactoryProperty.LogPath, "C://log");
// Create a producer instance.
// Note: Producer instances are thread-secure and can be used to send messages of d
ifferent topics. Each of your threads
// needs only one producer instance.
Producer producer = ONSFactory.getInstance () .createProducer (factoryInfo);
// Start the producer instance.
producer.start();
// Create a message object.
Message msg = new Message (factoryInfo.getPublishTopics(), "tagA", "Example message
body") ;
msg.setKey (Guid.NewGuid () .ToString()) ;
for (int 1 = 0; i < 32; i++) {
try
{
SendResultONS sendResult = producer.send (msqg) ;
Console.WritelLine ("send success {0}", sendResult.getMessageld()):
}
catch (Exception ex)
{

Console.WritelLine ("send failure{0}", ex.ToString());

}
// Shut down the producer instance when your thread is about to exit.

producer.shutdown () ;

Subscribe to normal messages

For more information about how to subscribe to normal messages and about relevant sample code, see
Subscribe to messages.

6.2.6.3. Send and subscribe to ordered messages
This topic describes how to send and subscribe to ordered messages and provides sample code.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

using System;
using ons;
public class OrderProducerExampleForEx
{
public OrderProducerExampleForEx ()
{
}

static void Main(string[] args) {

> Document Version: 20220816 136

User Guide- SDK user guide Alibaba Cloud Message Queue

// Configure your account based on the resources that you created in the Apsara Uni
-manager Management Console.

ONSFactoryProperty factoryInfo = new ONSFactoryProperty () ;

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.AccessKey, "Your access key"):;

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.SecretKey, "Your access secret");

// The group ID that you created in the Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.ProducerId, "GID example");

// The topic that you created in the Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.PublishTopics, "T example topic n
ame") ;

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "NameSrv Addr");

// Specify the log path.

factoryInfo.setFactoryProperty (ONSFactoryProperty.LogPath, "C://log");

// Create a producer instance.

// Note: Producer instances are thread-safe and can be used to send messages of dif
ferent topics. Each thread

// requires only one producer instance.

OrderProducer producer = ONSFactory.getInstance () .createOrderProducer (factoryInfo);

// Start the producer instance.

producer.start();

// Create a message.

Message msg = new Message (factoryInfo.getPublishTopics (), "tagA", "Example message
body") ;

string shardingKey = "App-Test";

for (int i = 0; 1 < 32; i++) {

try
{
SendResultONS sendResult = producer.send(msg, shardingKey) ;
Console.WriteLine ("send success {0}", sendResult.getMessageld()):;
}
catch (Exception ex)
{
Console.WriteLine ("send failure{0}", ex.ToString());

}
// Disable the producer instance when your thread is about to exit.

producer.shutdown () ;

Subscribe to ordered messages

The following sample code provides an example on how to subscribe to ordered messages:

using System;

using Svstem.Text;

137 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

using System.Threading;
using ons;
namespace demo
{
public class MyMsgOrderListener : MessageOrderListener
{
public MyMsgOrderListener ()
{
}
~MyMsgOrderListener ()
{
}
public override ons.OrderAction consume (Message value, ConsumeOrderContext context)
{
Byte[] text = Encoding.Default.GetBytes (value.getBody());
Console.WritelLine (Encoding.UTF8.GetString (text)) ;

return ons.OrderAction.Success;

}
class OrderConsumerExampleForEx
{
static void Main(string[] args)
{
// Configure your account based on the resources that you created in the Apsara
Uni-manager Management Console.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty () ;
// The AccessKey ID that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.AccessKey, "Your access key")

// The AccessKey secret that you created in the Apsara Uni-manager Management C
onsole for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.SecretKey, "Your access secre
t");

// The group ID that you created in the Message Queue for Apache RocketMQ conso
le.

factoryInfo.setFactoryProperty (ONSFactoryProperty.ConsumerId, "GID example");

// The topic that you created in the Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.PublishTopics, "T example top
ic_name");

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Ap
ache RocketMQ console. In the left-side navigation pane, click Instance Details. On the Ins
tance Details page, select your instance. On the Instance Information tab, view the endpoin
t in the Obtain Endpoint Information section.

factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "NameSrv_ Addr")

// Specify the log path.

factoryInfo.setFactoryProperty (ONSFactoryProperty.LogPath, "C://log");

// Create a consumer instance.

OrderConsumer consumer = ONSFactory.getInstance () .createOrderConsumer (factoryIn
fo);

// Subscribe to topics.

consumer.subscribe (factoryInfo.getPublishTopics (), "*",new MyMsgOrderListener ()
) i

> Document Version: 20220816 138

User Guide- SDK user guide Alibaba Cloud Message Queue

// Start the consumer instance.

consumer.start () ;

// Put the main thread to sleep for a period of time.

Thread.Sleep (30000) ;

// Disable the consumer instance when the instance is no longer used.

consumer.shutdown () ;

6.2.6.4. Send and subscribe to scheduled messages

Scheduled messages are consumed by consumers after a specified period of time. Such messages are
used in scenarios where a time window between message production and consumption is required or
tasks need to be triggered at a scheduled time. Scheduled messages are used in a similar way to delay
queues.

Send scheduled messages

The following sample code provides an example on how to send scheduled messages:

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Runtime.InteropServices;
using ons;
namespace ons
{
class onscsharp
{
static void Main (string[] args)
{
// Set the parameters that are required to create a producer. These parameters
ensure that you can use the producer.
ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
factoryInfo.setFactoryProperty (factoryInfo.ProducerId, "XXX ");// The group ID
that you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (factoryInfo.NAMESRV ADDR, "XXX"); // The TCP end
point. To obtain the endpoint, log on to the Message Queue for Apache RocketMQ console. In
the left-side navigation pane, click Instance Details. On the Instance Details page, select
your instance. On the Instance Information tab, view the endpoint in the Obtain Endpoint In
formation section.
factoryInfo.setFactoryProperty (factoryInfo.PublishTopics, "XXX");// The topic t
hat you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (factoryInfo.MsgContent, "XXX");// The message co
ntent.
factoryInfo.setFactoryProperty (factoryInfo.AccessKey, "XXX");// The AccessKey I

D that you created in the Apsara Uni-manager Management Console for identity authentication

factoryInfo.setFactoryProperty (factoryInfo.SecretKey, "XXX");// The AccessKey se
cret that you created in the Apsara Uni-manager Management Console for identity authenticat

ion.

139 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

// Create a producer.

ONSFactory onsfactory = new ONSFactory();

Producer pProducer = onsfactory.getlnstance () .createProducer (factoryInfo);

// Before you use the producer to send a message, call the start() method once
to start the producer.

pProducer.start () ;

Message msg = new Message (

//Message Topic
factoryInfo.getPublishTopics (),
//Message Tag

"TagA",

//Message Body
factoryInfo.getMessageContent ()

) i

// The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.

// A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.

// Note: Messages can be sent and received even if you do not specify the messa
ge key.

msg.setKey ("ORDERID 100") ;

// The period of time after which the Message Queue for Apache RocketMQ broker
delivers the message to the consumer. Unit: milliseconds. The message can be consumed only
after the specified period of time. In this example, the message can be consumed 3 seconds
later.

long deliverTime = Current system time (ms) + 3000;

msg.setStartDeliverTime (deliverTime) ;

// Send the message. If no error occurs, the message is sent.

try

{

SendResultONS sendResult = pProducer.send (msg) ;

}

catch (ONSClientException e)

{

// Specify the logic for handling failures.

}

// Before you exit the application, shut down the producer object. Otherwise, m
emory leaks may occur.

pProducer.shutdown () ;

Subscribe to scheduled messages

For more information about how to subscribe to scheduled messages and about relevant sample code,
see Subscribe to messages.

6.2.6.5. Send and subscribe to transactional messages

This topic describes the interaction process and the back-check mechanism of transactional messages.
This topic also shows you how to send and subscribe to transactional messages, and provides sample
code.

> Document Version: 20220816 140

User Guide- SDK user guide Alibaba Cloud Message Queue

Interaction process
Transactional message interaction shows the interaction process of transactional messages in Message
Queue for Apache RocketMQ.

Interaction process of transactional messages

7. Commit or Rollback based
on the transaction’s status

——1. Send half message —J»!

Local 3. Execute 2. Half message Commit: Deliver .
Transaction o tion | Sender ¢ sent successfully Server Fthe message ¥ Subscriber

—4. Commit or Rollback —»!

Rollback:

A Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days

the local transaction if not receiving confirmation from Step 4

Send transactional messages
Performthe following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides examples on
how to send and subscribe to transactional messages:

using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.Runtime.InteropServices;
using ons;
namespace ons
{
public class MylLocalTransactionExecuter : LocalTransactionExecuter
{
public MyLocalTransactionExecuter ()
{
}
~MyLocalTransactionExecuter ()
{
}
public override TransactionStatus execute (Message value)
{
Console.WritelLine ("execute topic: {0}, tag:{1l}, key:{2}, msgId:{3},msgbody
:{4}, userProperty:{5}",
value.getTopic (), value.getTag(), value.getKey(), value.getMsgID(), value.
getBody (), value.getUserProperty ("VincentNoUser")) ;
// The ID of the message. Two messages may have the same message body but
cannot have the same ID. The current message ID cannot be queried in the console.
string msgId = value.getMsgID() ;
// Calculate the message body by using CRC32 or other algorithms, such as
MD5.
// The message ID and CRC32 ID are used to prevent duplicate messages.
// To prevent duplicate messages, calculate the message body by using the
CRC32 or MD5 algorithm.

TransactionStatus transactionStatus = TransactionStatus.Unknow;

141 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

try {
boolean isCommit = Execution result of the local transaction;
if (isCommit) {
// Commit the message if the local transaction succeeds.
transactionStatus = TransactionStatus.CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {
//exception handle
}

return transactionStatus;

}
class onscsharp
{
static void Main(string[] args)
{
ONSFactoryProperty factoryInfo = new ONSFactoryProperty () ;
factoryInfo.setFactoryProperty (factoryInfo.NAMESRV ADDR, "XXX");//The TCP endp
oint. To obtain the endpoint, log on to the Message Queue for Apache RocketMQ console.
In the left-side navigation pane, click Instance Details. On the Instance Details page,
select your instance. On the Instance Information tab, view the endpoint in the Obtain

Endpoint Information section.

factoryInfo.setFactoryProperty (factoryInfo.ProducerId, "");// The group ID tha
t you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (factoryInfo.PublishTopics, "");// The topic tha
t you created in the Message Queue for Apache RocketMQ console.
factoryInfo.setFactoryProperty (factoryInfo.MsgContent, "");//message body
factoryInfo.setFactoryProperty (factoryInfo.AccessKey, "");// The AccessKey ID

that you created in the Apsara Uni-manager Management Console for identity authenticati
on.

factoryInfo.setFactoryProperty (factoryInfo.SecretKey, "");// The AccessKey sec
ret that you created in the Apsara Uni-manager Management Console for identity authenti
cation.

//create transaction producer

ONSFactory onsfactory = new ONSFactory();

LocalTransactionChecker myChecker = new MyLocalTransactionChecker () ;

TransactionProducer pProducer = onsfactory.getInstance () .createTransactionProd
ucer (factoryInfo,ref myChecker);

// Before you use the producer to send a message, call the start() method once
to start the producer. After the producer is started, messages can be concurrently sent
in multiple threads.

pProducer.start();

Message msg = new Message (
//Message Topic
factoryInfo.getPublishTopics (),
//Message Tag
"TagA",
//Message Body
factoryInfo.getMessageContent ()
)
// The key of the message. The key is the business-specific attribute of the m

1 a1 e a1 taa

> Document Version: 20220816 142

User Guide- SDK user guide Alibaba Cloud Message Queue

essage ana must pe glopally unigque wnenever possiple.
// A unique key helps you query and resend a message in the Message Queue for
Apache RocketMQ console if the message fails to be received.
// Note: Messages can be sent and received even if you do not specify the mess
age key.
msg.setKey ("ORDERID 100");
// Send the message. If no error occurs, the message is sent.
try
{
LocalTransactionExecuter myExecuter = new MyLocalTransactionExecuter () ;
SendResultONS sendResult = pProducer.send(msg, ref myExecuter);

}
catch (ONSClientException e)

{

Console.WriteLine ("\nexception of sendmsg:{0}",e.what());
}
// Before you exit the application, shut down the producer object. Otherwise,
memory leaks may occur.

// The producer cannot be started again after the producer object is shut down

pProducer.shutdown () ;

2. Commit the status of the transactional message.

Afterthe local transaction is executed, the Message Queue for Apache RocketMQ broker must be
notified of the transaction status of the current message no matter whether the execution is
successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

o Commit the status afterthe local transaction is executed.

o Wait until the Message Queue for Apache RocketMQ broker sends a request to checkthe
transaction status of the message.

A transaction can be in one of the following states:

o TransactionStatus.CommitTransaction: The transaction is committed. The consumer can
consume the message.

o TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

o TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache Rocket MQ broker is expected to send a request again to the producerto query the
status of the local transaction that corresponds to the message.

143 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

public class MyLocalTransactionChecker : LocalTransactionChecker
{
public MyLocalTransactionChecker ()
{
}
~MyLocalTransactionChecker ()
{
}
public override TransactionStatus check (Message value)
{
Console.WritelLine ("check topic: {0}, tag:{1l}, key:{2}, msglId:{3},msgbod
y:{4}, userProperty:{5}",
value.getTopic (), value.getTag(), value.getKey(), value.getMsgID(), val
ue.getBody (), value.getUserProperty ("VincentNoUser")) ;
// The ID of the message. Two messages may have the same message body b
ut cannot have the same ID. The current message ID cannot be queried in the console.
string msgId = value.getMsgID() ;
// Calculate the message body by using CRC32 or other algorithms, such
as MD5.
// The message ID and CRC32 ID are used to prevent duplicate messages.
// You do not need to specify the message ID or CRC32 ID if your busine
ss itself achieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure
idempotence.
// To prevent duplicate messages, calculate the message body by using t
he CRC32 or MD5 algorithm.
TransactionStatus transactionStatus = TransactionStatus.Unknow;
try {
boolean isCommit = Execution result of the local transaction;
if (isCommit) {
// Commit the message if the local transaction succeeds.
transactionStatus = TransactionStatus.CommitTransaction;
} else {
// Roll back the message if the local transaction fails.
transactionStatus = TransactionStatus.RollbackTransaction;
}
} catch (Exception e) {
//exception handle
}

return transactionStatus;

Back-check mechanism for transaction status

e Why must the back-check mechanism for transaction status be implemented when transactional
messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache Rocket MQ broker periodically requests the producerto
check and report the status of the half message.

e What does the business logic do when the check method is called back?

> Document Version: 20220816 144

User Guide- SDK user guide Alibaba Cloud Message Queue

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache Rocket MQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

i. Checkthe status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache Rocket MQ broker.
e How do different states of the local transaction affect the half message?

o TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume
the message.

o TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

o TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producerto query the status
of the local transaction that corresponds to the message.

For more information about the code, see the implementation of MyLocalTransactionChecker.

Subscribe to transactional messages

For more information about how to subscribe to transactional messages and about relevant sample
code, see Subscribe to messages.

6.2.6.6. Subscribe to messages

This topic describes how to use Message Queue for Apache RocketMQ SDK for .NET to subscribe to
messages.

@ Note

e The subscriptions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscription consistency.

Subscription modes
Message Queue for Apache Rocket MQ supports the following message subscription modes:

e Clustering subscription: In this mode, all the consumer instances identified by the same group ID
evenly share messages. Assume that a topic contains nine messages and a group ID identifies three
consumer instances. In clustering consumption mode, each instance consumes three messages.

// Configure clustering subscription, which is the default mode.
factoryInfo.setFactoryProperty (ONSFactoryProperty.MessageModel, ONSFactoryProperty.CLUST
ERING) ;

e Broadcasting subscription: Inthis mode, each consumer instance identified by a group ID
consumes a message once. Assume that a topic contains nine messages and a group ID identifies
three consumer instances. In broadcasting consumption mode, each instance consumes nine
messages.

145 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

// Configure broadcasting subscription.

factoryInfo.setFactoryProperty (ONSFactoryProperty.MessageModel, ONSFactoryProperty.BROAD
CASTING) ;

Sample code

using System;
using System.Threading;
using System.Text;
using ons;
// The callback function to be executed when a message is pulled from the Message Queue for
Apache RocketMQ broker.
public class MyMsgListener : Messagelistener
{
public MyMsgListener ()
{
}
~MyMsgListener ()
{
}
public override ons.Action consume (Message value, ConsumeContext context)

{
Byte[] text = Encoding.Default.GetBytes (value.getBody())
Console.Writeline (Encoding.UTF8.GetString (text)) ;

return ons.Action.CommitMessage;

}
public class ConsumerExampleForEx
{
public ConsumerExampleForEx ()
{
}
static void Main(string[] args) {

// Configure your account based on the resources that you created in the console.

ONSFactoryProperty factoryInfo = new ONSFactoryProperty();

// The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.AccessKey, "Your access key");

// The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

factoryInfo.setFactoryProperty (ONSFactoryProperty.SecretKey, "Your access secret");

// The group ID that you created in the Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.ConsumerId, "GID example");

// The topic that you created in the Message Queue for Apache RocketMQ console.

factoryInfo.setFactoryProperty (ONSFactoryProperty.PublishTopics, "T example topic n
ame") ;

// The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.

factoryInfo.setFactoryProperty (ONSFactoryProperty.NAMESRV ADDR, "NameSrv_ Addr");

// Specify the log path.

factoryInfo.setFactoryProperty (ONSFactoryProperty.LogPath, "C://log");

/) MhA ATsiadkAarvina~ AAancrimmet T An A A

> Document Version: 20220816 146

User Guide- SDK user guide Alibaba Cloud Message Queue

/7 L11S CLUuSLESLLllY CULIDWIPLLULL LWUUES .«

// factoryInfo.setFactoryProperty (ONSFactoryProperty:: MessageModel, ONSFactoryProp
erty.CLUSTERING) ;

// The broadcasting consumption mode.

// factoryInfo.setFactoryProperty (ONSFactoryProperty:: MessageModel, ONSFactoryProp
erty.BROADCASTING) ;

// Create a consumer instance.

PushConsumer consumer = ONSFactory.getInstance () .createPushConsumer (factoryInfo) ;

// Subscribe to topics.

consumer.subscribe (factoryInfo.getPublishTopics (), "*", new MyMsgListener());

// Start the consumer instance.

consumer.start () ;

// This value is an example in the demo. In your production environment, you must s
et a proper value to make sure that the process does not unexpectedly exit.

Thread.Sleep (300000) ;

// Shut down the consumer instance when the process is about to exit.

consumer.shutdown () ;

6.3. HTTP client SDK reference

6.3.1. Protocol description

6.3.1.1. Common parameters

This topic describes the common request parameters in an HTTP request header and the common
response parameters in an HTTP response header for Message Queue for Apache RocketMQ.

Common request header

Parameter Required Description

The authorization string. Specify
the value in the following
Authorization Yes format: MQ <AccessKey ID>:
<Signature> .For more
information, see Sign signatures.

Content-Length Yes The length of the HTTP request
body.
The Multipurpose Internet Mail
Extensions (MIME) type of the
request body. Set the value to
Content-Type Yes text/xml; charset=utf-8. This
value sets the MIME type to XML
and the character encoding
method to UTF-8.

147 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Parameter

Date

Host

X-mqg-version

Content-MD5

Required

Yes

Yes

Yes

No

Common response header

Parameter

Content-Length

Connection

Date

X-mgq-request-id

X-ma@-version

6.3.1.2. Request signatures

Description

The time when the request is
constructed. The time must be in
UTC. If the interval between the
time when the request is
constructed and the time when
the request is received exceeds
15 minutes, the Message Queue
for Apache RocketMQ broker
determines that the request is
invalid.

The HTTP endpoint that you
obtain on the Instances page of
the console.

The version of the Message
Queue for Apache RocketMQ APL.
Set the value to 2015-06-06.

The MD5 hash value of the
message body. For more

information, see Content-MD5
Header Field.

Description
The length of the HTTP response body.
The status of the HTTP connection.

The time when the response was returned. The time
is displayed in UTC.

The ID of the request.

The version of the Message Queue for Apache
RocketMQ API. The value is 2015-06-06.

Message Queue for Apache Rocket MQ verifies each HTTP access request. Each HTTP request that is sent
to Message Queue for Apache RocketMQ contains the Authorization parameter in the request header,
and the Authorization parameter contains a signature. This topic describes how to generate a

signature.

Background information

> Document Version: 20220816

148

https://datatracker.ietf.org/doc/html/rfc1864?spm=a2c4g.11186623.2.5.64a45d3eC2BZZb

User Guide- SDK user guide Alibaba Cloud Message Queue

Apsara Stack issues an AccessKey pair that consists of an AccessKey ID and an AccessKey secret to each
user. The user can apply for and manage AccessKey pairs in the Apsara Uni-manager Management
Console.

e The AccessKey ID is used to verify the identity of the user.

e The AccessKey secret is used to encrypt and verify the signature string. You must keep your
AccessKey secret strictly confidential.

The HTTP service provided by Message Queue for Apache RocketMQ uses an AccessKey pairto perform
symmetric encryption to verify the identity of a request sender. If the calculated verification code is the
same as that provided in the request, the HTTP service determines that the request is valid. Otherwise,
the HTTP service rejects the request and returns HTTP 403.

You must add the Authorization parameter to the header of each HTTP request to provide the
signature of the request. This way, the HTTP service can determine the validity of the request.

How to sign a request

The Authorization parameter is specified in the following format:

MQ <AccessKey ID>:<Signature>
The following code shows the parameters that are used to generate a signature:

Signature = base64 (hmac-shal (HTTP_METHOD + "\n"
+ "\n"+ CONTENT-TYPE + "\n"
+ DATE + "\n"
+ "x-mg-version:" + MQVersion + "\n"
+

CanonicalizedResource))

e HTTP_METHOD: specifies an HTTP method in uppercase, such as PUT, GET, POST, or DELETE.
e CONTENT-TYPE: specifies the type of the request body. Set the value to text/xml; charset=utf-8.

e DATE: specifies the time when you want to performthe operation. This parameter cannot be left
empty and must be specified in UTC. For example, you can set this parameterto Thu, 07 Mar 2012
18:49:58 GMT.

e MQVersion: specifies the version of the Message Queue for Apache RocketMQ APL. Set the value to
2015-06-06.

e CanonicalizedResource: specifies the Unif orm Resource Identifier (URI) of the resource requested by
the HTTP request. For example, set the URI of a consumption request to /topics/abc/messages?
consumer=GID_abc.

@ Note
e The string-to-sign must be in the UTF-8 format.

e The HMAC-SHA1 method defined in RFC 2104 is used to calculate the signature. In this
method, the AccessKey secret is used as an encryption key.

6.3.1.3. Operation for sending messages

You can call this operation to send messages from a producer to a Message Queue for Apache
RocketMQ broker.

149 > Document Version: 20220816

https://www.ietf.org/rfc/rfc2104.txt

Alibaba Cloud Message Queue User Guide- SDK user guide

Request structure

e Request line

POST /topics/TopicName/messages?ns=INSTANCE ID HTTP/1.1

The following table describes the parameters in the request line.
Parameter Required Description

The name of the destination
TopicName Yes topic to which you want to send
messages.

The ID of the instance. This
parameter is required for new
instances that have
namespaces. You can check
whether your instance has a
namespace on the Instances
page in the Message Queue for
Apache RocketMQ console.
Instances are classified into
default instances and new
instances based on whether
they have namespaces.

o Default instance: A default
ns No instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unigue.

o New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unique
within the instance.

For more information about
namespaces for Message Queue
for Apache RocketMQ instances,
see Use instances.

e Request body (XML format)

The following table describes the parameters in the request body.

Parameter Required Description

MessageTag No The tag of the message.
MessageBody Yes The content of the message.
Properties No The properties of the message.

The following information describes the key-value pairs in the serialized properties of the message:

> Document Version: 20220816 150

User Guide- SDK user guide Alibaba Cloud Message Queue

o Specify the key-value pairs in the following format: keyl:valuel|key2:value2|key3:value3

o The following table describes the parameters that are used to specify the key-value pairs.
Parameter Type Description
KEYS String The key of the message.

The absolute scheduled time of
a scheduled message. Set this

__ STARTDELIVERT IME Long parameter to a UNIX timestamp
that represents the number of
milliseconds.

The relative time when you
want to perform the first

__TransCheckT Long status check for a transactional
message. Unit: seconds. Valid
values: 10 to 300.

Response structure
e Status line

HTTP/1.1 201
e Response body

The following table describes the parameters in the response body.

Parameter Type Description
Messageld String The ID of the message.
The MD5 hash f th
MessageBodyMD5 String e MD5 hash value of the
message body.
Examples

e Sample requests

<?xml version="1.0" encoding="UTF-8"?>

<Message xmlns="http://mg.aliyuncs.com/doc/v1/">
<MessageBody>a</MessageBody>

<MessageTag>Tag</MessageTag>

<Properties>KEYS:MessageKey| STARTDELIVERTIME:1571388173000</Properties>

</Message>

e Sample responses

<Message xmlns="http://mg.aliyuncs.com/doc/v1/">
<MessageId>1E057D566EAD42A579935B5CD874****< /MessageId>
<MessageBodyMD5>0CC175B9COF1B6A831C399E26977****< /MessageBodyMD5>
</Message>

6.3.1.4. Operation for consuming messages

151 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

You can call this operation to consume messages from a Message Queue for Apache RocketMQ broker.

Request structure

e Request line

GET /topics/TopicName/messages?ns=INSTANCE ID&consumer=GID&tag=taga&numOfMessages=3&waitse
conds=3 HTTP/1.1

The following table describes the parameters in the request line.
Parameter Required Description

The name of the topic from
TopicName Yes which you want to consume
messages.

The ID of the instance. This
parameter is required for new
instances that have
namespaces.

You can check whether your
instance has a namespace on
the Instances page in the
Message Queue for Apache
RocketMQ console. Instances are
classified into default instances
and new instances based on
whether they have namespaces.

ns No o Default instance: A default
instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unigue.

o New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unigue
within the instance.

For more information, see Use
instances.

consumer Yes The ID of the consumer group.

The tag of the message. If you
do not specify a tag, all
messages are pulled. If you
want to specify multiple tags,
separate them with double
vertical bars (||). For example,
you can set this parameter to
TagA||TagB.

tag No

> Document Version: 20220816 152

User Guide- SDK user guide

Alibaba Cloud Message Queue

Parameter Required
numOfMessages Yes
waitseconds No

e Request body (XML format)

None

Response structure

e A message is available for consumption.
o Status line

HTTP/1.1 200

o Response body

Description

The maximum number of
messages that can be
consumed at a time. Valid
values: 1to 16.

The long polling period. If you
do not specify this parameter,
short polling is used. Valid

values: 1 to 30. Unit: seconds.

The following table describes the parameters in the response body.

Parameter Type

Messageld String
MessageBodyMD5 String
MessageBody String
ReceiptHandle String
PublishTime String

Description

The ID of the message.

The MD5 hash value of the
message body.

The content of the message.

The receipt handle that is used
to acknowledge that a
message is consumed. The
receipt handle can be used only
once and must be used before
the period of time specified by
the NextConsumeTime
parameter elapses. The receipt
handles that are obtained each
time the same message is
retried and consumed are
different.

The timestamp that indicates
the time when the message
was sent. Unit: milliseconds.

153

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Parameter Type Description

The timestamp that indicates
the time when the message
was consumed for the first
time. Unit: milliseconds.

FirstConsumeTime String

The timestamp that indicates
the absolute time when the
message was retried. Unit:
milliseconds.

@ Note If a message
that is sent over HTTP fails
to be consumed, Message
Queue for Apache
RocketMQ retries to send
the message based on the
following mechanism:
Unordered messages are
retried every 5 minutes,
and ordered messages are
retried every 1 minute. A
maximum of 288 retries are
allowed for both ordered
and unordered messages.

NextConsumeTime String

The number of retries after the
ConsumedTimes String message failed to be
consumed.

MessageTag String The tag of the message.

Properties String The properties of the message.

The following information describes the key-value pairs in the serialized properties of the
message:

m The key-value pairs are displayed in the following format: keyl:valuel|key2:value2|key3:valu
e3

> Document Version: 20220816 154

User Guide- SDK user guide Alibaba Cloud Message Queue

m The following table describes the parameters that are used to indicate the key-value pairs.
Parameter Type Description
KEYS String The key of the message.

The absolute scheduled time
of a scheduled message. This

__ STARTDELIVERTIME Long value is a UNIX timestamp that
represents the number of
milliseconds.

The relative time that indicates
the time when the first status
check for a transactional
message is performed. Unit:
seconds. Valid values: 10 to

__TransCheckT Long

300.
e No message is available for consumption.
o Status line
HTTP/1.1 404
o Response body
The following table describes the parameters in the response body.
Parameter Type Description

The error code. MessageNotE
xist indicates that no
message is available for

Code String)]
consumption. If this error code
is returned, the response is a
normal response.

Message String The error message returned.

Requestld String The ID of the request.

HostId String The host that sent the request.

Sample responses

e A message is available for consumption.

155 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

<?xml version="1.0" 2>

<Messages xmlns="http://mg.aliyuncs.com/doc/v1">

<Message>
<MessageId>1E057D5E6EAD42A579937046FEL7****</MessageId>
<MessageBodyMD5>0CC175B9COF1B6A831C399E26977****</MessageBodyMD5>
<MessageBody>a</MessageBody>
<ReceiptHandle>1E057D5E6EAD42A579937046FE17****-MTISN* ***</ReceiptHandle>
<PublishTime>1571742900759</PublishTime>
<FirstConsumeTime>1571742902463</FirstConsumeTime>
<NextConsumeTime>1571742922463</NextConsumeTime>
<ConsumedTimes>1</ConsumedTimes>
<MessageTag>Tag</MessageTag>
<Properties>KEYS:MessageKey| BORNHOST:30.5.** . **|</Properties>

</Message>

<Message>
<MessageId>1E057D5E6EAD42A579937046FE17****</MessageId>
<MessageBodyMD5>0CC175B9COF1B6A831C399E26977****</MessageBodyMD5>
<MessageBody>a</MessageBody>
<ReceiptHandle>1E057D5SE6EAD42A579937046FE17****-MTI5N* ***</ReceiptHandle>
<PublishTime>1571742900759</PublishTime>
<FirstConsumeTime>1571742902463</FirstConsumeTime>
<NextConsumeTime>1571742922463</NextConsumeTime>
<ConsumedTimes>1</ConsumedTimes>
<MessageTag>Tag</MessageTag>
<Properties>KEYS:MessageKey| BORNHOST:30.5.**.**|</Properties>

</Message>

</Messages>

o No message is available for consumption.

<?xml version="1.0" 2>

<Error xmlns="http://mg.aliyuncs.com/doc/v1">
<Code>MessageNotExist</Code>
<Message>Message not exist.</Message>
<RequestId>5DAEE3FF463541AD6E0322ER</RequestId>
<HostId>http://123.mgrest.cn-hangzhou.aliyuncs.com</HostId>

</Error>

6.3.1.5. Operation for acknowledging messages

You can call this operation to acknowledge the consumption status of messages.

Request structure

e Request line

DELETE /topics/TopicName/messages?ns=INSTANCE ID&consumer=GID HTTP/1.1

The following table describes the parameters in the request line.

Parameter Required Description

> Document Version: 20220816

156

User Guide- SDK user guide

Alibaba Cloud Message Queue

Parameter

TopicName

ns

consumer

e Request body (XML format)

The following table describes the parameters in the request body.

Parameter

Required

Yes

No

Yes

Required

Description

The name of the topic that
contains the messages you want
to acknowledge.

The ID of the instance. This
parameter is required for new
instances that have
namespaces. You can check
whether your instance has a
namespace on the Instances
page in the Message Queue for
Apache RocketMQ console.
Instances are classified into
default instances and new
instances based on whether
they have namespaces.

o

Default instance: A default
instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unique.

New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unique
within the instance.

For more information about
namespaces for Message Queue
for Apache RocketMQ instances,
see Use instances.

The ID of the consumer group.

Description

157

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Parameter Required Description

The receipt handle that is used
to acknowledge that a message
is consumed. You can call the
message consumption
operation to obtain the receipt
handle. For more information,
see Operation for consuming
messages. The receipt handle
can be used only once and must
be used before the period of
time specified by the
NextConsumeTime parameter
elapses. The receipt handles
that are obtained each time the
same message is retried and
consumed are different.

ReceiptHandle Yes

Response structure
e The request is successful.
o Status line
HTTP/1.1 204
o Response body
None
e The request failed.
o Status line
HTTP/1.1 404
o Response body

For more information, see Sample responses.

Examples
e Sample requests

<?xml version="1.0" encoding="UTF-8"?>

<ReceiptHandles xmlns="http://mg.aliyuncs.com/doc/v1/">
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****—MTI5NT****</ReceiptHandle>
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTISNT****</ReceiptHandle>
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****—MTI5NT****</ReceiptHandle>
</ReceiptHandles>

e Sample responses

> Document Version: 20220816 158

User Guide- SDK user guide Alibaba Cloud Message Queue

o The request body does not contain a handle.

<?xml version="1.0" ?>

<Error xmlns="http://mg.aliyuncs.com/doc/v1">
<Code>MissingReceiptHandle</Code>
<Message>ReceiptHandle is required.</Message>
<RequestId>5DAEF2B9463541AD6E04490F</RequestId>
<HostId>http://123.mgrest.cn-hangzhou.aliyuncs.com</HostId>

</Error>

o The handle of the request is incorrect. The handle is adfadfadf

<?xml version="1.0" ?>
<Errors xmlns="http://mg.aliyuncs.com/doc/v1">
<Error>
<ErrorCode>ReceiptHandleError</ErrorCode>
<ErrorMessage>The receipt handle you provide is not valid.</ErrorMessage>
<ReceiptHandle>adfadfadf</ReceiptHandle>
</Error>
</Errors>

o The handle of the request has expired. This indicates that the handle is not used before the period
of time specified by Next ConsumeTime elapses.

<?xml version="1.0" ?>
<Errors xmlns="http://mg.aliyuncs.com/doc/v1">
<Error>
<ErrorCode>MessageNotExist</ErrorCode>
<ErrorMessage>The receipt handle you provided has expired.</ErrorMessage>
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTISNT****</ReceiptHandle>
</Error>
</Errors>

6.3.2. Java SDK

6.3.2.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for Java to
send and consume messages.

Environment requirements

e Java Development Kit (JDK) 1.6 or later is installed. For more information, see Java Downloads.

e Maven is installed. For more information, see Downloading Apache Maven 3.8.6.

Install the SDK for Java

Use Maven to import dependencies and add the following dependency to the pom.xmifile:

159 > Document Version: 20220816

https://www.oracle.com/java/technologies/javase-downloads.html?spm=a2c4g.11186623.2.4.26e8598ax6300E
https://maven.apache.org/download.cgi?spm=a2c4g.11186623.2.5.26e8598ax6300E&file=download.cgi

Alibaba Cloud Message Queue User Guide- SDK user guide

<dependency>
<groupId>com.aliyun.mg</groupld>
<artifactId>mg-http-sdk</artifactId>
<! -- Specify the version number of the SDK for Java. -->
<version>X.X.X</version>
<classifier>jar-with-dependencies</classifier>

</dependency>

@ Note Formore information about the versions of the SDK for Java, see Overview.

6.3.2.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK forJava to send and consume normal messages.

Prerequisites
The following operations are performed:

e Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQProducer;
import com.aliyun.mg.http.model.TopicMessage;
import java.util.Date;
public class Producer {
public static void main (String[] args) {
MQClient mgClient = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
"${HTTP_ENDPOINT}",
// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
"${ACCESS_KEY}",
// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
WS SECRET KEY}"
)i
// The topic to which you want to send messages. The topic is created in the Messag

e Queue for Apache RocketMQ console.

> Document Version: 20220816 160

User Guide- SDK user guide Alibaba Cloud Message Queue

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

// Obtain the producer that sends messages to the topic.

MQProducer producer;

if (instanceId != null && instanceId != "") {

producer = mgClient.getProducer (instanceld, topic):;
} else {
producer = mgClient.getProducer (topic);
} try |
// Cyclically send four messages.
for (int 1 = 0; i < 4; i++) {
TopicMessage pubMsg; // The normal message.
pubMsg = new TopicMessage (
// The content of the message.
"hello mg!".getBytes(),
// The tag of the message.
npn
)7
// The custom property of the message.
pubMsg.getProperties () .put ("a", String.valueOf(i)):;
// The key of the message.
pubMsg.setMessageKey ("MessageKey") ;
// Send the message in synchronous mode. If no exception is thrown, the message
is sent.
TopicMessage pubResultMsg = producer.publishMessage (pubMsg) ;
// Send the message in synchronous mode. If no exception is thrown, the message
is sent.
System.out.println (new Date() + " Send mg message success. Topic is:" + topic +
", msgld is: " + pubResultMsg.getMessageld()
+ ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5 ()) ;
}

} catch (Throwable e) {

// Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.

System.out.println(new Date() + " Send mg message failed. Topic is:" + topic);

e.printStackTrace () ;

}

mgClient.close () ;

Consume normal messages

The following sample code provides an example on how to consume normal messages:

import com.aliyun.mg.http.MQClient;

161 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
public static void main(String[] args) {

MQClient mgClient = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)7

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

final String groupId = "${GROUP_ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

final MQConsumer consumer;

if (instanceId != null && instanceId != "") {

consumer = mgClient.getConsumer (instancelId, topic, groupId, null);
} else {
consumer = mgClient.getConsumer (topic, groupld) ;

}

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

do {

List<Message> messages = null;
try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

messages = consumer.consumeMessage (

3,// The maximum number of messages that can be consumed at a time.

In this example, the value is set to 3. The maximum value that you can specify is 16.

> Document Version: 20220816 162

User Guide- SDK user guide Alibaba Cloud Message Queue

3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.

)7
} catch (Throwable e) {

e.printStackTrace () ;

try {

Thread.sleep (2000) ;
} catch (InterruptedException el) {

el.printStackTrace();

}
// No messages in the topic are available for consumption.

if (messages == null || messages.isEmpty()) {
System.out.println(Thread.currentThread() .getName () + ": no new message, CO
ntinue!");
continue;

}
// Specify the message consumption logic.
for (Message message : messages) {
System.out.println ("Receive message: " + message);
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
{
List<String> handles = new ArrayList<String>();
for (Message message : messages) {
handles.add (message.getReceiptHandle ()) ;
}
try {
consumer.ackMessage (handles) ;
} catch (Throwable e) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;
System.out.println ("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
if (errors.getErrorMessages() != null) {
for (String errorHandle :errors.getErrorMessages () .keySet()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (err
orHandle) .getErrorMessage()) ;
}
}
continue;
}

e.printStackTrace () ;

}
} while (true);

163 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

6.3.2.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Java to send and consume
ordered messages.

Background information

Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK forJava. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQProducer;
import com.aliyun.mg.http.model.TopicMessage;
import java.util.Date;
public class OrderProducer ({
public static void main(String[] args) {
MQOClient mgClient = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
"${HTTP ENDPOINT}",
// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
"${ACCESS KEY}",
// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
"S{SFCRET KEY}I"

> Document Version: 20220816 164

User Guide- SDK user guide Alibaba Cloud Message Queue

) i

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

// Obtain the producer that sends messages to the topic.

MQProducer producer;

if (instancelId != null && instanceId != "") {

producer = mgClient.getProducer (instanceld, topic);
} else {
producer = mgClient.getProducer (topic);
}
try {
// Cyclically send eight messages.
for (int i = 0; 1 < 8; 1i++) {
TopicMessage pubMsg = new TopicMessage (
// The content of the message.
"hello mg!".getBytes(),
// The tag of the message.
npm
)7
// The shard key that is used to distribute ordered messages to a specific
partition. Shard keys can be used to identify different partitions. A shard key is differen
t from a message key.
pubMsg.setShardingKey (String.valueOf (1 % 2));
pubMsg.getProperties () .put ("a", String.valueOf(i)):;
// Send the message in synchronous mode. If no exception is thrown, the mes
sage is sent.
TopicMessage pubResultMsg = producer.publishMessage (pubMsg) ;
// Send the message in synchronous mode. If no exception is thrown, the mes
sage is sent.
System.out.println(new Date() + " Send mg message success. Topic is:" + top
ic + ", msgld is: " + pubResultMsg.getMessageId()
+ ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5 ()) ;
}

} catch (Throwable e) {

// Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.

System.out.println(new Date() + " Send mg message failed. Topic is:" + topic);

e.printStackTrace () ;

}

mgClient.close();

165 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Consume ordered messages

The following sample code provides an example on how to consume ordered messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQConsumer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class OrderConsumer {
public static void main(String[] args) {

MQClient mgClient = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)

// The topic from which you want to consume messages. The topic i1s created in the M
essage Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

final String groupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

final MQConsumer consumer;

if (instanceId != null && instanceId != "") {

consumer = mgClient.getConsumer (instanceld, topic, groupld, null);
} else {
consumer = mgClient.getConsumer (topic, groupld) ;

}

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

do {

List<Message> messages = null;
try {
// Consume messages in long polling mode. The consumer may pull partitional
ly ordered messages from multiple partitions. The consumer consumes messages from the same

partition in the order in which the messages are sent.

/B D IRy [N I . D R B N g Ry (N I 00 I ==

> Document Version: 20220816 166

User Guide- SDK user guide Alibaba Cloud Message Queue

// A Ccollsulllerl pulls pdriliLlolldlly ordered liessdyes LIOoll d pdrililoll. 11 Lle
broker does not receive an acknowledgment (ACK) for a message after the message is consumed
, the consumer consumes the message again.

// The consumer can consume the next batch of messages from a partition onl
y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

messages = consumer.consumeMessageOrderly (

3, // The maximum number of messages that can be consumed at a tim
e. In this example, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this
example, the value is set to 3. The maximum value that you can specify is 30.
)7
} catch (Throwable e) {
e.printStackTrace () ;
try {
Thread.sleep (2000) ;
} catch (InterruptedException el) {

el.printStackTrace();

}

// No messages in the topic are available for consumption.

if (messages == null || messages.isEmpty()) {
System.out.println (Thread.currentThread() .getName () + ": no new message, CO
ntinue!");
continue;

}

// Specify the message consumption logic.

System.out.println ("Receive " + messages.size() + " messages:");

for (Message message : messages) {

System.out.println (message) ;
System.out.println ("ShardingKey: " + message.getShardingKey () + ", a:" + me
ssage.getProperties () .get ("a"));

}

// If the broker does not receive an ACK for a message from the consumer before
the timeout period for a message retry elapses, the broker delivers the message for consump
tion again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

{

List<String> handles = new ArrayList<String>();
for (Message message : messages) {
handles.add (message.getReceiptHandle ()) ;
}
try {
consumer.ackMessage (handles) ;
} catch (Throwable e) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;

Svstem.ont .orintln ("Ack messaace fail. reanestTd is:" + errors.aetRe

167 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

e eSS S e S R S i

questId() + ", fail handles:");

B U U

if (errors.getErrorMessages() != null) {
for (String errorHandle :errors.getErrorMessages () .keySet()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:"

+ errors.getErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (err

orHandle) .getErrorMessage()) ;
}
}

continue;

}

e.printStackTrace () ;

}

} while (true);

6.3.2.4. Send and consume scheduled messages and

delayed messages

This topic provides sample code to show how to use the HTTP client SDK for Java to send and consume
scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites
The following operations are performed:
e Install the SDK for Java. For more information about the message routing feature, see Prepare the

environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

> Document Version: 20220816 168

User Guide- SDK user guide Alibaba Cloud Message Queue

Send scheduled messages or delayed messages

The following sample code provides an example on how to send scheduled messages or delayed
messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQProducer;
import com.aliyun.mg.http.model.TopicMessage;
import java.util.Date;
public class Producer {
public static void main(String[] args) {

MQClient mgClient = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

// Obtain the producer that sends messages to the topic.

MQProducer producer;

if (instanceId != null && instanceId != "") {

producer = mgClient.getProducer (instancelId, topic);
} else {
producer = mgClient.getProducer (topic) ;
}
try {
// Cyclically send four messages.
for (int 1 = 0; i < 4; i++) {
TopicMessage pubMsg;
pubMsg = new TopicMessage (
// The content of the message.
"hello mg!".getBytes(),
// The tag of the message.
npn
)7
// The custom property of the message.

T - T ~ - N IR

169 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

PULMSg.geTrroperties () .put ("a”, STring.valueul (1));

// The key of the message.

pubMsg.setMessageKey ("MessageKey") ;

// The period of time after which the broker delivers the message. In this
example, when the broker receives a message, the broker waits for 10 seconds before it deli
vers the message to the consumer. Set this parameter to a timestamp in milliseconds.

// If the producer sends a scheduled message, set the parameter to the tim
e interval between the scheduled point in time and the current point in time.

pubMsg.setStartDeliverTime (System.currentTimeMillis () + 10 * 1000);

// Send the message in synchronous mode. If no exception is thrown, the messag
e is sent.
TopicMessage pubResultMsg = producer.publishMessage (pubMsg) ;
// Send the message in synchronous mode. If no exception is thrown, the messag
e is sent.
System.out.println (new Date() + " Send mg message success. Topic is:" + topic
+ ", msgId is: " + pubResultMsg.getMessageld ()
+ ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5 ()) ;
}
} catch (Throwable e) {
// Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
System.out.println(new Date() + " Send mg message failed. Topic is:" + topic);
e.printStackTrace () ;
}

mgClient.close () ;

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQConsumer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
public static void main(String[] args) {
MQClient mgClient = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
"${HTTP_ ENDPOINT}",
// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
"${ACCESS _KEY}",
// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
"${SECRET KEY}"

> Document Version: 20220816 170

User Guide- SDK user guide Alibaba Cloud Message Queue

)i

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

final String groupId = "${GROUP_ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

final MQConsumer consumer;

if (instancelId != null && instanceId != "") {

consumer = mgClient.getConsumer (instancelId, topic, groupId, null);
} else {
consumer = mgClient.getConsumer (topic, groupld) ;

}

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

do {

List<Message> messages = null;
try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

messages = consumer.consumeMessage (

3,// The maximum number of messages that can be consumed at a time.
In this example, the value is set to 3. The maximum value that you can specify is 16.
3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.
)7
} catch (Throwable e) {
e.printStackTrace () ;
try {
Thread.sleep (2000) ;
} catch (InterruptedException el) {
el.printStackTrace () ;

}

// No messages in the topic are available for consumption.

if (messages == null || messages.isEmpty()) {
System.out.println (Thread.currentThread() .getName () + ": no new message, cCO
ntinue!");
continue;

}
// Specify the message consumption logic.

for (Message message : messages) {

~ . ' oA sae

171 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

SysSTem.out.printin("Kecelve message: ~ + message);
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
{
List<String> handles = new ArrayList<String>();
for (Message message : messages) {
handles.add (message.getReceiptHandle ()) ;
}
try {
consumer.ackMessage (handles) ;
} catch (Throwable e) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;
System.out.println ("Ack message fail, requestId is:" + errors.getRe

questId() + ", fail handles:");

if (errors.getErrorMessages() != null) {
for (String errorHandle :errors.getErrorMessages () .keySet()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:"

+ errors.getErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (err

orHandle) .getErrorMessage()) ;
}
}

continue;

}

e.printStackTrace () ;

}

} while (true);

6.3.2.5. Send and consume transactional messages

Message Queue for Apache Rocket MQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
Javato send and consume transactional messages.

Background information

> Document Version: 20220816 172

User Guide- SDK user guide Alibaba Cloud Message Queue

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Ei(ecute 2. Half message Commit: Deliver
t‘r)::saction sent successfully the message
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

Prerequisites

The following operations are performed:

e Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

e C(Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

import com.aliyun.mqg.http.MQClient;
import com.aliyun.mg.http.MQTransProducer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import com.aliyun.mg.http.model.TopicMessage;
import java.util.List;
public class TransProducer ({
static void processCommitRollError (Throwable e) {
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;
System.out.println ("Commit/Roll transaction error, requestId is:" + errors.getR
equestId() + ", fail handles:");
if (errors.getErrorMessages () != null) {
for (String errorHandle :errors.getErrorMessages () .keySet()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:" + errors.ge
tErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (errorHandle) .ge
tErrorMessage ()) ;

}

}
public static void main(String[] args) throws Throwable {
MQClient mgClient = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo

int. loa on to the Messaae Onene for Anache RocketMO console. Tn the left-side naviaation o

173 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

e B R R R e R T S S s I S s B B R s

ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.

"Sq SECRET KEY}"

) i

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceId = "${INSTANCE ID}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co

nsole.

final String groupId = "${GROUP_ID}";

final MQTransProducer mgTransProducer = mgClient.getTransProducer (instanceld, topic
, groupld);

for (int 1 = 0; i < 4; i++) {

TopicMessage topicMessage = new TopicMessage () ;

topicMessage.setMessageBody ("trans msg") ;

topicMessage.setMessageTag ("a") ;

topicMessage.setMessageKey (String.valueOf (System.currentTimeMillis ()));

// The time interval between the time when the transactional message is sent an
d the start time of the first transaction status check. Unit: seconds. Valid values: 10 to
300.

// If the message is not committed or rolled back after the first transaction s
tatus check is performed, the broker initiates a request to check the status of the local t
ransaction at an interval of 10 seconds within the next 24 hours.

topicMessage.setTransCheckImmunityTime (10) ;

topicMessage.getProperties () .put ("a", String.valueOf (i));

TopicMessage pubResultMsg = null;

pubResultMsg = mgTransProducer.publishMessage (topicMessage) ;

System.out.println ("Send---->msgId is: " + pubResultMsg.getMessageId ()

+ ", bodyMD5 is: " + pubResultMsg.getMessageBodyMDS5 ()
+ ", Handle: " + pubResultMsg.getReceiptHandle ()
) i
if (pubResultMsg != null && pubResultMsg.getReceiptHandle () != null) {
i€ (4 = 0) {

// After the producer sends the transactional message, the broker obtai
ns the handle of the half message that corresponds to the transactional message and commits
or rolls back the transactional message based on the status of the handle.

try {

mgTransProducer.commit (pubResultMsg.getReceiptHandle ()) ;

System.out.println(String.format ("MessagelId:%s, commit", pubResultM

> Document Version: 20220816 174

User Guide- SDK user guide Alibaba Cloud Message Queue

sg.getMessageId()));
} catch (Throwable e) {

// If the transactional message is not committed or rolled back bef
ore the period of time specified by the TransCheckImmunityTime parameter for the handle of
the transactional message elapses, the commit or rollback operation fails.

if (e instanceof AckMessageException) {

processCommitRollError (e) ;

continue;

}
// The client needs a thread or a process to process unacknowledged transactional m
essages.
// Start a thread to process unacknowledged transactional messages.
Thread t = new Thread (new Runnable () {
public void run() {
int count = 0;
while (true) {
try {
if (count == 3) {
break;
}
List<Message> messages = mgTransProducer.consumeHalfMessage (3, 3);
if (messages == null) {
System.out.println ("No Half message!");
continue;
}
System.out.println(String.format ("Half---->MessageId:%s,Properties:
%s,Body:%s,Latency:%d",
messages.get (0) .getMessageId(),
messages.get (0) .getProperties(),
messages.get (0) .getMessageBodyString (),
System.currentTimeMillis () - messages.get (0) .getPublishTime

for (Message message : messages) {
try {

if (Integer.valueOf (message.getProperties().get("a")) == 1)

// Confirm to commit the transactional message.
mgTransProducer.commit (message.getReceiptHandle ()) ;
count++;
System.out.println (String. format ("MessageId:%s, commit"
, message.getMessagelId())):;
} else if (Integer.valueOf (message.getProperties().get ("a")

&& message.getConsumedTimes () > 1) {
// Confirm to commit the transactional message.
mgTransProducer.commit (message.getReceiptHandle ()) ;
count++;
System.out.println (String. format ("MessageId:%s, commit"
, message.getMessageId())):;
} else if (Integer.valueOf (message.getProperties().get ("a")

175 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

// Confirm to roll back the transactional message.
mgTransProducer.rollback (message.getReceiptHandle ()) ;
count++;
System.out.println (String. format ("MessageId:%s, rollbac
k", message.getMessageld()));
} else {

// Do not perform operations. Check the status next tim

System.out.println (String. format ("MessageId:%s, unknown
", message.getMessageld()));
}
} catch (Throwable e) {

// If the transactional message i1s not committed or rolled
back before the timeout period specified by the TransCheckImmunityTime parameter for the ha
ndle of the transactional message elapses or before the timeout period specified for the ha
ndle of consumeHalfMessage elapses, the commit or rollback operation fails. In this example
, the timeout period for the handle of consumeHalfMessage is 10 seconds.

processCommitRollError (e) ;

}
} catch (Throwable e) {
System.out.println(e.getMessage()) ;

}) 7

t.start();
t.join();
mgClient.close();

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

import com.aliyun.mg.http.MQClient;
import com.aliyun.mg.http.MQConsumer;
import com.aliyun.mg.http.common.AckMessageException;
import com.aliyun.mg.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
public static void main(String[] args) {
MQOClient mgClient = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
"${HTTP_ENDPOINT}",
// The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
"${ACCESS_KEY}",

> Document Version: 20220816 176

User Guide- SDK user guide Alibaba Cloud Message Queue

// The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
"${SECRET_KEY}"

)i

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.

final String topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

final String groupId = "${GROUP_ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

final String instanceld = "${INSTANCE ID}";

final MQConsumer consumer;

if (instancelId != null && instancelId != "") {

consumer = mgClient.getConsumer (instancelId, topic, groupld, null);
} else {

consumer = mgClient.getConsumer (topic, groupld) ;

}
// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
do {
List<Message> messages = null;
try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

messages = consumer.consumeMessage (

3,// The maximum number of messages that can be consumed at a time.
In this example, the value is set to 3. The maximum value that you can specify is 16.
3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.
)7
} catch (Throwable e) {
e.printStackTrace () ;
try {
Thread.sleep (2000) ;
} catch (InterruptedException el) {
el.printStackTrace() ;

}

// No messages in the topic are available for consumption.

if (messages == null || messages.isEmpty()) {
System.out.println(Thread.currentThread() .getName () + ": no new message, CO
ntinue!");
continue;

177 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

}
// Specify the message consumption logic.
for (Message message : messages) {
System.out.println ("Receive message: " + message);
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
{
List<String> handles = new ArrayList<String>();
for (Message message : messages) {
handles.add (message.getReceiptHandle ()) ;
}
try {
consumer.ackMessage (handles) ;
} catch (Throwable e) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
if (e instanceof AckMessageException) {
AckMessageException errors = (AckMessageException) e;
System.out.println ("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
if (errors.getErrorMessages() != null) {
for (String errorHandle :errors.getErrorMessages () .keySet ()) {
System.out.println ("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages () .get (errorHandle) .getErrorCode ()
+ ", ErrorMsg:" + errors.getErrorMessages () .get (err
orHandle) .getErrorMessage ()) ;
}
}
continue;
}

e.printStackTrace () ;

}

} while (true);

6.3.3. Go SDK

6.3.3.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for Go to send
and consume messages.

Environment requirements

Go is installed. For more information, see Installing Go from source.

> Document Version: 20220816 178

https://golang.org/doc/install/source?spm=a2c4g.11186623.2.4.509c3c4eTDXQo2

User Guide- SDK user guide Alibaba Cloud Message Queue

After Go is installed, youcanrunthe go version command to checkthe version of Go that you
installed.

Install the SDK for Go

1. Runthe following command to enable Go Modules: For more information about Go Modules, see
Go Modules Reference.

go env -w GO111MODULE=on

2. Runthe following command to configure a Go Modules proxy:

go env -w GOPROXY=https://goproxy.cn,direct

3. Runthe following command to initialize Go Modules and generate the go.modfile:

go mod init

4. Run the following command to install the SDK for Go:

go get github.com/aliyunmg/mg-http-go-sdk

6.3.3.2. Send and consume normal messages

Normal messages are messages that have no special feat ures in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for Go to send and consume normal messages.

Prerequisites
The following operations are performed:

e Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

179 > Document Version: 20220816

https://go.dev/ref/mod

Alibaba Cloud Message Queue User Guide- SDK user guide

package main
import (

"fmt"

"time"

"strconv"

"github.com/aliyunmg/mg-http-go-sdk"

)
func main () {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the console. In the left-side navigation pane, click Instances. On the Instances page,
select the name of your instance. Then, view the HTTP endpoint on the Network Management ta
b.

endpoint := "${HTTP_ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "${SECRET KEY}"

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.

topic := "S{TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth

er your instance has a namespace on the Instances page in the RocketMQ console.

instanceId := "S${INSTANCE ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgProducer := client.GetProducer (instanceld, topic)

// Cyclically send four messages.
for i := 0; 1 < 4; i++ {
var msg mg http sdk.PublishMessageRequest
msg = mg_http sdk.PublishMessageRequest {
MessageBody: "hello mg!", // The content of the message.
MessageTag: "", // The tag of the message.
Properties: map[string]string{}, // The properties of the message.
}
// The key of the message.
msg.MessageKey = "MessageKey"
// The custom property of the message.
msg.Properties["a"] = strconv.Itoa (i)
ret, err := mgProducer.PublishMessage (msg)
if err != nil {
fmt.Println (err)
return
} else {
fmt.Printf ("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.Messageld, ret.
MessageBodyMD5)
}
time.Sleep (time.Duration (100) * time.Millisecond)

> Document Version: 20220816 180

User Guide- SDK user guide

Consume normal messages

The following sample code provides an example on how to consume normal messages:

package main
import (

"fmt"

"github.com/gogap/errors"

"strings"

"time"

"github.com/aliyunmg/mg-http-go-sdk"
)
func main () {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.

endpoint := "${ HTTP ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "S${SECRET KEY}"

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.

topic := "S${TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

instanceld := "S${INSTANCE ID}"

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

e.
groupId := "${GROUP ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgConsumer := client.GetConsumer (instanceld, topic, groupId, "")
for {
endChan := make (chan int)
respChan := make (chan mg http sdk.ConsumeMessageResponse)
errChan := make (chan error)

go func() {
select {
case resp := <-respChan:
{
// Specify the message consumption logic.

var handles []string

fmt.Printf ("Consume %d messages---->\n", len (resp.Messages))
for , v := range resp.Messages {

handles = append(handles, v.ReceiptHandle)

=0 i Th. 0.~ TR R . N | ao_ T W e VI

181

Alibaba Cloud Message Queue

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Llilt.prinel (r\LMessdyely: o5, FKubllsiilllle: -4, Messdyeldy: oS\l T

"\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d

\n"+
"\tBody: %s\n"+
"\tProps: %s\n",
v.Messageld, v.PublishTime, v.MessageTag, v.ConsumedTimes,
v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)

}

// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.

ackerr := mgConsumer.AckMessage (handles)

if ackerr != nil {

// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
fmt.Println (ackerr)
if errAckItems, ok := ackerr. (errors.ErrCode) .Context () ["Detail”]. (
[Img http sdk.ErrAckItem); ok {
for , errAcklItem := range errAckItems ({
fmt.Printf ("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsg)
}
} else {
fmt.Println("ack err =", ackerr)
}
time.Sleep (time.Duration(3) * time.Second)
} else {
fmt.Printf ("Ack ---->\n\t%s\n", handles)
}
endChan <- 1
}
case err := <-errChan:
{

// No messages in the topic are available for consumption.

if strings.Contains(err. (errors.ErrCode) .Error (), "MessageNotExist") {

fmt.Println ("\nNo new message, continue!")

} else {

fmt.Println (err)
time.Sleep (time.Duration(3) * time.Second)
}
endChan <- 1
}
case <-time.After (35 * time.Second) :
{
fmt.Println ("Timeout of consumer message ??")
endChan <- 1

1O
// In long polling mode, the default network timeout period is 35 seconds.

// Tn lona pollina mode. if no messaade in the tonic is available for consimption. t

> Document Version: 20220816 182

User Guide- SDK user guide Alibaba Cloud Message Queue

L TS i i e e e i G =

he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.
mgConsumer .ConsumeMessage (respChan, errChan,

3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.

3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.

)
<-endChan

6.3.3.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Go to send and consume
ordered messages.

Background information
Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

package main
import (
" fmt "w
" tlme "
"strconv"

"github.com/aliyunmg/mg-http-go-sdk"

183 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

func main ()

{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on

to the Message Queue for Apache RocketMQ console.

nstances. On the Instances page,
oint on the Network Management tab.
endpoint "${HTTP_ENDPOINT}"
// The AccessKey ID that is used
y ID in the Apsara Uni-manager Operat
:= "${ACCESS_KEY}"

accessKey

select the name of your instance.

click I
Then, view the HTTP endp

In the left-side navigation pane,

for identity verification. You can obtain the AccessKe

ions Console.

// The AccessKey secret that is used for identity verification. You can obtain the Acce

ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "${SECRET KEY}"

// The topic to which you want to
eue for Apache RocketMQ console.
"${TOPIC}"

topic

// The ID of the instance to which the topic belongs. The instance

send messages. The topic is created in the Message Qu

is created in the Me

ssage Queue for Apache RocketMQ console.

// If the instance has a namespace,

s not have a namespace,

er your instance has a namespace on the Instances page in the RocketMQ

instancelId := "S${INSTANCE ID}"

client

mgProducer

// Cyclically send eight messages

set the instance ID to null or an empty string.

specify the ID of the instance. If the instance doe
You can check wheth

console.

mg _http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")

client.GetProducer (instancelId, topic)

// The content of the message.

// The tag of the message.

for i := 0; i < 8; i++ {
msg := mg http sdk.PublishMessageRequest {
MessageBody: "hello mg!",
MessageTag: "",
Properties: mapl[string]lstring{},

}

// The key of the message.

msg.MessageKey = "MessageKey"

// The custom property of the

msg.Properties["a"] = strconv
// The shard key that is used

n. Shard keys can be used to identify

message key.

msg.ShardingKey = strconv.Itoa (i

ret, err
= nil {

fmt.Println(err)

if err

// The properties of the message.

message.
.Itoa (i)
to distribute ordered messages to a specific partitio

different partitions. A shard key is different from a

3
°

)

mgProducer.PublishMessage (msg)

return
} else {
fmt.Printf ("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.Messageld, ret.
MessageBodyMD5)

}

time.Sleep (time.Duration (100)

Consume ordered messages

* time.Millisecond)

The following sample code provides an example on how to consume ordered messages:

> Document Version: 20220816

184

User Guide- SDK user guide Alibaba Cloud Message Queue

pack

impo

)

func

to t
nsta

oint

y ID

ssKe

ge Q

ssag

S no

age main

rt (

"fmt"
"github.com/gogap/errors"
"strings"

"time"

"github.com/aliyunmg/mg-http-go-sdk"

main () {
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nces. On the Instances page, select the name of your instance. Then, view the HTTP endp
on the Network Management tab.
endpoint := "${HTTP_ENDPOINT}"
// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
in the Apsara Uni-manager Operations Console.
accessKey := "${ACCESS KEY}"
// The AccessKey secret that is used for identity verification. You can obtain the Acce
y secret in the Apsara Uni-manager Operations Console.
secretKey := "${SECRET KEY}"
// The topic from which you want to consume messages. The topic is created in the Messa
ueue for Apache RocketMQ console.
topic := "S{TOPIC}"
// The ID of the instance to which the topic belongs. The instance is created in the Me
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance doe

t have a namespace, set the instance ID to null or an empty string. You can check wheth

er your instance has a namespace on the Instances page in the RocketMQ console.

\n"+

instancelId := "S${INSTANCE ID}"
// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

groupId := "${GROUP_ ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgConsumer := client.GetConsumer (instanceld, topic, groupId, "")
for {
endChan := make (chan int)
respChan := make (chan mg http sdk.ConsumeMessageResponse)
errChan := make (chan error)

go func() {
select {
case resp := <-respChan:
{
// Specify the message consumption logic.
var handles []string
fmt.Printf ("Consume %d messages---->\n", len (resp.Messages))
for , v := range resp.Messages {
handles = append(handles, v.ReceiptHandle)
fmt.Printf ("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+

"\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d

"\tBody: %s\n"+

"\tProps: %s\n"+

"\tShardingKey: %s\n",

v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,

185

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies, v.ShardingKey)

}

// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.

ackerr := mgConsumer.AckMessage (handles)

if ackerr != nil {

// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
fmt.Println (ackerr)
if errAckItems, ok := ackerr. (errors.ErrCode) .Context () ["Detail"]. (
[Img http sdk.ErrAckItem); ok {
for , errAcklItem := range errAckItems {
fmt.Printf ("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.E
rrorMsq)
}
} else {
fmt.Println ("ack err =", ackerr)
}
time.Sleep (time.Duration (3) * time.Second)
} else {
fmt.Printf ("Ack -—--->\n\t%s\n", handles)
}
endChan <- 1
}
case err := <-errChan:
{

// No messages in the topic are available for consumption.

if strings.Contains(err. (errors.ErrCode) .Error (), "MessageNotExist") {

fmt.Println ("\nNo new message, continue!")

} else {

fmt.Println (err)
time.Sleep (time.Duration(3) * time.Second)
}
endChan <- 1
}
case <-time.After (35 * time.Second) :
{
fmt.Println ("Timeout of consumer message ??")
endChan <- 1

O
// The consumer may pull partitionally ordered messages from multiple parti
tions. The consumer consumes the messages in each partition in the order in which the messa
ges are sent.
// A consumer pulls partitionally ordered messages from a partition. If the
broker does not receive an ACK for a message after the message is consumed, the consumer co
nsumes the message again.

// The consumer can consume the next batch of messages from a partition onl

> Document Version: 20220816 186

User Guide- SDK user guide Alibaba Cloud Message Queue

y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.
// In long polling mode, the default network timeout period is 35 seconds.
// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
mgConsumer .ConsumeMessageOrderly (respChan, errChan,
3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.

)
<-endChan

6.3.3.4. Send and consume scheduled messages and

delayed messages

This topic provides sample code to show how to use the HTTP client SDK for Go to send and consume
scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites

The following operations are performed:

e Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

187 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

The following sample code provides an example on how to send scheduled messages or delayed
messages:

package main
import (

"fmt"

"time"

"strconv"

"github.com/aliyunmg/mg-http-go-sdk"
)
func main () {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.

endpoint := "${HTTP_ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "S${SECRET KEY}"

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.

topic := "${TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth

er your instance has a namespace on the Instances page in the RocketMQ console.

instancelId := "${INSTANCE ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgProducer := client.GetProducer (instanceld, topic)

// Cyclically send four messages.
for i := 0; 1 < 4; i++ {
var msg mg http sdk.PublishMessageRequest

msg = mg_http sdk.PublishMessageRequest {

MessageBody: "hello mg!", // The content of the message.

MessageTag: "", // The tag of the message.

Properties: map[string]lstring{}, // The properties of the message.

}

// The key of the message.

msg.MessageKey = "MessageKey"

// The custom property of the message.

msg.Properties["a"] = strconv.Itoa (i)

// The period of time after which the broker delivers the message. In this exam
ple, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.

// If the producer sends a scheduled message, set the parameter to the time int
erval between the scheduled point in time and the current point in time.

msg.StartDeliverTime = time.Now () .UTC() .Unix () * 1000 + 10 * 1000

ret, err := mgProducer.PublishMessage (msg)
if err !'= nil {

fmt.Println (err)

> Document Version: 20220816 188

User Guide- SDK user guide Alibaba Cloud Message Queue

return
} else {
fmt.Printf ("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.Messageld, ret.
MessageBodyMD5)

}

time.Sleep (time.Duration (100) * time.Millisecond)

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

package main
import (

"fmt"

"github.com/gogap/errors"

"strings"

"time"

"github.com/aliyunmg/mg-http-go-sdk"
)
func main() {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.

endpoint := "${HTTP_ ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "${SECRET KEY}"

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.

topic := "${TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

instancelId := "S${INSTANCE ID}"

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

e.
groupId := "${GROUP_ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgConsumer := client.GetConsumer (instanceld, topic, groupId, "")
for {
endChan := make (chan int)
respChan := make (chan mg http sdk.ConsumeMessageResponse)

189 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

errChan := make (chan error)
go func() {
select {
case resp := <-respChan:
{
// Specify the message consumption logic.

var handles []string

fmt.Printf ("Consume %d messages---->\n", len(resp.Messages))
for , v := range resp.Messages {

handles = append(handles, v.ReceiptHandle)
fmt.Printf ("\tMessagelID: %s, PublishTime: %d, MessageTag: %$s\n"+

"\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d

\n"+
"\tBody: %s\n"+
"\tProps: %s\n",
v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)

}

// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.

ackerr := mgConsumer.AckMessage (handles)

if ackerr != nil {

// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.

fmt.Println (ackerr)

if errAckItems, ok := ackerr. (errors.ErrCode) .Context () ["Detail™]. (
[Img http sdk.ErrAckItem); ok {
for , errAckItem := range errAckItems ({

fmt.Printf ("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsqg)
}
} else {
fmt.Println ("ack err =", ackerr)
}
time.Sleep (time.Duration(3) * time.Second)
} else {
fmt.Printf ("Ack ---->\n\t%s\n", handles)
}
endChan <- 1
}
case err := <-errChan:
{
// No messages in the topic are available for consumption.
if strings.Contains (err. (errors.ErrCode) .Error (), "MessageNotExist") {
fmt.Println ("\nNo new message, continue!")
} else {
fmt.Println(err)

time.Sleep (time.Duration(3) * time.Second)

> Document Version: 20220816 190

User Guide- SDK user guide Alibaba Cloud Message Queue

endChan <- 1
}
case <-time.After (35 * time.Second) :
{
fmt.Println ("Timeout of consumer message ??")
endChan <- 1

O

// In long polling mode, the default network timeout period is 35 seconds.

// In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.

mgConsumer .ConsumeMessage (respChan, errChan,

3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
<-endChan

6.3.3.5. Send and consume transactional messages

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
Go to send and consume transactional messages.

Background information

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Ei(ecute 2. Half message Commit: Deliver
ocal sent successfully the message
transaction
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

Prerequisites
The following operations are performed:

e Install the SDK for Go. For more information about the message routing feature, see Prepare the

191 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache Rocket MQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

package main
import (
"fmt"
"github.com/gogap/errors"
"strconv"
"strings"
"time"
"github.com/aliyunmg/mg-http-go-sdk"
)
var loopCount = 0

func ProcessError (err error) {

// If a transactional message is not committed or rolled back before the timeout period
specified by the TransCheckImmunityTime parameter for the handle of the transactional messa
ge elapses or before the timeout period specified for the handle of consumeHalfMessage elap

ses, the commit or rollback operation fails. In this example, the timeout period for the ha

ndle of consumeHalfMessage is 10 seconds.
if err == nil {
return

}

fmt.Println(err)

for , errAckltem := range err. (errors.ErrCode) .Context () ["Detail"]. ([Img http sdk.ErrA

ckItem) {
fmt.Printf ("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",

errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckltem.ErrorMsg)

}
func ConsumeHalfMsg (mgTransProducer *mg http sdk.MQTransProducer) {
for {
if loopCount >= 10 {
return
}
loopCount++
endChan := make (chan int)
respChan := make (chan mg http sdk.ConsumeMessageResponse)
errChan := make (chan error)
go func() |
select {
case resp := <-respChan:
{
// Specify the business processing logic.

var handles []string

fmt.Printf ("Consume %d messages---->\n", len(resp.Messages))

for , v := range resp.Messages ({

handles = append(handles, v.ReceiptHandle)

fmt.Printf ("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+

> Document Version: 20220816

192

User Guide- SDK user guide Alibaba Cloud Message Queue

"\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime:

oo
[oN

\n\tBody: %s\n"+
"\tProperties:%s, Key:%s, Timer:%d, Trans:%d\n",
v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody,
v.Properties, v.MessageKey, v.StartDeliverTime, v.TransCheckImm
unityTime)
a, _ := strconv.Atoi (v.Properties["a"])

var comRollErr error

if a == 1 {
// Confirm to commit the transactional message.
comRollErr = (*mgTransProducer) .Commit (v.ReceiptHandle)
fmt.Println ("Commit-—-—-—-—————- >

} else 1if a == 2 && v.ConsumedTimes > 1 {

// Confirm to commit the transactional message.
comRollErr = (*mgTransProducer) .Commit (v.ReceiptHandle)
fmt.Println ("Commit—-————————— >™)

} else if a == 3 {

// Confirm to roll back the transactional message.

comRollErr = (*mgTransProducer) .Rollback (v.ReceiptHandle)
fmt.Println ("Rollback-—-———————- >")
} else {

// Do not perform operations. Check the status next time.
fmt.Println ("Unknown-------—-——-— >
}
ProcessError (comRollErr)
}
endChan <- 1
}
case err := <-errChan:
{
// No messages in the topic are available for consumption.
if strings.Contains(err. (errors.ErrCode) .Error (), "MessageNotExist") {
fmt.Println ("\nNo new message, continue!")
} else {
fmt.Println (err)
time.Sleep (time.Duration (3) * time.Second)
}
endChan <- 1
}
case <-time.After (35 * time.Second) :
{
fmt.Println ("Timeout of consumer message ??")

return

O

// Check the status of half messages in long polling mode.

// In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.

(*mgTransProducer) .ConsumeHalfMessage (respChan, errChan,

3, // The maximum number of messages that can be consumed at a time. In this ex

o I . D D Py S P TR RGEY: PECN . IV | R P RRPRpo o= oo

193 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

dalliplLe, LIlEe vdlue 15 selL LO OS. Lllle [dXl1Ilull vdlue LlildL you CdIl SpecClly 15 10.
3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
<-endChan

}
func main () {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.

endpoint := "${HTTP_ ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "${SECRET KEY}"

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.

topic := "${TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

instancelId := "S${INSTANCE ID}"

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

e.
groupId := "${GROUP ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgTransProducer := client.GetTransProducer (instancelId, topic, groupId)
// The client needs a thread or a process to process unacknowledged transactional messa
ges.

// Start a goroutine to process unacknowledged transactional messages.
go ConsumeHalfMsg (&mgTransProducer)
// Send four transactional messages. Commit one message after the message is sent. Chec
k the status of the half messages that correspond to the other three transactional messages
after the three messages are sent.
for i := 0; 1 < 4; i++ {
msg := mg http sdk.PublishMessageRequest {
MessageBody:"I am transaction msg!",
Properties: map[string]string{"a":strconv.Itoa (i)},
}
// The time interval between the time when the transactional message is sent and th

e start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.

// If the message is not committed or rolled back after the first transaction statu
s check is performed, the broker initiates a request to check the status of the local trans
action at an interval of 10 seconds within the next 24 hours.

msa.TransCheckTmminitvTime = 10

> Document Version: 20220816 194

User Guide- SDK user guide Alibaba Cloud Message Queue

i D e e e o e —

resp, pubErr := mgTransProducer.PublishMessage (msg)
if pubErr != nil {
fmt.Println (pubErr)

return

}

fmt.Printf ("Publish ---->\n\tMessageId:%s, BodyMD5:%s, Handle:%s\n",
resp.Messageld, resp.MessageBodyMD5, resp.ReceiptHandle)

if i == 0 {

// After the producer sends the transactional message, the broker obtains the h
andle of the half message that corresponds to the transactional message and commits or roll
s back the transactional message based on the status of the handle.

ackErr := mgTransProducer.Commit (resp.ReceiptHandle)

fmt.Println ("Commit—————————— >")

ProcessError (ackErr)

}
for ; loopCount < 10 ; {

time.Sleep (time.Duration(1l) * time.Second)

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

package main
import (

"fmt"

"github.com/gogap/errors"

"strings"

"time"

"github.com/aliyunmg/mg-http-go-sdk"
)
func main() {

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.

endpoint := "S{HTTP_ENDPOINT}"

// The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.

accessKey := "${ACCESS KEY}"

// The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.

secretKey := "${SECRET KEY}"

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

// Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.

topic := "S${TOPIC}"

// The ID of the instance to which the topic belongs. The instance is created in the Me

ssage Queue for Apache RocketMQ console.

/] TF +hA drmatkanan haa A mamAacnmAa A AmAnd Fer A TN AF FhAa dnmak A TF +hA drmatkan~an Ann

195 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

/7 Ll LUS LlldLAllCS Lidd d LAEDPACES, SPSULLY LIS 1L UL LIS LISLALCE. L1l LUS L15LACE Uue
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

instanceld := "S${INSTANCE ID}"

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

@o
groupId := "${GROUP_ID}"
client := mg http sdk.NewAliyunMQClient (endpoint, accessKey, secretKey, "")
mgConsumer := client.GetConsumer (instanceld, topic, groupld, "")
for {
endChan := make (chan int)
respChan := make (chan mg http sdk.ConsumeMessageResponse)
errChan := make (chan error)
go func() {
select {
case resp := <-respChan:
{
// Specify the message consumption logic.
var handles []string
fmt.Printf ("Consume %d messages---->\n", len (resp.Messages))
for , v := range resp.Messages {
handles = append(handles, v.ReceiptHandle)
fmt.Printf ("\tMessagelID: %s, PublishTime: %d, MessageTag: %$s\n"+
"\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n"+
"\tBody: %s\n"+
"\tProps: %s\n",
v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)

}

// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.

ackerr := mgConsumer.AckMessage (handles)

if ackerr != nil {

// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.

fmt.Println (ackerr)

if errAckItems, ok := ackerr. (errors.ErrCode) .Context () ["Detail"]. (
[Img http sdk.ErrAckItem); ok {
for , errAcklItem := range errAckItems ({

fmt.Printf ("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsqg)
}
} else {
fmt.Println("ack err =", ackerr)
}
time.Sleep (time.Duration(3) * time.Second)
} else {
fmt.Printf ("Ack -—--->\n\t%s\n", handles)

> Document Version: 20220816 196

User Guide- SDK user guide Alibaba Cloud Message Queue

endChan <- 1
}
case err := <-errChan:
{
// No messages in the topic are available for consumption.
if strings.Contains(err. (errors.ErrCode) .Error (), "MessageNotExist") {
fmt.Println ("\nNo new message, continue!")
} else {
fmt.Println (err)
time.Sleep (time.Duration (3) * time.Second)
}
endChan <- 1
}
case <-time.After (35 * time.Second) :
{
fmt.Println ("Timeout of consumer message ??")
endChan <- 1

O

// In long polling mode, the default network timeout period is 35 seconds.

// In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.

mgConsumer .ConsumeMessage (respChan, errChan,

3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
<-endChan

6.3.4. Python SDK

6.3.4.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for Python to
send and consume messages.

Environment requirements
e Install Python. For more information, visit the official website of Python. You must install an
appropriate version of Python based on the following instructions:

o If the version of your SDK is V1.0.0, make sure that the version of Python you installed is 2.5 oris
later than 2.5 but earlier than 3.0.

o If the version of your SDK is later than V1.0.0, make sure that the version of Python you installed is
2.5 orlater.

197 > Document Version: 20220816

https://www.python.org/downloads/?spm=a2c4g.11186623.2.4.332a78c8iTQUSv

Alibaba Cloud Message Queue User Guide- SDK user guide

e The pip toolis installed. For more information, see Install pip.

@ Note The pip tool is provided in Python 3.4 or later by default. If the version of Python you
installed is 3.4 or later, you do not need to install the pip tool.

After Pythonisinstalled, you canrunthe python -v. command to view the version of Python that
you installed.

Install the SDK for Python

Run the following command to install the SDK for Python:

pip install mg http sdk

6.3.4.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for Python to send and consume normal messages.

Prerequisites
The following operations are performed:

e Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

> Document Version: 20220816 198

https://pip.pypa.io/en/stable/installing/

User Guide- SDK user guide Alibaba Cloud Message Queue

import sys
from mg http sdk.mq exception import MQExceptionBase
from mg http sdk.mg producer import *
from mg http sdk.mg client import *
import time
Initialize a producer client.
mg _client = MQClient (
The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
"${HTTP_ENDPOINT}",
The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
"${ACCESS_KEY}",
The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
"${SECRET KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "${INSTANCE ID}"
producer = mg client.get producer (instance id, topic name)
Cyclically send four messages.
msg_count = 4
print ("$sPublish Message To $s\nTopicName:$%$s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic name, msg count))
try:
for i in range (msg_count) :
msg = TopicMessage (
The content of the message.
"I am test message %s.hello" % i,
The tag of the message.
"tag %s" $ 1
)
The custom property of the message.
msg.put property("a", "i")
The key of the message.
msg.set message key ("MessageKey")
re msg = producer.publish message (msg)
print ("Publish Message Succeed. MessagelID:%s, BodyMD5:%s" % (re msg.message id,
re msg.message body md5))
except MQExceptionBase as e:
if e.type == "TopicNotExist":
print ("Topic not exist, please create it.")
sys.exit (1)
print ("Publish Message Fail. Exception:%s" % e)

199 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Consume normal messages

The following sample code provides an example on how to consume normal messages:

from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg consumer import *
from mg http sdk.mg client import *
Initialize a consumer client.
mg client = MQClient (
The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
S {HTTP_ENDPOINT}",
The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
"${ACCESS KEY}",
The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
"${SECRET KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "S${INSTANCE ID}"
consumer = mq client.get consumer (instance id, topic name, group id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
In this example, the period is set to 3 seconds.
The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.
wait seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print (("%$sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:$%$s\nWaitSeconds:%s\
n" \
% (10 * "=", 10 * "=", topic name, group id, wait seconds)))
while True:
try:
Consume messages in long polling mode.
recv_msgs = consumer.consume message (batch, wait_seconds)
for msg in recv _msgs:
print (("Receive, MessagelId: $%$s\nMessageBodyMD5: %$s \
\nMessageTag: %s\nConsumedTimes: %s \
\nPublishTime: %s\nBody: %s \

N 7 PRy oo o

> Document Version: 20220816 200

User Guide- SDK user guide Alibaba Cloud Message Queue

\liNexeeolisullne L Line s s\
\nReceiptHandle: %s \
\nProperties: %s\n" % \
(msg.message id, msg.message body md5,
msg.message_tag, msg.consumed times,
msg.publish time, msg.message body,
msg.next consume time, msg.receipt handle, msg.properties)))
print (msg.get property (""))
except MQExceptionBase as e:
No messages in the topic are available for consumption.
if e.type == "MessageNotExist":
print (("No new message! RequestId: %s" % e.req id))
continue
print (("Consume Message Fail! Exception:%s\n" % e))
time.sleep(2)
continue
If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next consume time parameter elapses, the b
roker delivers the message for consumption again.
A unique timestamp is specified for the handle of a message each time the message is
consumed.
try:
receipt handle list = [msg.receipt handle for msg in recv msgs]
consumer.ack message (receipt handle list)
print (("Ak %s Message Succeed.\n\n" % len(receipt handle list)))
except MQExceptionBase as e:
print (("\nAk Message Fail! Exception:%s" % e))
If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
if e.sub _errors:
for sub error in e.sub errors:
print (("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
(sub_error["ReceiptHandle"], sub error["ErrorCode"], sub error["Error

Message"])))

6.3.4.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
T his topic provides sample code to show how to use the HTTP client SDK for Python to send and
consume ordered messages.

Background information
Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first -in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

201 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

import sys
from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg producer import *
from mg http sdk.mg client import *
Initialize a producer client.
mg_client = MQClient (
The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
"${HTTP_ENDPOINT}",
The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
"${ACCESS_KEY}",
The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
WS SECRET_KEY} "
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic name = "S${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "${INSTANCE ID}"
producer = mg client.get producer (instance id, topic name)
Cyclically send eight messages.
msg _count = 8
print ("$sPublish Message To $s\nTopicName:$%$s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic name, msg count))
try:
for i in range (msg_count) :
msg = TopicMessage (
The content of the message.
"I am test message %s.hello" % i,
The tag of the message.

)

"tag %s" % 1

> Document Version: 20220816 202

User Guide- SDK user guide Alibaba Cloud Message Queue

)

The custom property of the message.

msg.put property("a", str(i))

The shard key that is used to distribute ordered messages to a specific partition

Shard keys can be used to identify different partitions. A shard key is different from a

message key.

msg.set sharding key(str(i % 3))

re msg = producer.publish message (msg)

print ("Publish Message Succeed. MessagelID:%s, BodyMD5:%s" % (re msg.message id, re
msg.message body md5))
except MQExceptionBase as e:

if e.type == "TopicNotExist":
print ("Topic not exist, please create it.")
sys.exit (1)

print ("Publish Message Fail. Exception:%s" % e)

Consume ordered messages

The following sample code provides an example on how to consume ordered messages:

from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg consumer import *
from mg http sdk.mg client import *
Initialize a consumer client.
mg client = MQClient (

The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.

"${HTTP_ENDPOINT}",

The AccessKey ID that is used for identity verification. You can obtain the AccessKey

ID in the Apsara Uni-manager Operations Console.
"${ACCESS KEY}",

The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.

"${SECRET_KEY}"

)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "S$S{INSTANCE ID}"
consumer = mq client.get consumer (instance id, topic name, group id)
Consume messages in long polling mode. The consumer may pull partitionally ordered messag
es from multiple partitions. The consumer consumes the messages in the same partition in th
e order in which the messages are sent.

A consumer pulls partitionally ordered messages from a partition. If the broker does not

203 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

receive an acknowledgment (ACK) for a message after the message is consumed, the consumer c
onsumes the message again.
The consumer can consume the next batch of messages from a partition only after all the m
essages that are pulled from the partition in the previous batch are acknowledged to be con
sumed.
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
In this example, the period is set to 3 seconds.
wait seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print (("%$sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:$%$s\nWaitSeconds:%s\
n" \
% (10 * "=", 10 * "=", topic name, group id, wait seconds)))
while True:
try:
recv_msgs = consumer.consume message orderly(batch, wait seconds)
print ("=======>Receive %d messages:" % len(recv _msgs))
for msg in recv _msgs:
print ("\tMessageId: %$s, MessageBodyMD5: %s,NextConsumeTime: %s,ConsumedTimes: %
s,PublishTime: %s\n\tBody: %s \
\n\tReceiptHandle: %s \
\n\tProperties: %s,ShardingKey: %s\n" % \
(msg.message id, msg.message body md5,
msg.next consume time, msg.consumed times,
msg.publish time, msg.message body,
msg.receipt handle, msg.properties, msg.get sharding key()))
except MQExceptionBase as e:
if e.type == "MessageNotExist":
print (("No new message! RequestId: %s" % e.req id))
continue
print (("Consume Message Fail! Exception:%s\n" % e))
time.sleep(2)
continue
If the broker does not receive an ACK for a message from the consumer before the peri
od of time specified by the msg.next consume time parameter elapses, the broker delivers th
e message for consumption again.
A unique timestamp is specified for the handle of a message each time the message is
consumed.
try:
receipt handle list = [msg.receipt handle for msg in recv msgs]
consumer.ack message (receipt handle list)
print (("========>Ak %s Message Succeed.\n\n" % len(receipt handle list)))
except MQExceptionBase as e:
print (("\nAk Message Fail! Exception:%s" % e))
If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
if e.sub errors:
for sub error in e.sub errors:
print (("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
(sub_error["ReceiptHandle"], sub error["ErrorCode"], sub error["Error

Message"])))

> Document Version: 20220816 204

User Guide- SDK user guide Alibaba Cloud Message Queue

6.3.4.4. Send and consume scheduled messages and

delayed messages

T his topic provides sample code to show how to use the HTTP client SDK for Python to send and
consume scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache Rocket MQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites
The following operations are performed:

e Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache Rocket MQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

The following sample code provides an example on how to send scheduled messages or delayed
messages:

import sys
from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg producer import *
from mg http sdk.mg client import *
import time
Initialize a producer client.
mg client = MQClient (

The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.

WS HTTP_ENDPOINT}",
The AccessKey ID that is used for identity verification. You can obtain the AccessKey

ID in the Apsara Uni-manager Operations Console.

205 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

"${ACCESS KEY}",

The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.

"$ {SECRET KEY}"

)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "S${INSTANCE ID}"
producer = mg client.get producer (instance id, topic name)
Cyclically send four messages.
msg_count = 4
print ("$sPublish Message To %s\nTopicName:%s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic name, msg count))
try:

for i in range (msg count):

msg = TopicMessage (

The content of the message.

"I am test message %$s.hello" % i,

The tag of the message.

"tagl"

)

The property of the message.

msg.put property("a", "i")

The key of the message.

msg.set message key ("MessageKey")

The period of time after which the broker delivers the message. In this examp
le, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.

If the producer sends a scheduled message, set the parameter to the time inte
rval between the scheduled point in time and the current point in time.

msg.set start deliver time (int (round(time.time() * 1000)) + 10 * 1000)

re msg = producer.publish message (msg)

print ("Publish Timer Message Succeed. MessagelID:%s, BodyMD5:%s" % (re msg.messa
ge 1id, re msg.message body md5))
except MQExceptionBase as e:

if e.type == "TopicNotExist":
print ("Topic not exist, please create it.")
sys.exit (1)

print ("Publish Message Fail. Exception:%s" % e)

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg consumer import *

from ma htto sdk.ma client imoort *

> Document Version: 20220816 206

User Guide- SDK user guide Alibaba Cloud Message Queue

4, T ————— — —

Initialize a consumer client.
mg client = MQClient (
The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
"${HTTP_ENDPOINT}",
The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
"${ACCESS KEY}",
The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
"$ {SECRET KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "S${INSTANCE ID}"
consumer = mqg_client.get consumer (instance id, topic name, group id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
In this example, the period is set to 3 seconds.
The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.
wait seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print (("$sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:%s\nWaitSeconds:%s\
n" \
% (10 * "=", 10 * "=", topic name, group id, wait seconds)))
while True:
try:
Consume messages in long polling mode.
recv_msgs = consumer.consume message (batch, wait seconds)
for msg in recv msgs:
print (("Receive, Messageld: %s\nMessageBodyMD5: %s \
\nMessageTag: %$s\nConsumedTimes: %s \
\nPublishTime: %s\nBody: %s \
\nNextConsumeTime: %s \
\nReceiptHandle: %s \
\nProperties: %s\n" % \
(msg.message id, msg.message body md5,
msg.message tag, msg.consumed times,
msg.publish time, msg.message body,

msg.next consume time, msg.receipt handle, msg.properties)))

207 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

print (msg.get property(""))
except MQExceptionBase as e:
No messages in the topic are available for consumption.
if e.type == "MessageNotExist":
print (("No new message! RequestId: %s" % e.req id))
continue
print (("Consume Message Fail! Exception:%s\n" % e))
time.sleep(2)
continue
If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next consume time parameter elapses, the b
roker delivers the message for consumption again.
A unique timestamp is specified for the handle of a message each time the message is
consumed.
try:
receipt handle list = [msg.receipt handle for msg in recv msgs]
consumer.ack message (receipt handle list)
print (("Ak %$s Message Succeed.\n\n" % len (receipt handle list)))
except MQExceptionBase as e:
print (("\nAk Message Fail! Exception:%s" % e))
If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
if e.sub errors:
for sub error in e.sub errors:
print (("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
(sub_error["ReceiptHandle"], sub error["ErrorCode"], sub error["Error

Message"])))

6.3.4.5. Send and consume transactional messages

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
Python to send and consume transactional messages.

Background information

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. E;(ecute 2. Half message Commit: Deliver
t?::saction sent successfully the message
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

> Document Version: 20220816 208

User Guide- SDK user guide Alibaba Cloud Message Queue

Prerequisites
The following operations are performed:

e Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

#!/usr/bin/env python
coding=utf8
import sys
from mg http sdk.mg exception import MQExceptionBase
from mg http sdk.mg producer import *
from mg http sdk.mg client import *
import time
import threading
Initialize a producer client.
mg client = MQClient (
The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
"${HTTP ENDPOINT}",
The AccessKey ID that you created in the Resource Access Management (RAM) console. Th
e AccessKey ID is used for identity verification.
"${ACCESS KEY}",
The AccessKey secret that you created in the RAM console. The AccessKey secret is use
d for identity verification.
"$ {SECRET KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the
Message Queue for Apache RocketMQ console.
instance id = "${INSTANCE ID}"
Cyclically send four transactional messages.
msg_count = 4
print ("%$sPublish Transaction Message To %$s\nTopicName:%s\nMessageCount:%s\n" \
% (10 * "=", 10 * "=", topic name, msg count))
def process trans error (exp) :
print ("\nCommit/Roll Transaction Message Fail! Exception:%s" % exp)

If a transactional message is not committed or rolled back before the timeout period

209 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

specified by the TransCheckImmunityTime parameter for the handle of the transactional messa
ge elapses or before the timeout period specified for the handle of consumeHalfMessage elap
ses, the commit or rollback operation fails. In this example, the timeout period for the ha
ndle of consumeHalfMessage is 10 seconds.
if exp.sub errors:
for sub error in exp.sub errors:
print ("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
(sub_error["ReceiptHandle"], sub error["ErrorCode"], sub error["ErrorMess
age"]))
The client requires a thread or a process to process unacknowledged transactional message
S.
Start a thread to process unacknowledged transactional messages.
class ConsumeHalfMessageThread (threading.Thread) :
def init (self):
threading.Thread. init (self)
self.count = 0
Create another client.
self.mg client = MQClient (

The HTTP endpoint to which you want to connect. To obtain the HTTP endpoi
nt, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pa
ne, click Instances. On the Instances page, select the name of your instance. Then, view th
e endpoint in the HTTP Endpoint section on the Network Management tab.

"${HTTP_ENDPOINT}",

The AccessKey ID that is used for identity verification. You can obtain t
he AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

The AccessKey secret that is used for identity verification. You can obta
in the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)

self.trans producer = self.mqg client.get trans producer (instance id, topic name, gr

oup id)
def run(self):
while 1:
if self.count ==
break;
try:

half msgs = self.trans producer.consume half message (1, 3)
for half msg in half msgs:
print ("Receive Half Message, Messageld: %s\nMessageBodyMD5: %s \
\nMessageTag: %$s\nConsumedTimes: $s \
\nPublishTime: %s\nBody: %s \
\nNextConsumeTime: %$s \
\nReceiptHandle: %s \
\nProperties: %s" % \
(half msg.message id, half msg.message body md5,
half msg.message tag, half msg.consumed times,
half msg.publish time, half msg.message body,
half msg.next consume time, half msg.receipt handle, half msg.pr
operties))
a = int (half msg.get property("a"))
try:
if a ==

Confirm to commit the transactional message.

> Document Version: 20220816 210

User Guide- SDK user guide Alibaba Cloud Message Queue

self.trans producer.commit (half msg.receipt handle)
self.count += 1
print ("--——-—- >commit")
elif a == 2 and half msg.consumed times > 1:
Confirm to commit the transactional message.
self.trans producer.commit (half msg.receipt handle)
self.count += 1
print ("--————- >commit")
elif a ==
Confirm to roll back the transactional message.
self.trans producer.rollback(half msg.receipt handle)
self.count += 1
prlnE (V=—==== >rollback")
else:
Do not perform operations. Check the status next time.
print ("-—-——-—- >unknown")
except MQExceptionBase as rec_commit roll e:
process trans error (rec_commit roll e)
except MQExceptionBase as half e:
if half e.type == "MessageNotExist":
print ("No half message! RequestId: %s" % half e.req id)
continue
print ("Consume half message Fail! Exception:%s\n" % half e)
break
consume half thread = ConsumeHalfMessageThread ()
consume_half thread.setDaemon (True)
consume half thread.start()
try:
trans producer = mg client.get trans producer (instance id, topic name, group id)
for i in range (msg_count) :
msg = TopicMessage (
The content of the message.
"I am test message %$s." % i,
The tag of the message.
"tagA"
)
The custom property of the message.
msg.put property ("xy", i)
The key of the message.
msg.set message key ("MessageKey")
The time interval between the time when the transactional message is sent and the
start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.
If the message is not committed or rolled back after the first transaction status
check is performed, the broker initiates a request to check the status of the local transac
tion at an interval of 10 seconds within the next 24 hours.
msg.set trans check immunity time (10)
re msg = trans_producer.publish message (msg)
print ("Publish Transaction Message Succeed. MessageID:%s, BodyMD5:%s, Handle:%s" \
% (re msg.message id, re msg.message body md5, re msg.receipt handle))
time.sleep (1)
if 1 ==
After the producer sends the transactional message, the broker obtains the ha
ndle of the half message that corresponds to the transactional message and commits or rolls

back the transactional message based on the status of the handle.

211 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

try:
trans producer.commit (re msg.receipt handle)
except MQExceptionBase as pub commit roll e:
process trans error (pub_commit roll e)
except MQExceptionBase as pub e:
if pub e.type == "TopicNotExist":
print ("Topic not exist, please create it.")
sys.exit (1)
print ("Publish Message Fail. Exception:%s" % pub e)
while 1:
if not consume half thread.is alive():
break
time.sleep (1)

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

from mg http sdk.mq exception import MQExceptionBase
from mg http sdk.mg consumer import *
from mg http sdk.mqg client import *
Initialize a consumer client.
mg client = MQClient (

The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.

"${HTTP7ENDPOINT}",

The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.

"S{SECRET_KEY}"

)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance id = "${INSTANCE ID}"
consumer = mg client.get consumer (instance id, topic name, group_ id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
In this example, the period is set to 3 seconds.

The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.

wait seconds = 3

> Document Version: 20220816 212

User Guide- SDK user guide Alibaba Cloud Message Queue

The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print (("%$sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:$%$s\nWaitSeconds:%s\
n" \
% (10 * "=", 10 * "=", topic name, group id, wait seconds)))
while True:
try:
Consume messages in long polling mode.
recv_msgs = consumer.consume message (batch, wait_seconds)
for msg in recv _msgs:
print (("Receive, Messageld: %s\nMessageBodyMD5: %s \
\nMessageTag: %s\nConsumedTimes: %s \
\nPublishTime: %s\nBody: %s \
\nNextConsumeTime: %s \
\nReceiptHandle: %s \
\nProperties: %s\n" % \
(msg.message id, msg.message body md5,
msg.message tag, msg.consumed times,
msg.publish time, msg.message body,
msg.next consume time, msg.receipt handle, msg.properties)))
print (msg.get property (""))
except MQExceptionBase as e:
No messages in the topic are available for consumption.
if e.type == "MessageNotExist":
print (("No new message! RequestId: %s" % e.req id))
continue
print (("Consume Message Fail! Exception:%s\n" % e))
time.sleep(2)
continue
If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next consume time parameter elapses, the b
roker delivers the message for consumption again.
A unique timestamp is specified for the handle of a message each time the message is
consumed.
try:
receipt handle list = [msg.receipt handle for msg in recv msgs]
consumer.ack message (receipt handle list)
print (("Ak %$s Message Succeed.\n\n" % len(receipt handle list)))
except MQExceptionBase as e:
print (("\nAk Message Fail! Exception:%s" % e))
If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
if e.sub errors:
for sub error in e.sub errors:
print (("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
(sub_error["ReceiptHandle"], sub error["ErrorCode"], sub error["Error

Message"])))

6.3.5. Node.js SDK

213 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

6.3.5.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for Node.js to
send and consume messages.

Environment requirements
Node.js 7.6.0 or later is installed. For more information, see Install Node.js.

After Node.s is installed, you canrunthe node -v= command to view the version of Node.js that you
installed.

Install the SDK for Node.js

Run the following command to install the SDK for Node.js:

npm i Qaliyunmg/mg-http-sdk

6.3.5.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for Node.js to send and consume normal messages.

Prerequisites
The following operations are performed:

e SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

> Document Version: 20220816 214

https://nodejs.org/en/

User Guide- SDK user guide Alibaba Cloud Message Queue

const {
MQClient,
MessageProperties
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that you created in the Resource Access Management (RAM) console for id
entity verification. The AccessKey ID is used for identity verification.
const accessKeyld = "${ACCESS_KEY}";
// The AccessKey secret that you created in the RAM console for identity verification. The
AccessKey secret is used for identity verification.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instancelId = "S${INSTANCE ID}";
const producer = client.getProducer (instanceld, topic);
(async function () {
try {
// Cyclically send four messages.
for(var 1 = 0; 1 < 4; i++) {
let res;
msgProps = new MessageProperties();
// The custom property of the message.
msgProps.putProperty ("a", 1i);
// The key of the message.
msgProps.messageKey ("MessageKey") ;
res = await producer.publishMessage ("hello mg.", "", msgProps);
console.log ("Publish message: MessagelD:%s,BodyMD5:%s", res.body.Messageld, res.body.
MessageBodyMD5) ;
}
} catch(e) {
// Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.

console.log (e)

IO

Consume normal messages

The following sample code provides an example on how to consume normal messages:

const {
MQClient

1 — At Al TAAT dcmirmm~ /b dm A AT .

215 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

ST LSYULLE | COLLy UG/ HIYTHLLPTOUR)
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeylId = "${ACCESS KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient (endpoint, accessKeylId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupld = "${GROUP ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instancelId = "S${INSTANCE ID}";
const consumer = client.getConsumer (instanceld, topic, groupId);
(async function () {

// Cyclically consume messages.

while (true) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.

res = await consumer.consumeMessage (

3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
) i
if (res.code == 200) {
// Specify the message consumption logic.
console.log ("Consume Messages, requestId:%$s", res.requestId);
const handles = res.body.map ((message) => {
console.log ("\tMessageId:%s, Tag:%s, PublishTime: %d, NextConsumeTime: %d, FirstConsume
Time:%d, ConsumedTimes:%d,Body:%s" +
",Props:%j,MessageKey:%s, Prop-A:%s",
message.Messageld, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
message.MessageBody, message.Properties, message.MessageKey, message.Properties.
a);
return message.ReceiptHandle;
}):
// If the broker does not receive an acknowledgment (ACK) for a message from the co

nsumer before the veriod of time svecified bv the messace.NextConsumeTime varameter elavses

> Document Version: 20220816 216

User Guide- SDK user guide Alibaba Cloud Message Queue

R — = R — - A S

the broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each time the messag

’

e is consumed.
res = await consumer.ackMessage (handles) ;
if (res.code != 204) {
// If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
console.log ("Ack Message Fail:");
const failHandles = res.body.map ((error)=>{
console.log ("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
return error.ReceiptHandle;
1)
handles.forEach ((handle)=>{
if (failHandles.indexOf (handle) < 0) {
console.log ("\tSucHandle:%s\n", handle);
}
1)
} else {
// Obtain an ACK from the consumer.
console.log ("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',")

}
} catch(e) {
if (e.Code.indexOf ("MessageNotExist") > -1) {
// If no message in the topic is available for consumption, the long polling mode c

ontinues to take effect.
console.log ("Consume Message: no new message, RequestId:%s, Code:%s", e.Requestld,
e.Code) ;
} else {

console.log(e);

6.3.5.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
T his topic provides sample code to show how to use the HTTP client SDK for Node.js to send and
consume ordered messages.

Background information

Ordered messages are classified into the following types:
e Globally ordered message: All messages in a specified topic are published and consumed in first -in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A

217 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e SDKforNode,js is installed. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

> Document Version: 20220816 218

User Guide- SDK user guide Alibaba Cloud Message Queue

const {
MQClient,
MessageProperties
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP7ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyld = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instancelId = "S${INSTANCE ID}";
const producer = client.getProducer (instanceld, topic);
(async function () {
try {
// Cyclically send eight messages.
for(var 1 = 0; 1 < 8; i++) {
msgProps = new MessageProperties();
// The custom property of the message.
msgProps.putProperty ("a", 1i);
// The shard key that is used to distribute ordered messages to a specific partition.
Shard keys can be used to identify different partitions. A shard key is different from a me
ssage key.
msgProps.shardingKey (i $ 2);
res = await producer.publishMessage ("hello mg.", "", msgProps);
console.log ("Publish message: MessageID:%s,BodyMD5:%s", res.body.Messageld, res.body.
MessageBodyMDS5) ;
}
} catch(e) {
// Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.

console.log (e)

I NON

Consume ordered messages

The following sample code provides an example on how to consume ordered messages:

const {

MAMT 4 At

219 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

mycLien,
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const grouplId = "GID http";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instancelId = "S${INSTANCE ID}";
const consumer = client.getConsumer (instanceld, topic, groupId);
(async function () {

// Cyclically consume messages.

while (true) {

try {

// Consume messages in long polling mode. The consumer may pull partitionally ordered
messages from multiple partitions. The consumer consumes messages from the same partition i
n the order in which the messages are sent.

// A consumer pulls partitionally ordered messages from a partition. If the broker do
es not receive an acknowledgment (ACK) for a message after the message is consumed, the con
sumer consumes the message again.

// The consumer can consume the next batch of messages from a partition only after al
1 messages that are pulled from the partition in the previous batch are acknowledged to be
consumed.

// In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.

res = await consumer.consumeMessageOrderly (

3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
) i
if (res.code == 200) {
// Specify the message consumption logic.
console.log ("Consume Messages, requestId:%s", res.requestId);
const handles = res.body.map ((message) => {
console.log ("\tMessageId:%s, Tag:%s, PublishTime: %d, NextConsumeTime: %d, FirstConsume

Time:%d.ConsumedTimes:%d.Bodv:%s" +

> Document Version: 20220816 220

User Guide- SDK user guide Alibaba Cloud Message Queue

", Props:%j, ShardingKey:%s, Prop-A:%s, Tag:%s",
message.Messageld, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
message .MessageBody, message.Properties, message.ShardingKey, message.Properties
.a,message.MessageTag) ;
return message.ReceiptHandle;

1)

// If the broker does not receive an ACK for a message from the consumer before the
period of time specified by the message.NextConsumeTime parameter elapses, the broker deliv
ers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the messag
e is consumed.

res = await consumer.ackMessage (handles) ;

if (res.code != 204) {

// If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
console.log ("Ack Message Fail:");
const failHandles = res.body.map ((error)=>{
console.log ("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
return error.ReceiptHandle;
}) i
handles.forEach ((handle)=>{
if (failHandles.indexOf (handle) < 0) {
console.log ("\tSucHandle:%s\n", handle);
}
1)
} else {
// Obtain an ACK from the consumer.

console.log ("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',")

}
} catch(e) {
if (e.Code.indexOf ("MessageNotExist") > -1) {
// If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
console.log ("Consume Message: no new message, RequestId:%s, Code:%s", e.Requestld,
e.Code) ;
} else {

console.log (e) ;

6.3.5.4. Send and consume scheduled messages and

delayed messages

221 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

This topic provides sample code to show how to use the HTTP client SDK for Node.js to send and
consume scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites
The following operations are performed:

e SDKforNode.js is installed. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache Rocket MQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

The following sample code provides an example on how to send scheduled messages or delayed
messages:

> Document Version: 20220816 222

User Guide- SDK user guide Alibaba Cloud Message Queue

const {
MQClient,
MessageProperties
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP7ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyld = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instancelId = "S${INSTANCE ID}";
const producer = client.getProducer (instanceld, topic);
(async function () {
try {
// Cyclically send four messages.
for(var 1 = 0; 1 < 4; i++) {
let res;
msgProps = new MessageProperties();
// The custom property of the message.
msgProps.putProperty ("a", 1i);
// The key of the message.
msgProps.messageKey ("MessageKey") ;
// The period of time after which the broker delivers the message. In this example, w
hen the broker receives a message, the broker waits for 10 seconds before it delivers the m
essage to the consumer. Set this parameter to a timestamp in milliseconds.
// If the producer sends a scheduled message, set the parameter to the time interval
between the scheduled point in time and the current point in time.
msgProps.startDeliverTime (Date.now() + 10 * 1000);
res = await producer.publishMessage ("hello mg. timer msg!", "TagA", msgProps);
console.log ("Publish message: MessageID:%s,BodyMD5:%s", res.body.Messageld, res.body.
MessageBodyMD)5) ;
}
} catch(e) {
// Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.

console.log (e)

IDNON

223 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

const {

MQClient
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "${GROUP ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceld = "S${INSTANCE ID}";
const consumer = client.getConsumer (instanceld, topic, groupId);
(async function () {

// Cyclically consume messages.

while (true) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.

res = await consumer.consumeMessage (

3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
) i
if (res.code == 200) {
// Specify the message consumption logic.
console.log ("Consume Messages, requestId:%s", res.requestId);
const handles = res.body.map ((message) => {
console.log ("\tMessageld:%s,Tag:%s, PublishTime: %d, NextConsumeTime: %d, FirstConsume
Time:%d, ConsumedTimes:%d,Body:%s" +

",Props:%j,MessageKey:%s, Prop-A:%s",

wr - A an - -~ 1A ame ar "~

> Document Version: 20220816 224

User Guide- SDK user guide Alibaba Cloud Message Queue

message.Messagela, message.Messagelrag, message.rupllsnlime, message.NeXTLonsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
message.MessageBody, message.Properties, message.MessageKey, message.Properties.
a);
return message.ReceiptHandle;

});

// If the broker does not receive an acknowledgment (ACK) for a message from the co
nsumer before the period of time specified by the message.NextConsumeTime parameter elapses
, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the messag
e is consumed.

res = await consumer.ackMessage (handles) ;

if (res.code !'= 204) {

// If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
console.log ("Ack Message Fail:");
const failHandles = res.body.map ((error)=>{
console.log ("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
return error.ReceiptHandle;
}) 7
handles. forEach ((handle)=>{
if (failHandles.indexOf (handle) < 0) {
console.log ("\tSucHandle:%s\n", handle);
}
1)
} else {
// Obtain an ACK from the consumer.

console.log ("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',")

}
} catch(e) {
if (e.Code.indexOf ("MessageNotExist") > -1) {
// If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
console.log ("Consume Message: no new message, RequestId:%s, Code:%s", e.Requestld,
e.Code) ;
} else {

console.log(e);

6.3.5.5. Send and consume transactional messages

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
Node.js to send and consume transactional messages.

Background information

225 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. E;(ecu!e 2. Half message Commit: Deliver
ocal sent successfully the message
transaction
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

Prerequisites
The following operations are performed:

e SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

const {

MQClient,

MessageProperties
} = require ('@aliyunmg/mg-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = “${HTTP7ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyld = "S{ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupIld = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no

t have a namespace, set the instance ID to null or an empty string. You can check whether y

> Document Version: 20220816 226

User Guide- SDK user guide Alibaba Cloud Message Queue

our instance has a namespace on the Instances page in the RocketMQ console.
const instanceld = "S${INSTANCE ID}";
const mgTransProducer = client.getTransProducer (instancelId, topic, groupId);
async function processTransResult (res, msgId) {

if (!res) {

return;

}

if (res.code != 204) {

// If a transactional message is not committed or rolled back before the timeout peri
od specified by the TransCheckImmunityTime parameter for the handle of the transactional me
ssage elapses or before the timeout period specified for the handle of consumeHalfMessage e
lapses, the commit or rollback operation fails. In this example, the timeout period for the
handle of consumeHalfMessage is 10 seconds.

console.log ("Commit/Rollback Message Fail:");

const failHandles = res.body.map ((error) => {

console.log ("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, error.Er
rorCode, error.ErrorMessage);
return error.ReceiptHandle;
}) i
} else {

console.log ("Commit/Rollback Message suc!!! %s", msgld);

}
var halfMessageCount = 0;
var halfMessageConsumeCount = 0;
(async function () {
try {
// Cyclically send four transactional messages.
for(var 1 = 0; 1 < 4; 1i++) {
let res;
msgProps = new MessageProperties();
// The custom property of the message.
msgProps.putProperty ("a", 1i);
// The key of the message.
msgProps.messageKey ("MessageKey") ;
// The time interval between the time when the transactional message is sent and the
start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.
// If the message is not committed or rolled back after the first transaction status
check is performed, the broker initiates a request to check the status of the local transac
tion at an interval of 10 seconds within the next 24 hours.
msgProps.transCheckImmunityTime (10) ;
res = await mgTransProducer.publishMessage ("hello mg.", "tagA", msgProps);
console.log ("Publish message: MessageID:%s,BodyMD5:%s,Handle:%s", res.body.Messageld,
res.body.MessageBodyMD5, res.body.ReceiptHandle) ;
if (res && 1 == 0) {
// After the producer sends the transactional message, the broker obtains the hand
le of the half message that corresponds to the transactional message and commits or rolls b
ack the transactional message based on the status of the handle.
const msgId = res.body.Messageld;
res = await mgTransProducer.commit (res.body.ReceiptHandle) ;
console.log ("Commit msg when publish, %s", msgId);
// If the transactional message is not committed or rolled back before the timeou
t period specified by the TransCheckImmunityTime parameter elapses, the commit or rollback

operation fails.

227 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

processTransResult (res, msgld);

}
} catch(e) {
// Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.
console.log (e)
}
PO

// The client needs a thread or a process to process unacknowledged transactional messages.

// Process unacknowledged transactional messages.
(async function() {
// Cyclically check the status of half messages. This process is similar to consuming nor
mal messages.
while (halfMessageCount < 3 && halfMessageConsumeCount < 15) {
try {
halfMessageConsumeCount++;
res = await mgTransProducer.consumeHalfMessage (3, 3);
if (res.code == 200) {
// Specify the message consumption logic.
console.log ("Consume Messages, requestId:%$s", res.requestId);
res.body.forEach (async (message) => {
console.log ("\tMessageId:%s,Tag:%s,PublishTime: %d, NextConsumeTime:%d, FirstConsume
Time:%d, ConsumedTimes:%d,Body:%s" +
",Props:%j,MessageKey:%s, Prop-A:%s",
message.Messageld, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,

message.MessageBody, message.Properties, message.MessageKey, message.Properties.

var propA = message.Properties && message.Properties.a ? parselnt (message.Propert

var OpResp;
if (propA == || (propA == 2 && message.ConsumedTimes > 1)) {
opResp = await mgTransProducer.commit (message.ReceiptHandle) ;
console.log ("Commit msg when check half, %s", message.Messageld);
halfMessageCount++;
} else if (propA == 3) {
opResp = await mgTransProducer.rollback (message.ReceiptHandle) ;
console.log ("Rollback msg when check half, %$s", message.Messageld);
halfMessageCount++;
}
processTransResult (opResp, message.Messageld) ;
}):
}
} catch(e) {
if (e.Code && e.Code.indexOf ("MessageNotExist") > -1) {
// If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
console.log ("Consume Transaction Half msg: no new message, RequestId:%s, Code:%s",
e.RequestId, e.Code);
} else {

console.log(e);

> Document Version: 20220816 228

User Guide- SDK user guide Alibaba Cloud Message Queue

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

const {

MQClient
} = require ('QRaliyunmg/mg-http-sdk') ;
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeylId = "${ACCESS KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET KEY}";
var client = new MQClient (endpoint, accessKeyld, accessKeySecret);
// The topic from which you want to consume messages. The topic i1s created in the Message Q
ueue for Apache RocketMQ console.
const topic = "S${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupIld = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceld = "S${INSTANCE ID}";
const consumer = client.getConsumer (instanceld, topic, groupId):;
(async function () {

// Cyclically consume messages.

while (true) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.

res = await consumer.consumeMessage (

3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
) i
if (res.code == 200) {
// Specify the message consumption logic.
console.log ("Consume Messages, requestId:%$s", res.requestId);

const handles = res.body.map ((message) => {

229 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

console.log ("\tMessageId:%s,Tag:%s,PublishTime:%d, NextConsumeTime: %d, FirstConsume
Time:%d, ConsumedTimes:%d,Body:%s" +
",Props:%j,MessageKey:%s, Prop-A:%s",
message.Messageld, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
message .MessageBody, message.Properties, message.MessageKey, message.Properties.
a);
return message.ReceiptHandle;

1)

// If the broker does not receive an acknowledgment (ACK) for a message from the co
nsumer before the period of time specified by the message.NextConsumeTime parameter elapses
, the broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the messag
e is consumed.

res = await consumer.ackMessage (handles) ;

if (res.code != 204) {

// If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
console.log ("Ack Message Fail:");
const failHandles = res.body.map ((error)=>{
console.log ("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
return error.ReceiptHandle;
}) i
handles. forEach ((handle)=>{
if (failHandles.indexOf (handle) < 0) {
console.log ("\tSucHandle:%s\n", handle);
}
1)
} else {
// Obtain an ACK from the consumer.

console.log ("Ack Message suc, RequestId:%$s\n\t", res.requestId, handles.join(',"')

}
} catch(e) {
if (e.Code.indexOf ("MessageNotExist") > -1) {
// If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
console.log ("Consume Message: no new message, RequestId:%s, Code:%s", e.Requestld,
e.Code) ;
} else {

console.log(e);

6.3.6. PHP SDK

6.3.6.1. Prepare the environment

> Document Version: 20220816 230

User Guide- SDK user guide Alibaba Cloud Message Queue

This topic describes how to prepare the environment before you use the HTTP client SDK for PHP to
send and consume messages.

Environment requirements

e PHP 5.5.0 or lateris installed. For more information, see Install PHP.
e Composeris installed. For more information, see Install Composer.

After PHP is installed, youcanrunthe php -v= command to view the version of PHP that you
installed.

Install the SDK for PHP

Toinstall the SDK for PHP, performthe following steps:

1. Add the following dependency to the composer.jsonfile in your PHP installation directory:

{
"require": {

"aliyunmg/mg-http-sdk": ">=1.0.3"

}

2. Runthe following command to use Composerto install the SDK for PHP:

composer install

6.3.6.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for PHP to send and consume normal messages.

Prerequisites

The following operations are performed:

e Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
private $client;

private $producer;

231 > Document Version: 20220816

https://windows.php.net/download/?spm=a2c4g.11186623.2.4.623f68b1vzOYhf
https://getcomposer.org/download/?spm=a2c4g.11186623.2.5.623f68b1vzOYhf

Alibaba Cloud Message Queue User Guide- SDK user guide

public function _ construct ()
{

Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) 7

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

Stopic = "S${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

S$instanceld = "$S{INSTANCE ID}";

Sthis->producer = $this->client->getProducer (Sinstanceld, S$topic);

}
public function run()
{

try

{

for ($i=1; S$i<=4; S$i++)

{

SpublishMessage = new TopicMessage (

// The content of the message.

"hello mg!"

)i

// The custom property of the message.

SpublishMessage->putProperty ("a", $i);

// The key of the message.

SpublishMessage->setMessageKey ("MessageKey") ;

Sresult = $this->producer->publishMessage ($SpublishMessage) ;

print "Send mg message success. msgld is:" . Sresult->getMessageId() . ", b
odyMD5 is:" . Sresult->getMessageBodyMD5 () . "\n";

}

} catch (\Exception $e) {

print r($e->getMessage() . "\n");

}

Sinstance = new ProducerTest () ;
$instance->run () ;

2>

> Document Version: 20220816 232

User Guide- SDK user guide Alibaba Cloud Message Queue

Consume normal messages

The following sample code provides an example on how to consume normal messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
private $client;
private Sproducer;
public function _ construct ()
{

Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) 7

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

Stopic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

SgroupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "${INSTANCE ID}";

Sthis->consumer = S$this->client->getConsumer ($instanceld, S$topic, S$groupld);

}
public function run()
{

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

while (True) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

Smessages = $this->consumer->consumeMessage (

3, // The maximum number of messages that can be consumed at a time. In

R . I B . DU [gy S SR -\ TSRy DU . DIV | R PRV o~ oo

233 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

LIILS exdllple, LIle vdlue 15 seL LO OS. Lllle [dXl1Ilull vdlue LlildLl you Cdll SpecClly 15 10.
3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
) i
} catch (\Exception S$e) {
if ($e instanceof MQ\Exception\MessageNotExistException) {
// If no message in the topic is available for consumption, the long po
1ling mode continues to take effect.
printf ("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
continue;
}
print r($e->getMessage() . "\n");
sleep(3);
continue;
}
print "consume finish, messages:\n";
// Specify the message consumption logic.
SreceiptHandles = array();
foreach (Smessages as S$message) {
SreceiptHandles[] = $message->getReceiptHandle () ;
printf ("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
Smessage->getMessageId (), S$message->getMessageTag (), Smessage->getMessa
geBody () ,
Smessage->getPublishTime (), Smessage->getFirstConsumeTime (), Smessage->
getConsumedTimes (), Smessage->getNextConsumeTime (),
Smessage->getMessageKey ()) ;
print_r($message—>getProperties());
}
// 1If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by S$message->getNextConsumeTime () elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
print r($receiptHandles) ;
try {
Sthis->consumer->ackMessage (SreceiptHandles) ;
} catch (\Exception $e) {
if ($e instanceof MQ\Exception\AckMessageException) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
printf ("Ack Error, RequestId:%s\n", $e->getRequestId());
foreach ($e->getAckMessageErrorItems () as S$SerrorItem) {
printf ("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", Serrorlte
m->getReceiptHandle (), S$errorItem->getErrorCode (), S$errorItem->getErrorCode()) ;

}

}
print "ack finish\n";

}
Sinstance = new ConsumerTest () ;

Sinstance->run () :

> Document Version: 20220816 234

User Guide- SDK user guide Alibaba Cloud Message Queue

?>

6.3.6.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for PHP to send and consume
ordered messages.

Background information
Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
private $client;
private $producer;
public function construct ()
{
Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the

AccessKey ID in the Apsara Uni-manager Operations Console.

235 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)i

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

Stopic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "$S{INSTANCE ID}";

Sthis->producer = $this->client->getProducer ($instanceld, S$topic);

}
public function run()
{
try
{
for ($i=1; $i<=4; S$i++)
{

SpublishMessage = new TopicMessage (

"hello mq!"// The content of the message.

)i

// The custom property of the message.

SpublishMessage->putProperty ("a", $i);

// The shard key that is used to distribute ordered messages to a specific
partition. Shard keys can be used to identify different partitions. A shard key is differen
t from a message key.

SpublishMessage->setShardingKey ($1 $ 2);

Sresult = $this->producer->publishMessage ($SpublishMessage) ;

print "Send mg message success. msgld is:" . $result->getMessageId() . ", b
odyMD5 is:" . Sresult->getMessageBodyMD5 () . "\n";

}
} catch (\Exception S$e) {
print r(Se->getMessage() . "\n");

}

Sinstance = new ProducerTest();
Sinstance->run() ;

2>

Consume ordered messages

The following sample code provides an example on how to consume ordered messages:

<?php

require "vendor/autoload.php";
use MQ\Model\TopicMessage;

use MQ\MQClient;

class ConsumerTest

> Document Version: 20220816 236

User Guide- SDK user guide Alibaba Cloud Message Queue

private $client;

private Sproducer;

public function _ construct ()
{

Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) i

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

Stopic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

SgroupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "${INSTANCE ID}";

Sthis->consumer = $this->client->getConsumer ($instanceld, S$topic, S$groupld);

}
public function run()
{

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

while (True) {

try {

// Consume messages in long polling mode. The consumer may pull partitional
ly ordered messages from multiple partitions. The consumer consumes messages from the same
partition in the order in which the messages are sent.

// A consumer pulls partitionally ordered messages from a partition. If the
broker does not receive an acknowledgment (ACK) for a message after the message is consumed
, the consumer consumes the message again.

// The consumer can consume the next batch of messages from a partition onl
y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

Smessages = S$this->consumer->consumeMessageOrderly (

3, // The maximum number of messages that can be consumed at a time. In

this example, the value is set to 3. The maximum value that you can specify is 16.

237 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
)7
} catch (\Exception $e) {
if ($e instanceof MQ\Exception\MessageNotExistException) {
// If no message in the topic is available for consumption, the long po
1ling mode continues to take effect.
printf ("No message, contine long polling!RequestId:%s\n", $e->getReques

tId());
continue;

}
print r($e->getMessage() . "\n");
sleep(3);
continue;

}

print "======>consume finish, messages:\n";

// Specify the message consumption logic.

SreceiptHandles = array();

foreach (Smessages as S$message) {

SreceiptHandles[] = $message->getReceiptHandle () ;
printf ("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d, ShardingKey:%s\n",
Smessage->getMessageIld (), Smessage->getMessageTag (), S$message->getMessa
geBody (),
Smessage->getPublishTime (), Smessage->getFirstConsumeTime (), Smessage->
getConsumedTimes (), Smessage->getNextConsumeTime (),
Smessage->getShardingKey ()) ;
print r($message->getProperties());

}

// If the broker does not receive an ACK for a message from the consumer before
the period of time specified by Smessage->getNextConsumeTime () elapses, the broker delivers
the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

print r($receiptHandles) ;

try {

Sthis->consumer->ackMessage (SreceiptHandles) ;
} catch (\Exception $e) {
if ($e instanceof MQ\Exception\AckMessageException) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
printf ("Ack Error, RequestId:%s\n", S$Se->getRequestId());
foreach ($e->getAckMessageErrorItems() as $errorItem) {
printf ("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", SerrorIte

m->getReceiptHandle (), SerrorItem->getErrorCode (), S$SerrorIltem->getErrorCode());

}

print "=======>ack finish\n";

}
Sinstance = new ConsumerTest ();

Sinstance->run{() ;

> Document Version: 20220816 238

User Guide- SDK user guide Alibaba Cloud Message Queue

?>

6.3.6.4. Send and consume scheduled messages and

delayed messages

This topic provides sample code to show how to use the HTTP client SDK for PHP to send and consume
scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites

The following operations are performed:

e Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache Rocket MQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

The following sample code provides an example on how to send scheduled messages or delayed
messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
private $client;
private S$producer;
public function _ construct ()
{
Sthis->client = new MQClient (
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,

log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,

239 > Document Version: 20220816

Alibaba Cloud Message Queue

click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)7

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

Stopic = "S${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

Sinstanceld = "$S{INSTANCE ID}";

$this->producer = $this->client->getProducer ($instanceld, S$topic);

}
public function run ()
{
try
{
for ($i=1; $i<=4; S$i++)
{

SpublishMessage = new TopicMessage (

"hello mg!"// The content of the message.

)7

// The custom property of the message.

SpublishMessage->putProperty ("a", $i);

// The key of the message.

SpublishMessage->setMessageKey ("MessageKey") ;

// The period of time after which the broker delivers the message. In this
example, when the broker receives a message, the broker waits for 10 seconds before it deli
vers the message to the consumer. Set this parameter to a timestamp in milliseconds.

// If the producer sends a scheduled message, set the parameter to the time
interval between the scheduled point in time and the current point in time.

SpublishMessage->setStartDeliverTime (time () * 1000 + 10 * 1000);

Sresult = $this->producer->publishMessage ($SpublishMessage) ;

print "Send mg message success. msgld is:" . $result->getMessageId() . ", b
odyMD5 is:" . Sresult->getMessageBodyMD5 () . "\n";

}
} catch (\Exception $e) {
print r($e->getMessage() . "\n");

}

Sinstance = new ProducerTest();
Sinstance->run{() ;

2>

User Guide- SDK user guide

> Document Version: 20220816 240

User Guide- SDK user guide Alibaba Cloud Message Queue

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
private $client;
private Sproducer;
public function _ construct ()
{

Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) i

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

Stopic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

SgroupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "${INSTANCE ID}";

Sthis->consumer = S$this->client->getConsumer ($instanceld, S$topic, S$groupld);

}
public function run()
{

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

while (True) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

Smessages = $this->consumer->consumeMessage (

-~ 17 e . . - ca a . ' Co -

241 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

3, // lhe maxlmum numoer oI messages Tthat can De consumed at a time. Ln
this example, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
)i
} catch (\Exception S$e) {
if ($e instanceof MQ\Exception\MessageNotExistException) {
// If no message in the topic is available for consumption, the long po
lling mode continues to take effect.
printf ("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
continue;
}
print r($e->getMessage() . "\n");
sleep(3);
continue;
}
print "consume finish, messages:\n";
// Specify the message consumption logic.
SreceiptHandles = array();
foreach (Smessages as Smessage) {
SreceiptHandles[] = $message->getReceiptHandle () ;
printf ("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
Smessage->getMessageId (), Smessage->getMessageTag (), Smessage->getMessa
geBody () ,
Smessage->getPublishTime (), Smessage->getFirstConsumeTime (), S$message-—>
getConsumedTimes (), Smessage->getNextConsumeTime (),
Smessage->getMessageKey ()) ;
print_r($message—>getProperties());
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by S$message->getNextConsumeTime () elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
print r($receiptHandles) ;
try {
Sthis->consumer->ackMessage (SreceiptHandles) ;
} catch (\Exception S$e) {
if ($e instanceof MQ\Exception\AckMessageException) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
printf ("Ack Error, RequestId:%s\n", $e->getRequestId());
foreach ($e->getAckMessageErrorItems () as S$errorItem) {
printf ("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", Serrorlte
m->getReceiptHandle (), S$errorItem->getErrorCode (), S$SerrorItem->getErrorCode()) ;
}

}

print "ack finish\n";

}

Sinatance = new (CancimerTeat () -

> Document Version: 20220816 242

User Guide- SDK user guide Alibaba Cloud Message Queue

i cuaaoe R UR U
Sinstance->run () ;
>

6.3.6.5. Send and consume transactional messages

Message Queue for Apache Rocket MQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
PHP to send and consume transactional messages.

Background information

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Execute
ocal
transaction

Commit: Deliver
the message

2. Half message
sent successfully

4. Commit or Rollback

Rollback:
Not deliver the message and it
will be deleted after being
stored for three days

For more information about the message routing feature, see Transactional messages.

6. Check status of 5. Check the transaction’s status again
the local transaction if not receiving confirmation from Step 4

Prerequisites
The following operations are performed:

e Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

<?php

require "vendor/autoload.php";

use MQ\Model\TopicMessage;

use MQ\MQClient;

class ProducerTest

{
private $client;
private S$transProducer;
private $count;
private $popMsgCount;
public function construct ()
{

243 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"$ {SECRET KEY}"

)

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

Stopic = "S${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

SgroupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "${INSTANCE ID}";

Sthis->transProducer = $this->client->getTransProducer ($instanceld, $topic, S$groupld

$this->count = 0;
Sthis->popMsgCount = 0;
}
function processAckError (Se) {
if ($e instanceof MQ\Exception\AckMessageException) {
// If a transactional message is not committed or rolled back within the timeou
t period specified by the TransCheckImmunityTime parameter or the NextConsumeTime parameter
, the commit or rollback operation fails. The TransCheckImmunityTime parameter specifies a
timeout period for the handle of transactional messages. The NextConsumeTime parameter spec
ifies a timeout period for the handle of consumeHalfMessage.
printf ("Commit/Rollback Error, RequestId:%s\n", S$e->getRequestId());
foreach ($e->getAckMessageErrorItems () as S$errorItem) {
printf ("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", S$errorItem->getRe
ceiptHandle (), S$errorlItem->getErrorCode (), SerrorItem->getErrorCode());
}
} else {

print r($e);

}
function consumeHalfMsg() {
while ($this->count < 3 && $this->popMsgCount < 15) {
$this->popMsgCount++;
try {
Smessages = S$this->transProducer->consumeHalfMessage (4, 3);
} catch (\Exception $e) {
if ($e instanceof MQ\Exception\MessageNotExistException) {

print "no half transaction message\n";

> Document Version: 20220816 244

User Guide- SDK user guide Alibaba Cloud Message Queue

continue;
}
print r($e->getMessage() . "\n");
sleep(3);
continue;
}
foreach (Smessages as Smessage) {
printf ("ID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d\nConsume
dTimes:%d, NextConsumeTime:%d\nPropA:%s\n",
Smessage->getMessageId (), S$message->getMessageTag (), Smessage->getMessa
geBody () ,
Smessage->getPublishTime (), Smessage->getFirstConsumeTime (), Smessage->
getConsumedTimes (), Smessage->getNextConsumeTime (),
Smessage->getProperty ("a")) ;
print r($message->getProperties());
SpropA = Smessage->getProperty ("a");

SconsumeTimes = S$message->getConsumedTimes () ;

try {
if (SpropA == "1") {
print "\n commit transaction msg: " . Smessage->getMessageId() . "\
"
$this->transProducer->commit ($Smessage->getReceiptHandle()) ;
Sthis->count++;
} else 1if (SpropA == "2" && SconsumeTimes > 1) {
print "\n commit transaction msg: " . Smessage->getMessageId() . "\
n";
Sthis->transProducer->commit ($Smessage->getReceiptHandle()) ;
Sthis->count++;
} else if ($propA == "3") {
print "\n rollback transaction msg: " . Smessage->getMessageld ()
"\n";
Sthis->transProducer->rollback (Smessage->getReceiptHandle ()) ;
Sthis->count++;
} else {
print "\n unknown transaction msg: " Smessage->getMessageId() . "
\n";

}
} catch (\Exception $e) {

processAckError (Se) ;

}
public function run()
{
// Cyclically send four transactional messages.
for ($1 = 0; $i < 4; Si++) {
SpubMsg = new TopicMessage ("hello,mg");
// The custom property of the message.
S$pubMsg->putProperty ("a", $i);
// The key of the message.
SpubMsg->setMessageKey ("MessageKey") ;
// The time interval between the time when the transactional message is sent an

d the start time of the first transaction status check. Unit: seconds. Valid values: 10 to

~Ann

245 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

3UU.

// If the message is not committed or rolled back after the first transaction s
tatus check is performed, the broker initiates a request to check the status of the local t
ransaction at an interval of 10 seconds within the next 24 hours.

SpubMsg->setTransCheckImmunityTime (10) ;

StopicMessage = S$this->transProducer->publishMessage (SpubMsg) ;

print "\npublish -> \n\t" . S$topicMessage->getMessageld() . " " . StopicMessage
->getReceiptHandle () . "\n";
if (81 == 0) {
try {

// After the producer sends the transactional message, the broker obtai
ns the handle of the half message that corresponds to the transactional message and commits
or rolls back the transactional message based on the status of the handle.

Sthis->transProducer->commit ($topicMessage->getReceiptHandle()) ;

"

print "\n commit transaction msg when publish: StopicMessage->getMe
ssageld() . "\n";
} catch (\Exception $e) {
// If the transactional message is not committed or rolled back before
the timeout period specified by the TransCheckImmunityTime parameter elapses, the commit or
rollback operation fails.

processAckError ($e) ;

}

// The client needs a thread or a process to process unacknowledged transactional m
essages.

// Process unacknowledged transactional messages.

Sthis->consumeHalfMsg () ;

}

Sinstance = new ProducerTest () ;
Sinstance->run() ;

2>

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
private $client;
private $producer;
public function _ construct ()
{
Sthis->client = new MQClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

> Document Version: 20220816 246

User Guide- SDK user guide Alibaba Cloud Message Queue

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) i

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

Stopic = "S${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

SgroupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

SinstanceId = "S${INSTANCE ID}";

Sthis->consumer = $this->client->getConsumer ($instanceld, S$topic, $groupld);

}
public function run()
{

// Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.

while (True) {

try {

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.

Smessages = $this->consumer->consumeMessage (

3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
)7
} catch (\Exception $e) {

if ($e instanceof MQ\Exception\MessageNotExistException) {

// If no message in the topic is available for consumption, the long po
1ling mode continues to take effect.

printf ("No message, contine long polling!RequestId:%s\n", S$e->getReques
tId());

continue;

}

print r($e->getMessage() . "\n");

sleep(3);

continue;

}

print "consume finish, messages:\n";

// Specify the message consumption logic.
SreceiptHandles = array();

foreach (Smessages as Smessage) {

T P L o E Y By T W/

247 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

recelpLndiules |] = lluessdye—syelrecelpLndiale () ;
printf ("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
Smessage->getMessageId (), S$Smessage->getMessageTag (), Smessage->getMessa
geBody () ,
Smessage->getPublishTime () , Smessage->getFirstConsumeTime (), S$message->
getConsumedTimes (), Smessage->getNextConsumeTime (),
Smessage->getMessageKey ()) ;
print_r($message—>getProperties());
}
// If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by S$message->getNextConsumeTime () elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
print r($receiptHandles) ;
try {
Sthis->consumer->ackMessage (SreceiptHandles) ;
} catch (\Exception $e) {
if ($e instanceof MQ\Exception\AckMessageException) {
// If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
printf ("Ack Error, RequestId:%s\n", Se->getRequestId());
foreach ($e->getAckMessageErrorItems () as S$SerrorItem) {
printf ("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", Serrorlte
m->getReceiptHandle (), $errorItem->getErrorCode (), S$errorItem->getErrorCode()) ;

}

}

print "ack finish\n";

}

Sinstance = new ConsumerTest () ;
Sinstance->run{() ;

?>

6.3.7. C# SDK

6.3.7.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for C# to send
and consume messages.
Environment requirements

e .NET is installed. For more information, see Install .NET.
e Visual Studio 2015 or later s installed. For more information, visit the official website of Visual Studio.

After .NET isinstalled, you canrunthe dotnet --version command to checkthe version of .NET that
you installed.

> Document Version: 20220816 248

https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/zh-hans/downloads/

User Guide- SDK user guide Alibaba Cloud Message Queue

Install the SDK for C#

Toinstall the SDK for C#, performthe following steps:

1. Download the SDK for C# and the project file to your on-premises machine and decompress them.
Aliyun MQ _SDK'is the directory where the SDK is located. Aliyun MQ_SDK.slnis the project file.

2. Use Visual Studio to openthe Aliyun MQ SDK.slnfile and import the file to the Aliyun_MQ_SDK

project.

3. Runthe Samples.csfile. Inthe Aliyun_MQ_SDK project, the Samples.csfile appears. This file provides
the sample code on how to send and consume messages by using the SDK for C#. Replace the
values in the sample code with the actual values that are used in your application. Then, save and
run the file.

6.3.7.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for C# to send and consume normal messages.

Prerequisites

The following operations are performed:

Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
public class ProducerSample
{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "${ACCESS_KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the

AccessKey secret in the Apsara Uni-manager Operations Console.

249 > Document Version: 20220816

https://github.com/aliyunmq/mq-http-csharp-sdk

Alibaba Cloud Message Queue

User Guide- SDK user guide

private const string secretAccessKey = "${SECRET_KEY}";

// The topic to which you want to send messages. The topic is created in the Messag

e Queue for Apache RocketMQ console.
private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th

e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance

does not have a namespace, set the instance ID to null or an empty string. You can check wh

ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceld = "${INSTANCE_ID}";

private static MQClient client = new Aliyun.MQ.MQClient (_accessKeyId, secretAcces

sKey, endpoint);

static MQProducer producer = client.GetProducer(instanceld, _topicName);

static void Main(string[] args)
{
try
{
// Cyclically send four messages.
for (int 1 = 0; 1 < 4; 1i++)
{
TopicMessage sendMsg;
// The content of the message.
sendMsg = new TopicMessage ("hello mg");
// The custom property of the message.
sendMsg.PutProperty("a", i.ToString());
// The key of the message.
sendMsg.MessageKey = "MessageKey";

TopicMessage result = producer.PublishMessage (sendMsqg) ;

Console.WritelLine ("publis message success:" + result);

}
}
catch (Exception ex)

{

Console.Write (ex);

Consume normal messages

The following sample code provides an example on how to consume normal messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
public class ConsumerSample

{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log

> Document Version: 20220816

250

User Guide- SDK user guide Alibaba Cloud Message Queue

on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S$S{SECRET KEY}";

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceId = "${INSTANCE ID}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

private const string groupld = "${GROUP ID}";

private static MQClient client = new Aliyun.MQ.MQClient (_accessKeylId, secretAcces
sKey, _endpoint);

static MQConsumer consumer = client.GetConsumer(instanceld, topicName, groupId,
null) ;

static void Main(string[] args)

{

// Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
while (true)
{
try
{

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.

List<Message> messages = null;

try

{

messages = consumer.ConsumeMessage (
3, // The maximum number of messages that can be consumed at a

time. In this example, the value is set to 3. The maximum value that you can specify is 16.

3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.

)7
}
catch (Exception expl)
{

if (expl is MessageNotExistException)

{

251 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Console.WriteLine (Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)expl) .RequestId) ;
continue;
}
Console.WritelLine (expl) ;
Thread.Sleep (2000) ;
}
if (messages == null)
{
continue;
}
List<string> handlers = new List<string>();
Console.WriteLine (Thread.CurrentThread.Name + " Receive Messages:");
// Specify the message consumption logic.
foreach (Message message in messages)
{
Console.WriteLine (message) ;
Console.WritelLine ("Property a is:" + message.GetProperty("a")):
handlers.Add (message.ReceiptHandle) ;
}
// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
try
{
consumer.AckMessage (handlers) ;
Console.WriteLine ("Ack message success:");
foreach (string handle in handlers)
{
Console.Write ("\t" + handle);
}
Console.WriteLine () ;
}
catch (Exception exp2)
{
// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
if (exp2 is AckMessageException)
{
AckMessageException ackExp = (AckMessageException)exp?2;
Console.WriteLine ("Ack message fail, RequestId:" + ackExp.Reque
stId);
foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
{
Console.WriteLine ("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorlItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);

}

}
catch (Exception ex)

{

> Document Version: 20220816 252

User Guide- SDK user guide Alibaba Cloud Message Queue

Console.Writeline (ex) ;
Thread.Sleep (2000) ;

6.3.7.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for CG# to send and consume
ordered messages.

Background information
Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
public class OrderProducerSample
{
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log

on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic

k Tnatancea Mn the Tnatancea nance aalert the name nf vanir inatance Then wview the HTTP -~

253 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

PN U O SR U S SRS} Y eg e L O i R 2 o T SO R GOSNV GNP

ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "S${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S$S{SECRET KEY}";

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceId = "${INSTANCE ID}";

private static MQClient client = new Aliyun.MQ.MQClient (_accessKeyId, secretAcces
sKey, _endpoint);

static MQProducer producer = client.GetProducer(instanceld, _topicName);

static void Main(string[] args)

{

try
{
// Cyclically send eight messages.
for (int 1 = 0; 1 < 8; 1i++)
{
// The content and tag of the message.
TopicMessage sendMsg = new TopicMessage ("hello mg", "tag");
// The custom property of the message.
sendMsg.PutProperty("a", i.ToString());
// The shard key that is used to distribute ordered messages to a speci
fic partition. Shard keys can be used to identify different partitions. A shard key is diff

erent from a message key.

sendMsg.ShardingKey (i % 2).ToString();
TopicMessage result = producer.PublishMessage (sendMsg) ;

Console.WritelLine ("publis message success:" + result);

}

catch (Exception ex)

{

Console.Write (ex) ;

Consume ordered messages

The following sample code provides an example on how to consume ordered messages:

using System;

using System.Collections.Generic;

P Ry S 1 | AR PPN

> Document Version: 20220816 254

User Guide- SDK user guide Alibaba Cloud Message Queue

US1Ilg DdDySLEll. Lllredualilyy
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;

namespace Aliyun.MQ.Sample
{

public class OrderConsumerSample

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "S${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S$S{SECRET KEY}";

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

private const string groupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
private const string instanceld = "${INSTANCE ID}";

private static MQClient client = new Aliyun.MQ.MQClient (accessKeyId, secretAcces
sKey, _endpoint);

static MQConsumer consumer = client.GetConsumer (_instanceld, topicName, groupld,
null);

static void Main(string[] args)

{

// Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
while (true)
{
try
{

// Consume messages in long polling mode. The consumer may pull partiti
onally ordered messages from multiple partitions. The consumer consumes messages from the s
ame partition in the order in which the messages are sent.

// A consumer pulls partitionally ordered messages from a partition. If
the broker does not receive an acknowledgment (ACK) for a message after the message is cons
umed, the consumer consumes the message again.

// The consumer can consume the next batch of messages from a partition
only after all messages that are pulled from the partition in the previous batch are acknow
ledged to be consumed.

// In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess

Aade becomes available for consumption within this period. the broker immediatelv sends a re

255 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

e e e e e e o e e e e e —a i maan meme e J emee e e ame e o e e I m—meee e = —

sponse to the consumer. In this example, the period is set to 3 seconds.
List<Message> messages = null;
try
{
messages = consumer.ConsumeMessageOrderly (
3, // The maximum number of messages that can be consumed at a

time. In this example, the value is set to 3. The maximum value that you can specify is 16.

3 // The length of a long polling period. Unit: seconds. In thi
s example, the value is set to 3. The maximum value that you can specify is 30.
)7
}
catch (Exception expl)
{
if (expl is MessageNotExistException)
{
Console.WriteLine (Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)expl) .RequestId) ;
continue;
}
Console.WritelLine (expl) ;
Thread.Sleep (2000) ;
}
if (messages == null)
{
continue;
}
List<string> handlers = new List<string>();
Console.WriteLine (Thread.CurrentThread.Name + " Receive Messages:");
// Specify the message consumption logic.
foreach (Message message in messages)
{
Console.WriteLine (message) ;
Console.WritelLine ("Property a is:" + message.GetProperty("a")):
handlers.Add (message.ReceiptHandle) ;
}
// If the broker does not receive an ACK for a message from the consume
r before the period of time specified by Message.nextConsumeTime elapses, the broker delive
rs the message for consumption again.
// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
try
{
consumer.AckMessage (handlers) ;
Console.WriteLine ("Ack message success:");
foreach (string handle in handlers)
{
Console.Write ("\t" + handle);
}
Console.WriteLine () ;
}
catch (Exception exp2)
{

// If the handle of a message times out, the broker cannot receive

> Document Version: 20220816 256

User Guide- SDK user guide Alibaba Cloud Message Queue

an ACK for the message from the consumer.
if (exp2 is AckMessageException)
{
AckMessageException ackExp = (AckMessageException)exp?2;
Console.WriteLine ("Ack message fail, RequestId:" + ackExp.Reque
stId);
foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
{
Console.WriteLine ("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);

}

}

catch (Exception ex)

{
Console.WriteLine (ex) ;
Thread.Sleep (2000) ;

6.3.7.4. Send and consume scheduled messages and

delayed messages

This topic provides sample code to show how to use the HTTP client SDK for C# to send and consume
scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites

The following operations are performed:

257 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

e Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

e C(Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

The following sample code provides an example on how to send scheduled messages or delayed
messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
public class ProducerSample
{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "${SECRET_KEY}";

// The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceld = "S${INSTANCE ID}";

private static MQClient client = new Aliyun.MQ.MQClient (_accessKeyId, secretAcces
sKey, _endpoint);

static MQProducer producer = client.GetProducer(instanceId, topicName);

static void Main (string[] args)

{

try
{
// Cyclically send four messages.
for (int 1 = 0; i < 4; i++)
{
TopicMessage sendMsg;
// The content of the message.

sendMsg = new TopicMessage ("hello mg");

> Document Version: 20220816 258

User Guide- SDK user guide Alibaba Cloud Message Queue

// The custom property of the message.

sendMsg.PutProperty("a", i.ToString());

// The period of time after which the broker delivers the message. In t
his example, when the broker receives a message, the broker waits for 10 seconds before it

delivers the message to the consumer. Set this parameter to a timestamp in milliseconds.

// If the producer sends a scheduled message, set the parameter to the
time interval between the scheduled point in time and the current point in time.
sendMsg.StartDeliverTime = AliyunSDKUtils.GetNowTimeStamp () + 10 * 1000

TopicMessage result = producer.PublishMessage (sendMsg) ;

Console.WriteLine ("publis message success:" + result);

}
catch (Exception ex)
{

Console.Write (ex) ;

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
public class ConsumerSample
{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "S${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S${SECRET KEY}";

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance

259 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
private const string instanceld = "${INSTANCE ID}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
private const string groupId = "${GROUP ID}";
private static MQClient client = new Aliyun.MQ.MQClient (_accessKeyId, secretAcces
sKey, _endpoint);
static MQConsumer consumer = client.GetConsumer (_instanceld, topicName, groupld,
null);
static void Main(string[] args)
{
// Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
while (true)
{
try
{

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.

List<Message> messages = null;

try

{

messages = consumer.ConsumeMessage (
3, // The maximum number of messages that can be consumed at a

time. In this example, the value is set to 3. The maximum value that you can specify is 16.

3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.
) ;
}
catch (Exception expl)
{
if (expl is MessageNotExistException)
{
Console.WriteLine (Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)expl) .RequestId) ;
continue;
}
Console.WritelLine (expl) ;
Thread.Sleep (2000) ;
}
if (messages == null)
{
continue;
}
List<string> handlers = new List<string>();
Console.WritelLine (Thread.CurrentThread.Name + " Receive Messages:");
// Specify the message consumption logic.
foreach (Message message in messages)

{

> Document Version: 20220816 260

User Guide- SDK user guide Alibaba Cloud Message Queue

Console.WritelLine (message) ;
Console.WritelLine ("Property a is:" + message.GetProperty("a")):
handlers.Add (message.ReceiptHandle) ;
}
// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
try
{
consumer.AckMessage (handlers) ;
Console.WritelLine ("Ack message success:");
foreach (string handle in handlers)
{
Console.Write ("\t" + handle);
}
Console.WriteLine () ;
}
catch (Exception exp2)
{
// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
if (exp2 is AckMessageException)
{
AckMessageException ackExp = (AckMessageException)exp?2;
Console.WriteLine ("Ack message fail, RequestId:" + ackExp.Reque
stId);
foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
{
Console.WriteLine ("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);

}

}

catch (Exception ex)

{
Console.WriteLline (ex) ;
Thread.Sleep (2000) ;

6.3.7.5. Send and consume transactional messages

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
C# to send and consume transactional messages.

261 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

Background information

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Ei(ecute 2. Half message Commit: Deliver
ocal sent successfully the message
transaction
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

Prerequisites
The following operations are performed:

e Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

e C(Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache Rocket MQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages

The following sample code provides an example on how to send transactional messages:

using System;

using System.Collections.Generic;

using System.Threading;

using Aliyun.MQ.Model;

using Aliyun.MQ.Model.Exp;

using Aliyun.MQ.Util;

namespace Aliyun.MQ.Sample

{
public class TransProducerSample
{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S${SECRET KEY}";

// The topic to which you want to send messages. The topic is created in the Messag

e Queue for Apache RocketMQ console.

Nnrisrata Annct ctrina +Arni ANlama = & IMADTALT .

> Document Version: 20220816 262

User Guide- SDK user guide Alibaba Cloud Message Queue

PLAVALS Luilol Lliiily LupLonoins — wliuLivg g

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceId = "${INSTANCE ID}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

private const string groupId = "${GROUP ID}";

private static readonly MQClient client = new Aliyun.MQ.MQClient (_accessKeylId, _se
cretAccessKey, _endpoint);

private static readonly MQTransProducer transProducer = client.GetTransProdcuer(i
nstanceld, topicName, groupld);

static void ProcessAckError (Exception exception)

{

// If a transactional message is not committed or rolled back before the timeou
t period specified by the TransCheckImmunityTime parameter for the handle of the transactio
nal message elapses or before the timeout period specified for the handle of consumeHalfMes
sage elapses, the commit or rollback operation fails. In this example, the timeout period f
or the handle of consumeHalfMessage is 10 seconds.
if (exception is AckMessageException)
{
AckMessageException ackExp = (AckMessageException)exception;
Console.Writeline ("Ack message fail, RequestId:" + ackExp.RequestId);
foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
{
Console.WriteLine ("\tErrorHandle:" + errorItem.ReceiptHandle + ",ErrorC
ode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);

}

}
static void ConsumeHalfMessage ()
{
int count = 0;
while (true)
{
if (count == 3)
break;
try
{
// Check the status of half messages. This process is similar to consum
ing normal messages.
List<Message> messages = null;
try
{
messages = transProducer.ConsumeHalfMessage (3, 3);
} catch (Exception expl) {
if (expl is MessageNotExistException)
{
Console.WriteLine (Thread.CurrentThread.Name + " No half message
, " + ((MessageNotExistException)expl) .RequestId) ;
continue;
}

Console.WriteLine (expl) ;

263 > Document Version: 20220816

Alibaba Cloud Message Queue

User Guide- SDK user guide

Thread.Sleep (2000) ;

}

if (messages

== null)

continue;

// Specify the business processing logic.

foreach (Message message in messages)

{

Console.WriteLine (message) ;

int a =

int.Parse (message.GetProperty("a")) ;

uint consumeTimes = message.ConsumedTimes;

try {
if (a == 1) {
// Confirm to commit the transactional message.
transProducer.Commit (message.ReceiptHandle) ;
count++;
Console.WriteLine ("Id:" + message.Id + ", commit");
} else if (a == 2 && consumeTimes > 1) {
// Confirm to commit the transactional message.
transProducer.Commit (message.ReceiptHandle) ;
count++;
Console.WriteLine ("Id:" + message.Id + ", commit");
} else if (a == 3) {
// Confirm to roll back the transactional message.
transProducer.Rollback (message.ReceiptHandle) ;
count++;
Console.WriteLine ("Id:" + message.Id + ", rollback");
} else {
// Do not perform operations. Check the status next time.
Console.WriteLine ("Id:" + message.Id + ", unkonwn");
}
} catch (Exception ackError) {

ProcessAckError (ackError) ;

}

catch (Exception ex)

{

Console.WritelLine (ex) ;
Thread.Sleep (2000) ;

}

static void Main(string[] args)

{

// The client needs a thread or a process to process unacknowledged transaction

al messages.

// Start a thread to process unacknowledged transactional messages.

Thread consumeHalfThread = new Thread (ConsumeHalfMessage) ;

consumeHalfThread.Start () ;

try
{

// Cyclically send four transactional messages. Among the four messages, co

mmit the first message after the message is sent,

d on the specified conditions.

and process the other three messages base

> Document Version: 20220816

264

User Guide- SDK user guide Alibaba Cloud Message Queue

for (int i = 0; 1 < 4; i++)
{

TopicMessage sendMsg = new TopicMessage ("trans msg");

sendMsg.MessageTag = "a";

sendMsg.MessageKey = "MessageKey";

sendMsg.PutProperty("a", i.ToString());

// The time interval between the time when the transactional message 1is
sent and the start time of the first transaction status check. Unit: seconds. Valid values:
10 to 300.

// If the message is not committed or rolled back after the first trans
action status check is performed, the broker initiates a request to check the status of the
local transaction at an interval of 10 seconds within the next 24 hours.

sendMsg.TransCheckImmunityTime = 10;

TopicMessage result = transProducer.PublishMessage (sendMsq) ;

Console.WritelLine ("publis message success:" + result);

try {

if (!string.IsNullOrEmpty (result.ReceiptHandle) && i == 0)
{

// After the producer sends the transactional message, the brok
er obtains the handle of the half message that corresponds to the transactional message and
commits or rolls back the transactional message based on the status of the handle.

transProducer.Commit (result.ReceiptHandle) ;

Console.WriteLine ("Id:" + result.Id + ", commit");

}
} catch (Exception ackError) {

ProcessAckError (ackError) ;

}

} catch (Exception ex) {
Console.Write (ex) ;

}

consumeHalfThread.Join () ;

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{

public class ConsumerSample

{

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log

on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e

ndpoint on the Network Management tab.

265 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

private const string endpoint = "${HTTP ENDPOINT}";

// The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.

private const string accessKeyId = "${ACCESS KEY}";

// The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

private const string secretAccessKey = "S$S{SECRET KEY}";

// The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.

private const string topicName = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.

private const string instanceId = "${INSTANCE ID}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.

private const string groupId = "${GROUP ID}";

private static MQClient client = new Aliyun.MQ.MQClient (_accessKeylId, secretAcces
sKey, endpoint);

static MQConsumer consumer = client.GetConsumer(instanceld, topicName, groupIld,
null) ;

static void Main(string[] args)

{

// Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
while (true)
{
try
{

// Consume messages in long polling mode.

// In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.

List<Message> messages = null;

try

{

messages = consumer.ConsumeMessage (
3, // The maximum number of messages that can be consumed at a

time. In this example, the value is set to 3. The maximum value that you can specify is 16.

3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.
)7
}
catch (Exception expl)
{
if (expl is MessageNotExistException)
{
Console.WriteLine (Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)expl) .RequestId) ;

continue;

> Document Version: 20220816 266

User Guide- SDK user guide Alibaba Cloud Message Queue

}
Console.WritelLine (expl) ;
Thread.Sleep (2000) ;
}
if (messages == null)
{
continue;
}
List<string> handlers = new List<string>();
Console.WriteLine (Thread.CurrentThread.Name + " Receive Messages:");
// Specify the message consumption logic.
foreach (Message message in messages)
{
Console.WriteLine (message) ;
Console.WritelLine ("Property a is:" + message.GetProperty("a")):
handlers.Add (message.ReceiptHandle) ;
}
// If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
// A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
try
{
consumer.AckMessage (handlers) ;
Console.WriteLine ("Ack message success:");
foreach (string handle in handlers)
{
Console.Write ("\t" + handle);
}
Console.WriteLine () ;
}
catch (Exception exp2)
{
// If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
if (exp2 is AckMessageException)
{
AckMessageException ackExp = (AckMessageException)exp?2;
Console.WriteLine ("Ack message fail, RequestId:" + ackExp.Reque
stId);
foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
{
Console.WriteLine ("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorlItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);

}

}

catch (Exception ex)

{
Console.WriteLine (ex) ;
Thread.Sleep (2000) ;

267 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

6.3.8. C++ SDK

6.3.8.1. Prepare the environment

This topic describes how to prepare the environment before you use the HTTP client SDK for C++ to
send and consume messages.

Environment requirements

e SCons is installed. For more information, visit the official website of SCons.

e Before you can use SCons, make sure that Python 3.5 or later is installed. For more information, visit
the official website of Python.

e Visual Studio 2015 or later is installed. For more information, visit the official website of Visual Studio.

@ Note Visual Studio is required only in Windows environments. In this topic, Visual Studio
2019 is used in the example.

Install the SDK for C++ in a Windows environment

1. Download the SDK for C++ to your on-premises machine and decompress the package. For more
information about the download link to the SDK, see Overview.

2. Inthe SDK directory, run the following command to compile your C++ project:
scons
3. Afterthe project is compiled, copy the include and libfolders in the SDK directory to the C++
project directory that you created on your on-premises machine.
4. Configure project properties in Visual Studio. Right-click your project and select Properties.
o Set the Additional Include Directories property

In the Property Pages dialog box of your project, choose Configuration Properties > C/C++ >
General in the left-side navigation pane. On the right side, set Additional Include Directories
to the path of the includefolderthat you copied in Step 3.

> Document Version: 20220816 268

https://www.scons.org/
https://www.python.org/downloads/?spm=a2c4g.11186623.2.4.332a78c8iTQUSv
https://visualstudio.microsoft.com/zh-hans/downloads/

User Guide- SDK user guide

Alibaba

Cloud Message Queue

' Configuration: |Release

~ | Platform:

4 Configuration Properties
General
Debugging
VC++ Directories
4 C/C++
Optimization
Prepracessor
Code Generation
Language
l Precompiled Headers
; Qutput Files
Browse Information
1 Advanced
All Options
Command Line
b Linker
> Manifest Tool
> XML Document Generator

Additional Include Directories
Additional #using Directories
Additional BMI Directories

Additional Module Dependencies
Additional Header Unit Dependencies
Debug Information Format

Support Just My Code Debugging
Common Language RunTime Support
Consume Windows Runtime Extension
Suppress Startup Banner

Warning Level

Treat Warnings As Errors

Warning Version

Diagnostics Format

SDL checks

Multi-processor Compilation

Enable Address Sanitizer

~

C:\Users\source\demo 0601\include

Program Database (/Zi)
No

Yes (/ZW)
Yes (/nologo)
Level3 (/W3)
No (/WX-)

Column Info (/diagnostics:column)
Yes (/sdl)

Yes (/MP)

No

o Set the Additional Library Directories property

Configuration Manager...

In the Property Pages dialog box of your project, choose Configuration Properties > Linker >
General in the left-side navigation pane. On the right side, set Additional Library Directories
to the path of the /ibfolderthat you copied in Step 3 and the path of the lib\windows\ {Platfor
mdirectory}folder. Configure the {Platform directory} variable based on the OS that you use. If
you use a 64-bit OS, set this variable to AMD64. If you use a 32-bit OS, set this variable to /386.

Configuration: Release

4 Configuration Properties
General
Debugging
VC++ Directories
b C/C++
4 Linker
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Windows Metadata
Advanced
All Options
Command Line
> Manifest Tool
> XML Document Generator
> XAML Compiler
I> Browse Information
b Build Events
I Custom Build Step
> Code Analysis

~ | Platform:

Output File

Show Progress

Version

Enable Incremental Linking
Incremental Link Database File
Suppress Startup Banner
Ignore Import Library

Register Output

Per-user Redirection
Additional Library Directories
Link Library Dependencies
Use Library Dependency Inputs

x64

~

$(OutDin$(TargetName)$(TargetExt)
Not Set

Yes (/NOLOGO)
Yes

No
No

No

Configuration Manager...

C:\Users\source\demo_0601\lib\windows\AMD#64;C:\Users\source\de
Yes

Additional Library Directories

? X

& W | &

C\Users\source\demo_0601T}lib

C:\Users\source\demo_0601}lib\windows\AMD&4

| New Line (Ctrl-Ins

<

| Evaluated value:

C:\Users\source\demo_0601\lib\windows\AMD64

C\Users\source\demo_0601\lib

o Set the Additional Dependencies property

In the Property Pages dialog box of your project, choose Configuration Properties > Linker >
Input in the left-side navigation pane. On the right side, add the following content to the
Additional Dependencies field:

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

mgcpp.lib
libcurl.lib
libcurl debug.lib
libeay32MT.1lib
libeay32MTd.1lib
ssleay32MT.1lib
ssleay32MTd.1lib
DbgHelp.1lib
User32.1lib
GDI32.1lib
Advapi32.lib

Configuration: |Release v Platform: x64 M Canfiguration Manager...

4 Configuration Properties Additional Dependencies mqcpp.lib;libcurllib;libcurl_debug.lib;libeay32MT.lib;libeay32MTd.lib;s |
General Ignore All Default Libraries |
Debugging Ignore Specific Default Libraries
VC++ Directories Module Definition File

b CfC++ Add Module to Assembly
4 Linker Embed Managed Resource File
General Force Symbol References
Delay Loaded DIls
Manifest File Assembly Link Resource
Debugging |
System . .
Optimization Additional Dependencies ? X
Embedded IDL -
Windows Metadata ‘r‘_r:jqczprlp‘.ilgb 2
L anced libcurl_debug lib
oRons libeay32MT.lib
Command Line libeay32MTd.lib
> Manifest Tool ssleay32MT.lib
b XML Document Generator ssleay32MTd.lib
> XAML Compiler DbgHelp.lib
> Browse Information User32.lib
b Build Events GDI32lib @
b Custom Build Step
I» Code Analysis e I | =

5. Copy the sample code to the project file, change the parameter values based on the comments in
the code, and then save the changes. For more information about the sample code, see Sample

code.

6. Clickthe p iconto compile the project.

Install the SDK for C++ in a Linux environment

@ Note The following procedure provides an example on how to install the SDK for C++ in
CentOS.

1. Download the SDK for C++ to your on-premises machine and decompress the package. For more
information about the download link to the SDK, see Overview.

2. Runthe following commands to installthe 1ibcurl-devel and openssl-devel libraries:

yum install libcurl-devel

yum install openssl-devel

3. Inthe SDK directory, run the following command to compile your C++ project:

> Document Version: 20220816 270

https://github.com/aliyunmq/mq-http-cpp-sdk#sample-codealiyuncom

User Guide- SDK user guide Alibaba Cloud Message Queue

scons

4. Afterthe project is compiled, copy the include and lib folders in the SDK directory to the C++
project directory that you created on your on-premises machine.

5. Copy the sample code to the project file on your on-premises machine, change the parameter
values based on the comments in the code, and then save the changes. For more information
about the sample code, see Sample code.

6. Runthe following command to compile the project:
Replace producer.cpp with the name of the project file that you created on your on-pr

emises machine.

g++ producer.cpp -o producer lib/libmgcpp.a -I include/ -lcurl -lcrypto

6.3.8.2. Send and consume normal messages

Normal messages are messages that have no special features in Message Queue for Apache Rocket MQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. T his topic provides sample code to show how to use the HTTP
client SDK for C++ to send and consume normal messages.

Prerequisites

The following operations are performed:

Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messages

The following sample code provides an example on how to send normal messages:

#include <fstream>
#include <time.h>
#include "mg http sdk/mg client.h"
using namespace std;
using namespace mqg: :http::sdk;
int main() {
MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"Sq SECRET KEY}"

)

271 > Document Version: 20220816

https://github.com/aliyunmq/mq-http-cpp-sdk#sample-codealiyuncom

Alibaba Cloud Message Queue User Guide- SDK user guide

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
string topic = "S{TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
string instanceld = "S${INSTANCE ID}";
MQProducerPtr producer;
if (instancelId == "") {
producer = mgClient.getProducerRef (topic) ;
} else {
producer = mgClient.getProducerRef (instanceld, topic);
}
try {
// Cyclically send four messages.
for (int i = 0; i < 4; i++)
{
PublishMessageResponse pmResp;
// The content of the message.
TopicMessage pubMsg ("Hello, mg'!have key!");
// The custom property of the message.
pubMsg.putProperty ("a",std::to_string(i));
// The key of the message.
pubMsg.setMessageKey ("MessageKey" + std::to string(i));
producer->publishMessage (pubMsg, pmResp) ;
cout << "Publish mg message success. Topic is: " << topic
<< ", msgId is:" << pmResp.getMessageId /()
<< ", bodyMD5 is:" << pmResp.getMessageBodyMD5 () << endl;
}
} catch (MQServerException& me) {
cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
return -1;
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
return -2;
}

return 0;

Consume normal messages

The following sample code provides an example on how to consume normal messages:

#include <vector>

finclude <fstream>

#include "mg http sdk/mg client.h"
#ifdef WIN32

#include <windows.h>

#felse

#include <unistd.h>

#fendif

> Document Version: 20220816 272

User Guide- SDK user guide Alibaba Cloud Message Queue

using namespace std;
using namespace mq::http::sdk;
int main() {

MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP7ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET_KEY}"

) i

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

string topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

string groupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

string instanceld = "S${INSTANCE ID}";

MQConsumerPtr consumer;

if (instancelId == "") {

consumer = mgClient.getConsumerRef (topic, groupId);
} else {

consumer = mgClient.getConsumerRef (instanceId, topic, groupId, "");

do {
try {
std: :vector<Message> messages;
// Consume messages in long polling mode.
// In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
consumer->consumeMessage (
3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
messages
) i
cout << "Consume: " << messages.size() << " Messages!" << endl;
// Specify the message consumption logic.
std::vector<std::string> receiptHandles;
for (std::vector<Message>::iterator iter = messages.begin();

iter != messages.end(); ++iter)

273 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

cout << "MessageId: " << iter->getMessageId()
<< " PublishTime: " << iter->getPublishTime ()
<< " Tag: " << iter->getMessageTag ()
<< " Body: " << iter->getMessageBody ()
<< " FirstConsumeTime: " << iter->getFirstConsumeTime ()
<< " NextConsumeTime: " << iter->getNextConsumeTime ()
<< " ConsumedTimes: " << iter->getConsumedTimes ()
<< " Properties: " << iter->getPropertiesAsString ()
<< " Key: " << iter->getMessageKey () << endl;

receiptHandles.push back (iter->getReceiptHandle()) ;

}

// Obtain an acknowledgment (ACK) from the consumer.

// If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

AckMessageResponse bdmResp;

consumer->ackMessage (receiptHandles, bdmResp) ;

if (!bdmResp.isSuccess()) {

// If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
const std::vector<AckMessageFailedItem>& failedItems =
bdmResp.getAckMessageFailedItem() ;

for (std::vector<AckMessageFailedItem>::const iterator iter = failedItems.b

egin();

iter != failedItems.end(); ++iter)

{

cout << "AckFailedItem: " << iter->errorCode

<< " " << iter->receiptHandle << endl;

}

} else {
cout << "Ack: " << messages.size() << " messages suc!" << endl;

}

} catch (MQServerException& me) {

if (me.GetErrorCode () == "MessageNotExist") {
cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
continue;

}

cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

Id() << endl;
#ifdef WIN32

Sleep (2000) ;
#felse
usleep (2000 * 1000) ;
#endif
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
#ifdef WIN32
Sleep (2000) ;
#felse
usleep (2000 * 1000) ;
#fendif

> Document Version: 20220816 274

User Guide- SDK user guide Alibaba Cloud Message Queue

5
} while (true);

6.3.8.3. Send and consume ordered messages

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for C++ to send and consume
ordered messages.

Background information

Ordered messages are classified into the following types:

e Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

e Partitionally ordered message: All messages in a specified topic are distributed to different partitions
by using shard keys. The messages in each partition are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different partitions. The
Sharding Key is different fromthe key of a normal message.

For more information about the message routing feature, see Ordered messages.

Prerequisites
The following operations are performed:

e Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

e (reate resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messages

The following sample code provides an example on how to send ordered messages:

//#include <iostream>
#include <fstream>
#finclude <time.h>
#include "mg http sdk/mg client.h"
using namespace std;
using namespace mq::http::sdk;
int main() {
MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"s {HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain

275 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

the AccessKey secret in the Apsara Uni-manager Operations Console.
"${SECRET KEY}"
)7

// The topic to which you want to send messages. The topic is created in the Message Qu

eue for Apache RocketMQ console.
string topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in the Me

ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe

s not have a namespace, set the instance ID to null or an empty string. You

can check wheth

er your instance has a namespace on the Instances page in the RocketMQ console.

string instanceld = "S${INSTANCE ID}";
MQProducerPtr producer;
if (instanceld == "") {

producer = mgClient.getProducerRef (topic) ;
} else {

producer = mgClient.getProducerRef (instanceld, topic);
}
try {

// Cyclically send four messages.

for (int 1 = 0; 1 < 8; i++)

{

PublishMessageResponse pmResp;

// The content of the message.

TopicMessage pubMsg ("Hello, mg!order msg!");

// The shard key that is used to distribute ordered messages to
ition. Shard keys can be used to identify different partitions. A shard key
om a message key.

pubMsg.setShardingKey (std::to_string(i % 2));

// The custom property of the message.

pubMsg.putProperty ("a",std::to_string(i));

producer->publishMessage (pubMsg, pmResp) ;

cout << "Publish mg message success. Topic is: " << topic

<< ", msgId is:" << pmResp.getMessageId ()
<< ", bodyMD5 is:" << pmResp.getMessageBodyMD5 () << endl;
}
} catch (MQServerException& me) {
cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:"
tId() << endl;
return -1;
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
return -2;
}

return 0;

Consume ordered messages

a specific part

is different fr

<< me.GetReques

The following sample code provides an example on how to consume ordered messages:

#include <vector>
#include <fstream>

#inclnde "ma htto sdk/ma client . h"

> Document Version: 20220816

276

User Guide- SDK user guide Alibaba Cloud Message Queue

.......... B

#ifdef WIN32
#include <windows.h>
ffelse
#include <unistd.h>
#fendif
using namespace std;
using namespace mq: :http::sdk;
int main() {
MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET_KEY}"

)i

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

string topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

string groupId = "${GROUP ID}";

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

string instanceld = "S${INSTANCE ID}";

MQConsumerPtr consumer;

if (instanceld == "") {

consumer = mgClient.getConsumerRef (topic, groupld);
} else {

consumer = mgClient.getConsumerRef (instanceld, topic, groupId, "");

do {
try {

std: :vector<Message> messages;

// Consume messages in long polling mode. The consumer may pull partitionally o
rdered messages from multiple partitions. The consumer consumes messages from the same part
ition in the order in which the messages are sent.

// A consumer pulls partitionally ordered messages from a partition. If the bro
ker does not receive an acknowledgment (ACK) for a message after the message is consumed, t
he consumer consumes the message again.

// The consumer can consume the next batch of messages from a partition only af
ter all messages that are pulled from the partition in the previous batch are acknowledged
to be consumed.

// In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco

mes available for consumption within this period, the broker immediately sends a response t

277 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

o the consumer. In this example, the period is set to 3 seconds.
consumer->consumeMessageOrderly (
3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
messages
) i
cout << "Consume: " << messages.size() << " Messages!" << endl;
// Specify the message consumption logic.
std: :vector<std::string> receiptHandles;

for (std::vector<Message>::iterator iter = messages.begin();

iter != messages.end(); ++iter)

{

cout << "MessageId: " << iter->getMessageId()

<< " PublishTime: " << iter->getPublishTime ()
<< " Tag: " << iter->getMessageTag ()
<< " Body: " << iter->getMessageBody ()
<< " FirstConsumeTime: " << iter->getFirstConsumeTime ()
<< " NextConsumeTime: " << iter->getNextConsumeTime ()
<< " ConsumedTimes: " << iter->getConsumedTimes ()
<< " Properties: " << iter->getPropertiesAsString ()

<< " ShardingKey: " << iter->getShardingKey () << endl;
receiptHandles.push back (iter->getReceiptHandle());

}

// Obtain an ACK from the consumer.

// If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

AckMessageResponse bdmResp;

consumer->ackMessage (receiptHandles, bdmResp) ;

if (!bdmResp.isSuccess()) {

// If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
const std::vector<AckMessageFailedItem>& failedItems =
bdmResp.getAckMessageFailedItem() ;

for (std::vector<AckMessageFailedItem>::const iterator iter = failedItems.b

egin();

iter != failedItems.end(); ++iter)

{

cout << "AckFailedItem: " << iter->errorCode

<< " " << iter->receiptHandle << endl;

}

} else {
cout << "Ack: " << messages.size() << " messages suc!" << endl;

}

} catch (MQServerException& me) {

if (me.GetErrorCode () == "MessageNotExist") {
cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
continue;

}

cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

> Document Version: 20220816 278

User Guide- SDK user guide Alibaba Cloud Message Queue

Id() << endl;
#ifdef WIN32

Sleep (2000) ;
#else
usleep (2000 * 1000) ;
ffendif
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
#ifdef WIN32
Sleep (2000) ;
felse
usleep (2000 * 1000) ;
#fendif

}

} while (true);

6.3.8.4. Send and consume scheduled messages and

delayed messages

This topic provides sample code to show how to use the HTTP client SDK for C++ to send and consume
scheduled messages and delayed messages.

Background information

e Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of time. This message is a delayed
message.

e Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in time. This type of
message is called a scheduled message.

if an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of time based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

Prerequisites

The following operations are performed:
e Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messages

279 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

The following sample code provides an example on how to send scheduled messages or delayed
messages:

#include <fstream>
#include <time.h>
#include "mg http sdk/mg client.h"
using namespace std;
using namespace mq: :http::sdk;
int main() {
MQOClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that you created in the Resource Access Management (RAM) co
nsole. The AccessKey ID is used for identity verification.

"${ACCESS_KEY}",

// The AccessKey secret that you created in the RAM console. The AccessKey secr
et is used for identity verification.

"${SECRET_KEY}"

)i

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
string topic = "${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
string instancelId = "S${INSTANCE ID}";
MQProducerPtr producer;
if (instanceld == "") {
producer = mgClient.getProducerRef (topic) ;
} else {
producer = mgClient.getProducerRef (instanceld, topic);
}
try {
// Cyclically send four messages.
for (int i = 0; 1 < 4; i++)
{

PublishMessageResponse pmResp;

// The content of the message.

TopicMessage pubMsg ("Hello, mg'!have key!");

// The custom property of the message.

pubMsg.putProperty ("a",std::to_string(i));

// The key of the message.

pubMsg.setMessageKey ("MessageKey" + std::to string(i));

// The period of time after which the broker delivers the message. In this exam
ple, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.

// If the producer sends a scheduled message, set the parameter to the time int
erval between the scheduled point in time and the current point in time.

pubMsg.setStartDeliverTime (time (NULL) * 1000 + 10 * 1000);

> Document Version: 20220816 280

User Guide- SDK user guide Alibaba Cloud Message Queue

producer->publishMessage (pubMsg, pmResp) ;
cout << "Publish mg message success. Topic is: " << topic
<< ", msgld is:" << pmResp.getMessageld ()
<< ", bodyMD5 is:" << pmResp.getMessageBodyMD5 () << endl;
}
} catch (MQServerException& me) {
cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
return -1;
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
return -2;
}

return 0;

Consume scheduled messages or delayed messages

The following sample code provides an example on how to consume scheduled messages or delayed
messages:

finclude <vector>
#include <fstream>
#include "mg http sdk/mg client.h"
#ifdef WIN32
#include <windows.h>
#else
#include <unistd.h>
ffendif
using namespace std;
using namespace mqg: :http::sdk;
int main() {
MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

) i

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

string topic = "${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

string groupId = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe

281 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
string instanceld = "S${INSTANCE ID}";
MQConsumerPtr consumer;
if (instanceld == "") {
consumer = mgClient.getConsumerRef (topic, groupld);
} else {

consumer = mgClient.getConsumerRef (instanceld, topic, groupId, "");

do {
try {
std: :vector<Message> messages;
// Consume messages in long polling mode.
// In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
consumer->consumeMessage (
3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
messages
)i
cout << "Consume: " << messages.size() << " Messages!" << endl;
// Specify the message consumption logic.
std: :vector<std::string> receiptHandles;

for (std::vector<Message>::iterator iter = messages.begin();

iter != messages.end(); +t+iter)

{

cout << "MessageId: " << iter->getMessageId()

<< " PublishTime: " << iter->getPublishTime ()
<< " Tag: " << iter->getMessageTag ()
<< " Body: " << iter->getMessageBody ()
<< " FirstConsumeTime: " << iter->getFirstConsumeTime ()
<< " NextConsumeTime: " << iter->getNextConsumeTime ()
<< " ConsumedTimes: " << iter->getConsumedTimes ()
<< " Properties: " << iter->getPropertiesAsString ()
<< " Key: " << iter->getMessageKey () << endl;

receiptHandles.push back (iter->getReceiptHandle());

}

// Obtain an acknowledgment (ACK) from the consumer.

// If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

AckMessageResponse bdmResp;

consumer->ackMessage (receiptHandles, bdmResp) ;

if (!bdmResp.isSuccess()) {

// If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
const std::vector<AckMessageFailedItem>& failedItems =
bdmResp.getAckMessageFailedItem() ;

> Document Version: 20220816 282

User Guide- SDK user guide Alibaba Cloud Message Queue

for (std::vector<AckMessageFailedItem>::const iterator iter = failedItems.b

egin();

iter !'= failedItems.end(); ++iter)

{

cout << "AckFailedItem: " << iter->errorCode

<< " " << iter->receiptHandle << endl;

}

} else {
cout << "Ack: " << messages.size() << " messages suc!" << endl;

}

} catch (MQServerException& me) {

if (me.GetErrorCode() == "MessageNotExist") {
cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
continue;

}

cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

Id() << endl;
#ifdef WIN32

Sleep (2000) ;
#else
usleep (2000 * 1000) ;
#endif
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
#ifdef WIN32
Sleep (2000) ;
#else
usleep (2000 * 1000) ;
ffendif

}

} while (true);

6.3.8.5. Send and consume transactional messages

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/0Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. T his topic provides sample code to show how to use the HTTP client SDK for
C++ to send and consume transactional messages.

Background information

283 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

The following figure shows the interaction process of transactional messages.

7. Commit or Rollback based
on the transaction’s status

1. Send half message

3. Ei(ecute 2. Half message Commit: Deliver
ocal sent successfully the message
transaction
4. Commit or Rollback
Rollback:
Not deliver the message and it
will be deleted after being
6. Check status of 5. Check the transaction’s status again stored for three days
the local transaction if not receiving confirmation from Step 4

For more information about the message routing feature, see Transactional messages.

Prerequisites
The following operations are performed:

e Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

e Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messages
The following sample code provides an example on how to send transactional messages:

//#include <iostream>
#include <fstream>
#ifdef WIN32
finclude <windows.h>
#include <process.h>
ffelse
#include "pthread.h"
#endif
#include "mg http sdk/mg _client.h"
using namespace std;
using namespace mq::http::sdk;
const int32 t pubMsgCount = 4;
const int32 t halfCheckCount = 3;
void processCommitRollError (AckMessageResponse& bdmResp, const std::strings& messageId) {
if (bdmResp.isSuccess()) {
cout << "Commit/Roll Transaction Suc: " << messageld << endl;
return;
}
const std::vector<AckMessageFailedItem>& failedItems =
bdmResp.getAckMessageFailedItem() ;

for (std::vector<AckMessageFailedItem>::const iterator iter = failedItems.begin();

iter != failedItems.end(); ++iter)
{
cout << "Commit/Roll Transaction ERROR: " << iter->errorCode
<< " " << iter—->receiptHandle << endl;

> Document Version: 20220816 284

User Guide- SDK user guide Alibaba Cloud Message Queue

}
#ifdef WIN32
unsigned _ stdcall consumeHalfMessageThread (void *arg)
#else
void* consumeHalfMessageThread (void *arg)
ffendif
{
MQTransProducerPtr transProducer = * (MQTransProducerPtr*) (arg);
int count = 0;
do {
std: :vector<Message> halfMsgs;
try {
// Consume messages in long polling mode.
// In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
transProducer->consumeHal fMessage (
1, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 1. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
halfMsgs
)7

} catch (MQServerException& me) {

if (me.GetErrorCode () == "MessageNotExist") {
cout << "No half message to consume! RequestId: " + me.GetRequestId() << en
dil;
continue;
}
cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

Id() << endl;
}

if (halfMsgs.size() == 0) {
continue;
}
cout << "Consume Half: " << halfMsgs.size() << " Messages!" << endl;

// Process half messages.
std: :vector<std::string> receiptHandles;

for (std::vector<Message>::iterator iter = halfMsgs.begin();

iter != halfMsgs.end(); ++iter)

{

cout << "MessageId: " << iter->getMessageId()

<< " PublishTime: " << iter—->getPublishTime ()
<< " Tag: " << iter->getMessageTag ()
<< " Body: " << iter->getMessageBody ()
<< " FirstConsumeTime: " << iter->getFirstConsumeTime ()
<< " NextConsumeTime: " << iter->getNextConsumeTime ()
<< " ConsumedTimes: " << iter->getConsumedTimes ()
<< " Properties: " << iter->getPropertiesAsString()
<< " Key: " << iter->getMessageKey () << endl;

int32 t consumedTimes = iter->getConsumedTimes () ;
const std::string propA = iter->getProperty("a"):;
const std::string handle = iter->getReceiptHandle() ;

285 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

AckMessageResponse bdmResp;
if (propA == "1") {
cout << "Commit msg.." << endl;
transProducer->commit (handle, bdmResp) ;
count++;
} else if (propA == "2") {
if (consumedTimes > 1) {
cout << "Commit msg.." << endl;

transProducer->commit (handle, bdmResp) ;

count++;
} else {
cout << "Commit Later!!!" << endl;
}
} else if (propA == "3") {
cout << "Rollback msg.." << endl;

transProducer->rollback (handle, bdmResp) ;
count++;

} else {

transProducer->commit (handle, bdmResp) ;
cout << "Unkown msg.." << endl;

}

// If the transactional message is not committed or rolled back before the peri
od of time specified by the NextConsumeTime parameter elapses, the commit or rollback opera
tion fails.

processCommitRollError (bdmResp, iter->getMessagelId()):;

}

} while (count < halfCheckCount) ;
#ifdef WIN32

return 0;
#else

return NULL;
ffendif
}
int main() {

MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS _KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET_KEY}"

) i

// The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.

string topic = "${TOPIC}";

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe

s not have a namespace, set the instance ID to null or an empty string. You can check wheth

> Document Version: 20220816 286

User Guide- SDK user guide Alibaba Cloud Message Queue

er your instance has a namespace on the Instances page in the RocketMQ console.
string instanceld = "S${INSTANCE ID}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

@o
string groupId = "${GROUP_ID}";
MQTransProducerPtr transProducer;
if (instanceld == "") {
transProducer = mgClient.getTransProducerRef (topic, groupId);
} else {
transProducer = mgClient.getTransProducerRef (instanceld, topic, groupld);
}
// The client needs a thread or a process to process unacknowledged transactional messa
ges.

// Start a thread to process unacknowledged transactional messages.
#ifdef WIN32
HANDLE thread;
unsigned int threadId;
thread = (HANDLE) beginthreadex (NULL, 0, consumeHalfMessageThread, &transProducer, 0, &
threadId) ;
#else
pthread t thread;
pthread create(&thread, NULL, consumeHalfMessageThread, static cast<void *>(&transProdu
cer));
ffendif
try {
for (int i = 0; i < pubMsgCount; i++)
{
PublishMessageResponse pmResp;
TopicMessage pubMsg("Hello, mq, trans msg!");
pubMsg.putProperty ("a",std::to_string(i));
pubMsg.setMessageKey ("ImKey") ;
pubMsg.setTransCheckImmunityTime (10) ;
transProducer->publishMessage (pubMsg, pmResp) ;
cout << "Publish mg message success. Topic:" << topic

<< ", msgld:" << pmResp.getMessageld ()

<< ", bodyMD5:" << pmResp.getMessageBodyMD5 ()

<< ", Handle:" << pmResp.getReceiptHandle () << endl;

if (1 == 0) {

// After the producer sends the transactional message, the broker obtains t
he handle of the half message that corresponds to the transactional message and commits or
rolls back the transactional message based on the status of the handle.

// If a transactional message is not committed or rolled back after the per
iod of time specified by the TransCheckImmunityTime parameter elapses, the commit or rollba
ck operation fails.

AckMessageResponse bdmResp;

transProducer->commit (pmResp.getReceiptHandle () , bdmResp) ;

processCommitRollError (bdmResp, pmResp.getMessageId());

}
} catch (MQServerException& me) {
cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;

287 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

}
#ifdef WIN32
WaitForSingleObject (thread, INFINITE) ;
CloseHandle (thread) ;
#felse
pthread join(thread, NULL);
#endif

return 0;

Consume transactional messages

The following sample code provides an example on how to consume transactional messages:

#include <vector>
finclude <fstream>
#include "mg http sdk/mg _client.h"
#ifdef WIN32
#include <windows.h>
#else
#include <unistd.h>
ffendif
using namespace std;
using namespace mq: :http::sdk;
int main() {
MQClient mgClient (

// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.

"${HTTP_ENDPOINT}",

// The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

"${ACCESS_KEY}",

// The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.

"${SECRET KEY}"

)i

// The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.

string topic = "S${TOPIC}";

// The ID of the group that you created in the Message Queue for Apache RocketMQ consol

string groupId = "${GROUP_ID}";

// The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.

// If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.

string instanceld = "S${INSTANCE ID}";

MQConsumerPtr consumer;

if (instanceId == "") {

consumer = mgClient.getConsumerRef (topic, groupId);

} else {

> Document Version: 20220816 288

User Guide- SDK user guide Alibaba Cloud Message Queue

consumer = mgClient.getConsumerRef (instanceld, topic, groupId, "");

do {
try {
std: :vector<Message> messages;
// Consume messages in long polling mode.
// In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
consumer->consumeMessage (
3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
messages
) i
cout << "Consume: " << messages.size() << " Messages!" << endl;
// Specify the message consumption logic.
std: :vector<std::string> receiptHandles;

for (std::vector<Message>::iterator iter = messages.begin();

iter != messages.end(); ++iter)

{

cout << "MessageId: " << iter->getMessageId()

<< " PublishTime: " << iter—->getPublishTime ()
<< " Tag: " << iter->getMessageTag ()
<< " Body: " << iter->getMessageBody ()
<< " FirstConsumeTime: " << iter->getFirstConsumeTime ()
<< " NextConsumeTime: " << iter->getNextConsumeTime ()
<< " ConsumedTimes: " << iter->getConsumedTimes ()
<< " Properties: " << iter->getPropertiesAsString()
<< " Key: " << iter->getMessageKey () << endl;

receiptHandles.push back (iter->getReceiptHandle());

}

// Obtain an acknowledgment (ACK) from the consumer.

// If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.

// A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.

AckMessageResponse bdmResp;

consumer->ackMessage (receiptHandles, bdmResp) ;

if (!bdmResp.isSuccess()) {

// If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
const std::vector<AckMessageFailedItem>& failedItems =
bdmResp.getAckMessageFailedItem() ;

for (std::vector<AckMessageFailedItem>::const iterator iter = failedItems.b

egin();
iter != failedItems.end(); ++iter)
{
cout << "AckFailedItem: " << iter->errorCode
<< " " << iter->receiptHandle << endl;

289 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- SDK user guide

} else {
cout << "Ack: " << messages.size() << " messages suc!" << endl;
}

} catch (MQServerException& me) {

if (me.GetErrorCode () == "MessageNotExist") {
cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
continue;

}

cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

Id() << endl;
#ifdef WIN32

Sleep (2000) ;
#else
usleep (2000 * 1000) ;
#fendif
} catch (MQExceptionBase& mb) {
cout << "Request Failed: " + mb.ToString() << endl;
#ifdef WIN32
Sleep (2000) ;
#else
usleep (2000 * 1000) ;
#endif

}

} while(true);

> Document Version: 20220816 290

User Guide- Best practices Alibaba Cloud Message Queue

7.Best practices
7.1. Clustering consumption and

broadcasting consumption

This topic describes the terms, scenarios, and usage notes of clustering consumption and broadcasting
consumption in Message Queue for Apache Rocket MQ.

Terms

Message Queue for Apache RocketMQ is a messaging systemthat is based on the publish-subscribe
model. In Message Queue for Apache Rocket MQ, a consumer subscribes to a topic to obtain and
consume messages. In most cases, consumer applications use distributed systems. Multiple machines are
deployed in one cluster. Therefore, Message Queue for Apache RocketMQ defines the following terms:

e Cluster: Consumers identified by the same group ID belong to the same cluster. These consumers
must have the same consumption logic that also involves tags. These consumers can be considered
logically as one consumption node.

e Clustering consumption: Inthis mode, a message needs to be processed only by a consumer in the
cluster.

e Broadcasting consumption: In this mode, Message Queue for Apache RocketMQ broadcasts each
message to all consumers registered in the cluster to ensure that the message is consumed by each
consumer at least once.

Scenarios

e Clustering consumption mode:

Clustering consumption mode

»| GrouplID1
7l 192.168.X.1
Message N

Group ID 1

BT gE L ® 192168 X2

Message 1
Group ID 1
192 168.X.3

Scenarios and usage notes:

o Consumers are deployed in a cluster and each message needs to be processed only once.
o The consumption progress is recorded on the Message Queue for Apache RocketMQ broker.
Therefore, the reliability is high.

o Inclustering consumption mode, each message is delivered to only one consumer in the cluster for
processing. If a message needs to be processed by each consumer in the cluster, use the
broadcasting consumption mode.

291 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

o

In clustering consumption mode, it is not guaranteed that a failed message can be routed to the
same consumer each time the message is redelivered. Therefore, no definitive assumptions can be
made during message processing.

e Broadcasting consumption mode:

Broadcasting consumption mode

——

Group 1D 1
192.168.X.1

—
Message N]—[Message 2 H Message 1]7 —_——

Message N H Message 2 H Message 1]—P 1(;;&;2{;[;(12

Message N]—[Message 2 H Message 1]7 e —

—_—

Group 1D 1
192.168.X.3

—

A 4

A 4

Scenarios and usage notes:

o

o

o

Ordered messages are not supported in broadcasting consumption mode.
Consumer offsets cannot be reset in broadcasting consumption mode.
Each message needs to be processed by multiple consumers that are subject to the same logic.

The consumption progress is recorded on the consumer. Duplicate messages are more likely to
occur in broadcasting consumption mode than in clustering consumption mode.

In broadcasting consumption mode, Message Queue for Apache Rocket MQ ensures that each
message is consumed at least once by each consumer, but does not resend a message that fails to
be consumed. Therefore, you need to pay attention to consumption f ailures.

In broadcasting consumption mode, a consumer starts consumption fromthe latest message each
time the consumer is restarted. The consumer automatically skips the messages that are sent to
the Message Queue for Apache RocketMQ broker when the consumer is stopped. Therefore, use
this mode with caution.

In broadcasting consumption mode, each message is repeatedly processed by many consumers.
Therefore, we recommend that you use the clustering consumption mode whenever possible.

Only Java clients support the broadcasting consumption mode.

In broadcasting consumption mode, the Message Queue for Apache RocketMQ broker does not
record the consumption progress. In this mode, you cannot query accumulated messages,
configure message accumulation alerts, or query subscriptions in the Message Queue for Apache
RocketMQ console.

e Use the clustering consumption mode to simulate the broadcasting consumption mode

If the broadcasting consumption mode is required for your business, you can create multiple group
IDs to subscribe to the same topic.

Use the clustering consumption mode to simulate the broadcasting consumption mode

> Document Version: 20220816 292

User Guide- Best practices Alibaba Cloud Message Queue

—_—

Group 1D 1
192.168.X.1

~
Message N]—[Message 2 H Message 1]7 —_—

Group 1D 1
Message N]—[Message 2 H Message 1]—b 192 168.X 2

Message N]—[Message 2 H Message 1]7 —

—_—

Group 1D 1
192 168 X .3

.

A 4

A 4

Scenarios and usage notes:

o Each message needs to be processed by multiple consumers, and the logic of the consumers can
be the same or different.

o The consumption progress is recorded on the Message Queue for Apache RocketMQ broker.
Therefore, the reliability is higher than that in broadcasting consumption mode.

o Foreach group ID, one or more consumer instances can be deployed. When multiple consumer
instances are deployed, these instances compose a cluster and work together to consume
messages. Assume that three consumer instances C1, C2, and C3 are deployed for Group ID 1. These
instances share the messages sent fromthe Message Queue for Apache RocketMQ broker to Group
ID 1. In addition, these instances must subscribe to the same topics and same tags.

7.2. Message filtering

This topic describes how Message Queue for Apache RocketMQ consumers filter messages on the
Message Queue for Apache RocketMQ broker based on tags.

A tag is used to classify messages in a topic into different types. Message Queue for Apache RocketMQ
allows consumers to filter messages by using tags. This ensures that the consumers consume only
messages that they are concerned with.

The following figure shows an example in the e-commerce transaction scenario. In the process from
placing an order to receiving the product by the customer, a series of messages including order
messages, payment messages, and logistics messages are generated. These messages are sent to the
Trade_Topic topic and subscribed to by different systems, such as the payment system, analysis system
fortransaction success rate, and real-time computing system. Among these systems, the logistics
systemreceives only logistics messages and the real-time computing system receives all transaction-
related messages, including the order messages, payment messages, and logistics messages.

Filter messages

293 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

B B [

Order Messages Payment Messages Logistics Messages

Trade_Topic

- - - |og.st.cs> |Iog|st|cs> ‘Ioglstlcs> ‘ Logistics System

Subscribe to Logistics Messages:
consumer1.subscribe (“Trade_Topic”, “logistics”, listener1)

logistics

P— - - - - - - Payment System

Subscribe to Payment Messages
consumer2.subscribe (“Trade_Topic”, “pay”, listener2)

- Analyzing System
logistics Subscribe to Order and Payment Messages:
consumer3.subscribe (“Trade_Topic”, “order || pay”, listener3)

v D D » = 2 Lo
- Calculation System

@ Note To classify messages, you can create multiple topics, or create multiple tags in the
same topic. In most cases, messages in one topic are irrelevant to those in another topic. Tags are
used to distinguish between relevant messages in the same topic. For example, you can create
different tags in the same topic to distinguish between a set and its subsets or distinguish between
processes in sequence.

Examples

e Send messages

Specify a tag for each message before the message is sent.

Message msg = new Message ("MQ TOPIC","TagA","Hello MQ".getBytes());

e Subscribe to messages
o Consumption method 1

If a consumer needs to subscribe to messages of all types in a topic, use an asterisk (*) to represent
alltags.

consumer.subscribe ("MQ TOPIC", "*", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;
return Action.CommitMessage;

> Document Version: 20220816 294

User Guide- Best practices Alibaba Cloud Message Queue

o Consumption method 2

If a consumer needs to subscribe to messages of a specific type in a topic, specify the
corresponding tag.

consumer.subscribe ("MQ TOPIC", "TagA", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

o Consumption method 3

If a consumer needs to subscribe to messages of multiple types in a topic, separate the
corresponding tags with two vertical bars ().

consumer.subscribe ("MQ TOPIC", "TagA||TagB", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

o Consumption method 4 (error example)

If a consumer subscribes to messages with specific tags in a topic multiple times, the tags in the
last subscription prevail:

// In the following error code, the consumer can receive only messages with TagB in MQ
TOPIC and cannot receive messages with TagA.
consumer.subscribe ("MQ TOPIC", "TagA", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

1) ;
consumer.subscribe ("MQ TOPIC", "TagB", new MessagelListener() ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

7.3. Subscription consistency

In Message Queue for Apache RocketMQ, a group ID represents a consumer instance group. For most
distributed applications, multiple consumer instances are attached to the same group ID. Subscription
consistency means that the processing logic of all consumer instances identified by the same group ID
must be identical. If the subscriptions of the consumer instances are inconsistent, errors occur in the
message consumption logic and messages may be lost.

Subscriptions in Message Queue for Apache RocketMQ involve topics and tags. Therefore, all consumer
instances identified by the same group ID must be consistent in the following two aspects to ensure
subscription consistency:

295 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

e The topics to which the consumer instances subscribe must be the same.
e The tags of the topics to which the consumer instances subscribe must be the same.
Examples of subscriptions

e Consistent subscriptions

Multiple group IDs subscribe to multiple topics, and the subscriptions of different consumer instances
identified by the same group ID are consistent, as shown in the following figure.

Consistent subscriptions

e
Top,;
c3 e g, Ta
9 "5,

GroupID 1

Q

C1

Topic “A”, Tag “1”; Topic “B", Tag"*" R
<
c2

Cc3

Topic "A", Tag "L"; Topic "B , Tag

Topic A", Tag "1 Topic “B”, Tag™+”

Message Queue for
Apache RocketMQ

Group ID 3
c2

Cc3

Group ID 2
e Inconsistent subscriptions

One group ID subscribes to multiple topics, but the subscriptions of different consumer instances
identified by the group ID are inconsistent, as shown in the following figure.

Inconsistent subscriptions

R Topic "a”, 1

r ag “1”
C1 \>

R Topic “A”, Tag "“2"

A
>
c2

wk

Topic *B", Tag
C3 Message Queue for
Apache RocketMQ

GroupID 1

Sample code of subscriptions

Sample code of inconsistent subscriptions

e Example 1

> Document Version: 20220816 296

User Guide- Best practices Alibaba Cloud Message Queue

In the following example, two consumer instances identified by the same group ID subscribe to
different topics.

Consumer instance 1-1:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 1");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("jodie test A", "*", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

Consumer instance 1-2:

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 1");
Consumer consumer = ONSFactory.createConsumer (properties) ;
consumer.subscribe ("jodie test B ", "*", new MessageListener() ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;
return Action.CommitMessage;

}) i

e Example 2

In the following example, two consumer instances identified by the same group ID subscribe to the
same topic but subscribe to different numbers of tags of the topic. Consumer instance 2-1 has
subscribed to Tag A, whereas consumer instance 2-2 has not specified a tag.

Consumer instance 2-1:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 2");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("jodie test A", "TagA", new MessagelListener() ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

Consumer instance 2-2:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 2");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("jodie test A", "*", new MessagelListener() ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

297 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

e Example 3
In this example, the subscriptions are inconsistent due to the following reasons:

o Two consumer instances identified by the same group ID subscribe to different numbers of topics.

o Boththe consumer instances subscribe to one same topic but subscribe to different tags of the
topic.

Consumer instance 3-1:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 3");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("jodie test A", "TagA", new Messagelistener () ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});
consumer.subscribe ("jodie test B", "TagB", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

Consumer instance 3-2:

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID jodie test 3");
Consumer consumer = ONSFactory.createConsumer (properties) ;
consumer.subscribe ("jodie test A", "TagB", new Messagelistener() ({
public Action consume (Message message, ConsumeContext context) {
System.out.println (message.getMsgID()) ;

return Action.CommitMessage;

});

7.4. Consumption idempotence

After a Message Queue for Apache RocketMQ consumer receives messages, the consumer needs to
performidempotent processing on these messages based on the unique business-specific keys of the
messages.

Necessity for consumption idempotence

In Internet applications, duplicate messages may occur in Message Queue for Apache RocketMQ
especially if Internet connection is unstable. Duplicate messages may occur in the following two
scenarios:

e A producer repeatedly sends a message to the Message Queue for RocketMQ broker.

> Document Version: 20220816 298

User Guide- Best practices Alibaba Cloud Message Queue

If a network disconnection occurs orthe producer breaks down after a message is sent to and
persisted in the Message Queue for Apache RocketMQ broker, the broker fails to respond to the
producer. If the producer realizes that the message failed to be sent and resends the message, the
consumer subsequently receives two messages that have the same content and message ID.

e The Message Queue for Apache RocketMQ broker repeatedly delivers a message to a consumer.

A message is delivered to a consumer and is processed by the consumer. However, a network
disconnection occurs when the consumer sends a response to the Message Queue for Apache
RocketMQ broker. To ensure that the message is consumed at least once, the Message Queue for
Apache RocketMQ broker redelivers the previously processed message after the network connection
recovers. The consumer subsequently receives two messages that have the same content and
message ID.

e Duplicate messages are generated when rebalancing is triggered in scenarios such as network jitter,
broker restart, and consumer application restart.

Traffic is rebalanced if the Message Queue for Apache RocketMQ broker or consumer client is
restarted or scaled. In this case, a consumer may receive duplicate messages.

Solution

Message IDs may be duplicate. Therefore, we recommend that you do not implement idempotent
processing based on message IDs. The best practice is to use unique business-specific keys for
idempotent processing. The following sample code provides an example on how to specify a unique
business-specific key for a message:

Message message = new Message();
message.setKey ("ORDERID 100");

SendResult sendResult = producer.send(message) ;

The following sample code provides an example on how a consumer performs idempotent processing
after it receives a message:

consumer.subscribe ("ons_test", "*", new MessagelListener() {
public Action consume (Message message, ConsumeContext context) {
String key = message.getKey ()

// Use the unique business-specific key for idempotent processing.

7.5. Active geo-redundancy

Message Queue for Apache RocketMQ leverages Alibaba Cloud Express Connect and Multi-Site High
Availability (MSHA) to support active geo-redundancy. MSHA allows you to implement two-way data
synchronization and business traffic switchover across instances. This way, business recovery is
decoupled fromfault recovery. If a fault occurs, business continuity can be ensured. T his topic
introduces the concept of MSHA and describes the common scenarios in which MSHA is suitable. T his
topic also describes the benefits of MSHA.

What is MSHA?

299 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

MSHA is an active geo-redundancy solution that was developed in the e-commerce business
environment of Alibaba Group. MSHA can help decouple business recovery from fault recovery. MSHA
provides capabilities such as flexible scheduling based on traffic rules, cross-region and cross-cloud
management, and data protection. If a fault occurs, fast failover and recovery operations can be
performed.

Message Queue for Apache RocketMQ leverages Alibaba Cloud Express Connect and MSHA to
implement two-way synchronization of message data across instances in the same region or different
regions. MSHA is different from a traditional disaster recovery solution. MSHA allows Message Queue for
Apache RocketMQ clusters that are deployed in different units to provide services at the same time.
This helps implement disaster recovery, improve business continuity, and achieve remote resource
scaling.

The following figure shows how to use MSHA to implement active geo-redundancy for Message Queue

for Apache RocketMQ.

Business Data

|

MSHA Access Layer

Hangzhou Unit Shanghai Unit

Application
System A

1 AP APP App
H Sever Sever Sever W

Application
System B

Message Queue for
Apache RocketMQ Broker
Cluster A

.

Message Queue for
Apache RocketMQ Broker
Cluster B

Two-way Data
Synchronization

—
1
1
1
1
1
1
1
1
1
1
1
1
1
1

e A complete business systemis deployed in the Hangzhou and Shanghai units.

e The MSHA access layer routes business data to the two units based on traffic rules. The application
systems and Message Queue for Apache Rocket MQ broker clusters in the Hangzhou and Shanghai
units process business data in their local regions.

e The broker clusters in the two units are configured to support active geo-redundancy. Data is
synchronized between Broker Cluster A and Broker Cluster B in a two-way manner. The data includes
topics, groups, and consumer offsets. In normal cases, the business systems in the Hangzhou and
Shanghai units process business data only in their local regions, and synchronize message data of the
local unit to the cluster of the remote unit for disaster recovery and backup.

> Document Version: 20220816 300

User Guide- Best practices Alibaba Cloud Message Queue

e Assume that a disaster occurs in the Hangzhou unit and the entire business systemin the Hangzhou
unit fails. In this case, MSHA switches the business data of the Hangzhou unit to the Shanghai unit. As
a result, Broker Cluster B of the Shanghai unit stores the business data of the Hangzhou unit and can
continue to process the unfinished message data. This allows you to troubleshoot and fix the fault
without service downtime. T his way, the business can be recovered before the fault is rectified.

e Afterthe Hangzhou unit is recovered fromthe fault, MSHA switches the business data of the
Hangzhou unit backto the business system in the Hangzhou unit. During the entire process, users are
not aware of the fault, and the user experience is not affected.

Common scenarios
MSHA can be used in the following common business scenarios:

e Business scenarios in which workloads are divided into different units by region, such as logistics
workloads. You can divide the logistics workloads based on the regions in which logistics orders are
placed and send business data to production centers in different regions. This way, the data can be
simultaneously processed. This helps improve resource utilization and business concurrency.

e Business scenarios that have strict requirements for the reliability of business data, such as financial
and securities systems. If a systemfault occurs, the transaction results are negatively affected. In this
case, you can use MSHA to switch the workloads to the disaster recovery site. The disaster recovery
site can continue to process unfinished message data based on the synchronized data.

Benefits
e High availability

Compared with a traditional disaster recovery solution, MSHA implements two-way data
synchronization across production centers. All production centers can provide services at the same
time. This implements traffic balancing and improves resource utilization.

e Fast fault recovery

MSHA effectively ensures business continuity. MSHA decouples business recovery fromfault recovery.
When one of the production centers fails, MSHA immediately switches the business to other healthy
production centers to ensure business continuity. This is different from a traditional solution in which
the fault must be identified and fixed before the business can be recovered.

e Remote resource scaling

The limited resources in a single data center or region may not meet the requirements as the business
rapidly develops. In addition, the business may face bottlenecks such as limited storage and
computing performance. The horizontal scaling capability of Message Queue for Apache RocketMQ
allows the business to be expanded in other data centers or regions to improve cost efficiency.

7.6. Message routing

The message routing feature provided by Message Queue for Apache RocketMQ can be used to
synchronize message data across clusters to ensure message consistency and integrity between
clusters. This topic introduces the concept of message routing and describes the common scenarios in
which the message routing feature is suitable. This topic also describes the benefits of the feature and
how to configure the feature.

What is message routing?

301 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide-Best practices

The message routing feature of Message Queue for Apache RocketMQ is used to synchronize messages
across clusters. You can configure routing rules to dynamically plan the synchronization path of
messages so that messages can be synchronized from the source node to the destination node based
on filter conditions. This implements remote message synchronization and allows you to synchronize
messages across clusters wit hin milliseconds. T his way, data consistency and integrity across clusters are
ensured.

The following figure shows how the message routing feature works in Message Queue for Apache
RocketMQ. In the figure, one-way synchronization is performed based on topics to synchronize
messages from a specified source topic in the source instance to a specified destination topic in the
destination instance.

Common scenarios
The message routing feature can be used in the following common scenarios:
e Data synchronization

Taobao and Tmall serve users all over the world. If sellers in a country or a region want to publish
products, the products must be reviewed before they can be available for sale. However, the
product review systems of Alibaba Group are central systems deployed only in the cities of China,
such as Shanghai. In this scenario, messages from the regions outside China must be synchronized to
the product review systems in China to achieve cross-region data synchronization.

Taobao commodity
release module

_ Messages send -

and receive Sso
Germany (Frankfurt)) \‘\
Y
ic: oo\fs
IR
A}
\
\
AN Commaodity
\ Audit Center
) e Messages send_
Taobao commodity \\1\65539‘ S -~ and receive
release module - }6\)"e China (Shanghai)
- -7
Messages send r

US (Silicon Valley)

e Disaster recovery and backup

For core trading systems, changes in the details and prices of various commodities need to be
updated across all business systems in real time. Multi-region disaster recovery and backup solutions
can be used to ensure high availability. T his way, service continuity is ensured even if a region
becomes unavailable due to issues such as the cut of optical fibers.

> Document Version: 20220816 302

User Guide- Best practices Alibaba Cloud Message Queue

Region 1 Region 2

Commodity

Commodity information change

information change

|
|
I
I
1
|
1
|
1
|
|
|
|
|
1
1
v

v Message backup v
Commaodity Center Commodity Center
Local cache Local cache
1 1
ey > ;
Message backu
Product access . 9 P Product access

Benefits

e High performance

The message routing feature provided by Message Queue for Apache Rocket MQ enables real-time
message synchronization wit hin milliseconds and supports millions of transactions per second (TPS).

e Low costs

You do not need to purchase additional leased lines, perf orm upgrades, or modify application code
to use the message routing feature. The message routing process is transparent to your application.

e Ease of use
The message routing feature supports GUI-based configuration. You can create and manage routing
tasks in the Message Queue for Apache RocketMQ console.

Limits

The message routing feature is available only for instances that have namespaces. You can check

whether an instance has a namespace onthe Instance Information tab of the details page of the
instance in the Message Queue for Apache RocketMQ console.

Configure message routing

This section describes the procedure that is used to configure the message routing feature fora
Message Queue for Apache RocketMQ instance. For more information, see Configure message routing.

e Step 1: Create a destination cloud

Before you create a routing task, you must specify information to create a cloud where your Message
Queue for Apache RocketMQ cluster is deployed. The information includes the endpoint of your
Message Queue for Apache Rocket MQ instance and the AccessKey ID and AccessKey secret of the
account to which the cloud belongs. Message Queue for Apache Rocket MQ obtains the permissions
that are required to access Message Queue for Apache Rocket MQ resources across clouds based on
the cloud information that you specified.

e Step 2: Create a routing task

Specify the message source and the message destination, and configure relevant information. For
example, specify filter conditions and set the start offset of message synchronization.

303 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

8.5ervice usage FAQ
8.1. FAQ
8.1.1. Quick start

This topic provides answers to questions frequently asked by new users when they use Message Queue
for Apache RocketMQ.

1. Where do consumers identified by a new group ID start to consume?

o If a consumer identified by the group ID is started for the first time, the consumer ignores the
messages that are sent before the consumer is started. This means that the consumer ignores
hist orical messages and starts to consume messages that are sent after the consumer is started.

o If the consumeris started for the second time, the consumer starts consumption fromthe
previous consumer offset.

o If youwant the consumerto start consumption from a specific offset, you can reset the previous
consumer offset in the Message Queue for Apache RocketMQ console to specify a point in time
from which the consumer starts to consume messages. Each reset affects only the specific topic
under the specific group ID but does not affect other group IDs.

2. How does the Message Queue for Apache RocketMQ broker redeliver a message if the message fails
to be consumed?

o Clustering consumption

In clustering consumption mode, if Action.ReconsumerLater or NULL is returned or an error occurs
during consumption, the Message Queue for Apache RocketMQ broker attempts to redeliver the

message for up to 16 times. If the message still fails to be consumed after the 16 delivery retries,
the message is discarded. The following table describes the intervals between delivery retries.

Nth delivery retry Interval

1 10 seconds
2 30 seconds
3 1 minute

4 2 minutes
5 3 minutes
6 4 minutes
7 5 minutes
8 6 minutes
9 7 minutes
10 8 minutes

> Document Version: 20220816 304

User Guide- Service usage FAQ Alibaba Cloud Message Queue

Nth delivery retry Interval

11 9 minutes
12 10 minutes
13 20 minutes
14 30 minutes
15 1 hour

16 2 hours

The message.getReconsumeTimes() method can be called to query the serial number of a
delivery retry.

o Broadcasting consumption

In broadcasting consumption mode, Message Queue for Apache RocketMQ guarantees that a
message can be consumed at least once. If the message fails to be consumed, the Message
Queue for Apache RocketMQ broker does not redeliver the message.

3. What do I do if a sent message is not received?
Message Queue for Apache Rocket MQ provides the following methods for Message query:

o Specify a topic and time range to query all messages received by this topic within the specified
time range.

o Specify atopic and message ID to query messages by using exact match.
o Specify atopic and message key to query messages with the same message key.

You can use the preceding methods to query the specific content and consumption information of
messages. To track the time and location of each role fromthe producer to the consumer in the
entire trace of a message, you can use the message tracing feature provided by Message Queue
for Apache RocketMQ. For more information, see Query the message trace.

4. Can Message Queue for Apache RocketMQ ensure that no duplicate messages are delivered to
consumers?

In most cases, Message Queue for Apache RocketMQ can ensure that no duplicate messages are
delivered to consumers. As a distributed messaging middleware, Message Queue for Apache
RocketMQ cannot ensure that no duplicate messages are delivered to consumers when exceptions
such as network jitter and application processing timeout occur. However, Message Queue for
Apache RocketMQ can ensure that no messages are lost.

8.1.2. Configurations
This topic provides answers to frequently asked questions about Message Queue for Apache RocketMQ
configurations.

1. How long can messages be retained on the Message Queue for Apache Rocket MQ broker?

Messages can be retained on the Message Queue for Apache RocketMQ broker for up to three
days. The system automatically deletes the unconsumed after the three days.

2. What is the maximum message body size in Message Queue for Apache RocketMQ?

305 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

The maximum message body size in Message Queue for Apache Rocket MQ varies with the message
type. The following information shows the maximum message body size for different types of
messages:

o A normal or ordered message: 4 MB
o A transactional, scheduled, or delayed message: 64 KB

3. How do I set the number of consumer threads on a Message Queue for Apache RocketMQ
consumer?

To set the number of consumer threads on a Message Queue for Apache Rocket MQ consumer, set
the ConsumeT hreadNums attribute when you start the consumer. The following sample code
provides an example on how to set the number of consumer threads:

public static void main(String[] args) {

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID 001");
properties.put (PropertyKeyConst.AccessKey, "XXXXXXXXXxXXX'") ;
properties.put (PropertyKeyConst.SecretKey, "XxXxxXxxXxxxxx") ;
/**

* Set the number of consumer threads to 20.

*/
properties.put (PropertyKeyConst.ConsumeThreadNumns, 20) ;
Consumer consumer =ONSFactory.createConsumer (properties) ;
consumer.subscribe ("TestTopic", "*", new Messagelistener () ({

public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message) ;

return Action.CommitMessage;

});
consumer.start () ;
System.out.println ("Consumer Started");

}

4. What do Ido if an error in loading DLL or another running error occurs due to invalid .NET client
configuration?

For more information, see SDK GUIDE.pdf in the compressed package of SDK for .NET to verify that
the project configuration is the same as that described in the document.

8.1.3. Message tracing
This topic provides answers to frequently asked questions about the message tracing feature of
Message Queue for Apache RocketMQ.

1. Why is trace data not found?

If no trace datais found based on the specified query conditions, check whether the following
requirements are met:

i. Only Java clients of version 1.2.2 or later support the message tracing feature.

ii. Checkwhetherthe query conditions are properly specified. This means that you need to check
whether the topic name, message ID, and message key are properly entered.

> Document Version: 20220816 306

User Guide- Service usage FAQ Alibaba Cloud Message Queue

ii. Checkwhetherthe query time range is correct. To accelerate the query, you must specify the
range of the message sending time. If you still cannot retrieve the data, expand the time range
and try again.

iv. If the preceding settings are correct but the trace data is still not found, contact the technical
support and provide the related log file. The path to the log file is /home/{user}/logs/ons.log.

v. If the preceding settings are correct but the trace datais still not found, submit a ticket to
seek help fromthe technical support and provide the log file. The pathto the log file is /home
/{userj/logs/ons.log.

2. What do I do if the consumption information about a consumed message is not included in the
trace data and the client IP address and group ID in the trace data are wrong?

This problem occurs because the client is not updated to the version that supports the message
tracing feature. Therefore, the message tracing module of Message Queue for Apache RocketMQ
can obtain only some trace data, and the displayed result is abnormal. We recommend that you
upgrade your client as soon as possible. For more information about the message tracing feature,
see Query the message trace.

3. Why is my group ID not shown in the list of consumers?

The possible cause is that a large number of downstream consumers have subscribed to messages,
and the space in the tracing map is insufficient to display all the data. Move the pointer over the
scroll bar and scroll down to see all the data.

4. Why are previous query tasks not displayed?

A large number of historical query tasks affect the display result. Theref ore, Message Queue for
Apache RocketMQ regularly cleans up historical query tasks and retains only query tasks created
within the recent seven days. If you cannot find a historical task, query it again.

8.1.4. Alert handling

Alert handling is unavailable for Message Queue for Apache Rocket MQ.

Apsara Stack provides an isolated cloud-based environment and cannot be connected to the APIs of
Internet services, such as the short message service (SMS) gateway. Therefore, the monitoring and
alerting module in the console is unavailable.

8.1.5. Ordered messages
This topic provides answers to frequently asked questions about ordered messages in Message Queue
for Apache RocketMQ.
1. Do ordered messages support clustering consumption and broadcasting consumption?
Ordered messages support clustering consumption but do not support broadcasting consumption.

2. Can a message be an ordered message, a scheduled message, and a transactional message at the
same time?

No, a message cannot be an ordered message, a scheduled message, and a transactional message
at the same time. Ordered messages, scheduled messages, and transactional messages are
different and mutually exclusive message types.

3. What is the usage scope of ordered messages?

307 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

Ordered messages are messages that are guaranteed to be consumed in the order they are sent
wit hin the same topic. Ordered messages are classified into globally ordered messages and partially
ordered messages.

4. Why is the performance of globally ordered messages mediocre?

Globally ordered messages are processed in first-in-first-out (FIFO) order. If the previous message is
not consumed, the next message will be stored in a queue of the corresponding topic until the
previous message is consumed. To improve the transactions per second (TPS) of globally ordered
messages, upgrade the specifications of the host that runs the message client, and reduce as much
as possible the time required by the message client application to process the local business logic.

5. What transmission modes do ordered messages support?

Ordered messages support only the reliable synchronous transmission mode.

8.2. Exceptions
8.2.1. Usage-related exceptions

This topic describes the exceptions that may occur when you use Message Queue for Apache
RocketMQ. T his topic also provides solutions.

1. The producer or consumer failed to be started, or duplicate group IDs exist.
Cause:

You attempt to start multiple producer or consumer instances identified by the same group ID in
one VM process. This results in client startup failures.

Solution:
Performthe following steps:

i. Make sure that only one producer instance identified by a group ID and one consumer instance
identified by a group ID are started in one JVM process. This means that you cannot start
multiple producer instances identified by the same group ID or multiple consumer instances
identified by the same group ID in the same JVM process.

ii. Restart your application.

2. In broadcasting consumption mode, an error occurred when the JSON file is loaded for consumer
startup.

Cause:

The Fastjson version is much earlier. In broadcasting consumption mode, the consumer failed to
load the local offsets.jsonfile and failed to be started.

Solution:

Update Fastjson to a version supported by ons-client and make sure that the offsets.jsonfile can
be normally loaded. By default, the offsets jsonfile is located in the /home/{user}/.rocketmq_offs
ets/directory.

3. The queue list failed to be obtained when the consumer subscribes to messages.
Cause:

You did not create this topic in the console. As a result, the consumer failed to obtain the queue
information of the topic during startup.

> Document Version: 20220816 308

User Guide- Service usage FAQ Alibaba Cloud Message Queue

Solution:
Performthe following steps:

i. Log onto the Message Queue for Apache RocketMQ console. Inthe left-side navigation pane,
click Topics. Onthe Topics page, click Create Topic.

ii. Inthe left-side navigation pane, click Groups. Onthe Groups page, click Create Group ID to
Create a group ID as prompted.

iii. Restart your application.
4. The message failed to be sent.
The message failed to be sent after multiple delivery retries.
Cause:

i. The Message Queue for Apache RocketMQ broker returned an error code to the producer. For
more information about the error code, see the nested exception that corresponds to this
exception.

ii. Afterthe Message Queue for Apache RocketMQ broker unexpectedly fails and before the
producer detects the latest broker list, this exception temporarily occurs.

iii. The producertimed out when it attempted to send a message. This problem may be caused
by heavy load on the broker or unstable network connectivity.

Solution:
Performthe following steps:

i. Try again later. This exception is temporary. The temporary timeout might be caused by the
restart of the Message Queue for Apache RocketMQ broker or heavy load on the broker.

ii. If the problem persists afteryou try for several times, contact technical support engineers.
5. No exception is recorded.
Problem description:
No exception is recorded.
Solution:
Contact technical support engineers.
6. The status of the message is Consumed, but the consumer is not aware of this.

The status of the message is Consumed, but the consumer log shows that the message is not
received. This problemis due to the following three reasons:

o The business code defines that the message is not immediately printed after the message is
received.

If the business logic is directly executed after a message is received, the message information is
not recorded in the log if the code misses a specific logic branch. This leads to the false
symptomthat the message is not received.

We recommend that you immediately print the message information after you receive a message
to keep the information such as messageld, timestamp, and reconsumeTime.

o Multiple consumer instances are deployed.

309 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

A consumer is often restarted multiple times at the debugging stage. If the previous process
does not exit before the next process starts, multiple consumption processes coexist. In this
case, multiple consumer instances share the message information. This scenario is similar to
clustering consumption. A message that fails to be received by one consumer is received by
another consumer.

Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Groups. On the Groups page, select your instance and click Consumer Status inthe
Actions column. In the Consumer Status panel, view Connection Information. The deployment
information of consumer instances is displayed, including the number of consumer instances and
the IP address of each instance. You can check for the problem based on the information.

o Anexception that failed to be caught occurred during the consumption of a message. As a
result, the message is redelivered.

public class MessagelistenerImpl implements Messagelistener ({
@override
public Action consume (Message message, ConsumeContext context) {
// The message processing logic throws an exception. The message will be redeli
vered.
doConsumeMessage (message) ;
// If an exception that is not caught occurs in the doConsumeMessage () method,
this line of log is not printed.
log.info ("Receive Message, messageld:", message.getMsgID());

return Action.CommitMessage;

If the problem persists, contact technical support engineers and provide the local SDK logs.

8.2.2. Nonexistent resources

This topic describes exceptions related to nonexistent resources and provides solutions.
1. Nonexistent group ID
Cause:

The group ID is not created in the Message Queue for Apache RocketMQ console. As a result, when
the group ID is used to connect to the Message Queue for Apache RocketMQ broker, verification
fails on the broker.

Solution:
Performthe following steps:

i. Log onto the Message Queue for Apache RocketMQ console. Inthe left-side navigation pane,
click Groups.

m If the group ID already exists, proceed to the next step.
m If the group ID does not exist, create the group ID. Then, perform the next step.
ii. Restart your application.
2. Nonexistent hostname

Cause:

> Document Version: 20220816 310

User Guide- Service usage FAQ Alibaba Cloud Message Queue

A possible cause is that the correct hostname or host IP address cannot be retrieved. To verify this
assumption, run the hostname command.

If the correct hostname cannot be retrieved, this assumption is true. Otherwise, this problem may
be due to another reason. In this case, contact technical support engineers.

Solution:
Performthe following steps:

i. Onthe host for which the error is reported, run the following command to check the
hostname:

[root@izZ231wxgtéemZ ~]# hostname
1Z231wxgtemz

If an erroris returned, check whether an alias is defined for the hostname. For example, an alias
can be alias xxx="hostname' in .bash_profile or .bashrc. Another possible cause is that the
command path does not point to $PATH.

ii. Pingthe host.

[root@iZ231wxgtémZ ~]# ping iZ231lwxgtémZ

If the hostname cannot be pinged, add the local IP address to the /etc/hostsfile. By default,
each Elastic Compute Service (ECS) instance establishes a binding relationship between the
local IP address and the hostname. Do not manually remove the relationship.

iii. Checkthe system configurations.

Check whether the hostname recorded in /etc/sysconfig/networkis the same as that added
to /etc/hosts. If the hostname is not the same as that added to /etc/hosts, modify the
hostname. If you modify the content in /etc/sysconfig/network, you must restart the host
after you modify the content. This way, the modification can take effect. Exercise caution
when you modify configurations in a systemfile, because this operation may cause other
exceptions.

Afterthe preceding three steps are performed, UnknownHost Exception will no longer be returned
when your client starts.

8.2.3. Inconsistent status

This topic describes the exceptions related to inconsistent status and provides solutions.

1.

Invalid messages
Cause:

The message attribute or content is invalid in the following scenarios:

o

The message is empty.

(e]

The message content is empty.

(e]

The message content is 0 characterin length.

(e]

The length of the message content exceeds the limit.
Solution:

Check whether the preceding exceptions occur to the message and handle the exceptions as
prompted.

311

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

2. Invalid parameters
Cause:

The following table lists the cases in which the parameters are invalid.
Nested exception Description

. The specified number of consumer threads is
consumeT hreadMin Out of range [1, 1000] . .
inappropriate.

The specified number of consumer threads is
consumeThreadMax Out of range [1, 1000] P

inappropriate.
messageListener is null messageListener is not configured.
consumerGroup is null The group ID is not specified.

The delay for the delivery of a scheduled

msg delay time more than 40 day message cannot exceed 40 days

Solution:
Performthe following steps:

i. Modify the parameter settings for the client as prompted and make sure that the new
parameter values are within the valid ranges.

ii. Restart your application.
3. Abnormal client status
Cause:

i. Afterthe consumer or producer is created, the return code does not show that the start()
method is called to start the consumer or producer.

ii. Afterthe consumer or producer is created, the consumer or producer fails to start due to an
exception in the start() process.

ii. Afterthe consumer or producer is created and the start() method is called, the return code
shows that the shutdown() method is called to shut down the consumer or producer.

Solution:
Performthe following steps:

i. Make sure that the start() method is called after the group ID is created. Make sure that the
producer or consumer is started.

ii. Check ons.logforexceptions that occurduring the startup of the producer or consumer.
4. Subscription inconsistency
Problem description:

Multiple consumer instances are started in different JVM processes. Consumer instances identified
by the same group ID subscribe to different topics, or subscribe to the same topic but different
tags. As a result, the subscriptions of the consumer instances are inconsistent, and messages
cannot be received as expected.

Sample code of inconsistent subscriptions:

> Document Version: 20220816 312

User Guide- Service usage FAQ Alibaba Cloud Message Queue

o Example 1: The consumer instance onJVM 1 and the consumer instance on JVM 2 use the same
group ID GID-MQ-FAQ. The two consumer instances subscribe to different topics. The consumer
instance on JVM 1 subscribes to MQ-FAQ-TOPIC-1, whereas the consumer instance on JVM 2
subscribes to MQ-FAQ-TOPIC-2.

Code on JVM-1:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");

Consumer consumer = ONSFactory.createConsumer (properties) ;
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQO-FAQ", new Messagelistener () {
public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message);

return Action.CommitMessage;

1)

consumer.start () ;

Code on JVM-2:

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");

Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-2", "NM-MQO-FAQ", new MessagelListener () {
public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message);

return Action.CommitMessage;

1)

consumer.start () ;

o Example 2: The consumer instance onJVM 1 and the consumer instance on JVM 2 use the same
group ID GID-MQ-FAQ and subscribe to the same topic. However, the two consumer instances
subscribe to different tags. The consumer instance on JVM 1 subscribes to NM-MQ-FAQ-1,
whereas the consumer instance on VM 2 subscribes to NM-MQ-FAQ-2.

Code on JVM-1:

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-1", new MessagelListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message);

return Action.CommitMessage;

1)

consumer.start () ;

Code on JVM-2:

313

> Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-2", new MessagelListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message);

return Action.CommitMessage;

1)

consumer.start () ;

Solution:

If you start multiple consumer instances identified by the same group ID in different VM processes,
make sure that the topics and tags to which the consumer instances subscribe are the same.

8.3. Troubleshooting

8.3.1. Unexpected consumer connections

This topic describes the symptoms of an unexpected consumer connection, analyzes causes, provides a
solution, and verifies the solution.

Problem description

e [Symptom 1]: Some messages are sent but not received. After you query message traces inthe
Message Queue for Apache Rocket MQ console, the returned information shows that some messages
are sent to the Message Queue for Apache RocketMQ broker, but the broker does not deliver the
messages to consumers. To query message traces, log on to Message Queue for Apache RocketMQ
console. Inthe left-navigation pane, click Message Tracing. On the Message Tracing page, click
Create Query Task. Inthe Create Query Task dialog box, clickthe By Message ID tab.

e [Symptom 2]: Some consumer IP addresses are not within the expected range and messages are
accumulated on the consumers that correspond to these IP addresses. To query connection
information about consumers, log on to the Message Queue for Apache RocketMQ console. In the
left-side navigation pane, click Groups. On the Groups page, find the group ID whose connection
information you want to view and click Consumer Status in the Actions column. In the Consumer
Status panel, view the connection information in the Connection Information section.

Problem analysis

Analysis: Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation
pane, click Groups. On the Groups page, find the group ID whose connection information you want to
view and click Consumer Status in the Actions column. In the Consumer Status panel, view the
connection information in the Connection Information section. The connection information about all
consumers identified by the group ID are displayed. You can check the IP address and process ID of the
unexpected consumer and check whether the configurations loaded by the process are valid. The
configurations include the AccessKey ID, AccessKey secret, topic, and group ID. If the configurations are
invalid, the consumer process occupies some queues but cannot properly consume messages.

> Document Version: 20220816 314

User Guide- Service usage FAQ Alibaba Cloud Message Queue

Cause: In the same environment, if a consumer identified by the group ID and configured with an invalid
AccessKey ID, AccessKey secret, and topic is started, this consumer process may occupy some queues of
the topic but cannot properly consume messages. As a result, messages are accumulated onthe
Message Queue for Apache RocketMQ broker and cannot be properly delivered to downstream
consumers whose IP addresses are within the expected range.

e Confirmation: Locate the faulty process based on the connection status and check the Accesskey
ID, AccessKey secret, and topic of the process based on the /{fuser.home}/logs/ons.logfile or
program code.

e Solution: This is a quick solution. Shut down the faulty consumer process first. Then, the
accumulated messages will be immediately rebalanced and delivered to proper consumers. Afterthe
fault is rectified, restart the faulty process.

Verification

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups. On the Groups page, find the group ID that you want to view and click Consumer Status in
the Actions column. In the Consumer Status panel, view the connection information of consumers
identified by the group ID in the Connection Information section. The displayed information shows
that IP addresses of all consumers are within the expected range and the value of Consistent
Subscription is Yes.

8.3.2. Inconsistent subscriptions

This topic describes the symptoms of inconsistent subscriptions, analyzes causes, provides a solution,
and verifies the solution.

Problem description

e Consumers identified by a group ID failed to receive some messages to which they want to subscribe.
To query messages, log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Message Query. On the Message Query page, clickthe By Message ID tab.
Specify the corresponding topic and message ID. The displayed inf ormation shows that the message
has been consumed at least once. However, the message is considered unconsumed based on the
consumption logic.

e The subscriptions of consumers identified by the group ID are inconsistent. To check whether the
subscriptions of consumers are consistent, log on to the Message Queue for Apache RocketMQ
console. In the left-side navigation pane, click Groups. On the Groups page, find the group ID and
clickConsumer Status in the Actions column. In the Consumer Status panel, the value of
Consistent Subscription is No.

Problem analysis

In Message Queue for Apache RocketMQ, a group ID represents a consumer instance group. For most
distributed applications, multiple consumer instances are attached to the same group ID. Subscription
consistency means that the topics and tags of all consumer instances identified by the same group ID
must be identical.

If the consumer instances identified by the same group ID subscribe to different topics, or subscribe to
the same topic but different tags, the subscriptions are inconsistent. If the subscriptions are
inconsistent, errors occur in the message consumption logic and messages may be lost.

e [Cause 1]: The topics subscribed to by consumers with the same group ID are different.

315 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

Example 1: Two consumers identified by the group ID GID-MQ-FAQ subscribe to different topics:
MQ-FAQ-TOPIC-1 and MQ-FAQ-TOPIC-2.

Code on JVM-1:

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");

Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQO-FAQ", new Messagelistener () {
public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message);

return Action.CommitMessage;

}):

consumer.start () ;

Code on JVM-2:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");

Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-2", "NM-MQ-FAQ", new MessageListener() {
public Action consume (Message message, ConsumeContext context) {

System.out.println ("Receive: " + message);

return Action.CommitMessage;

});

consumer.start () ;

e [Cause 2]: Two consumers identified by the same group ID subscribe to the same topic but different
tags.

Example: Two consumers identified by the group ID GID-MQ-FAQ subscribe to the same topic but
different tags: NM-MQ-FAQ-1 and NM-MQ-FAQ-2.

Code on JVM-1:

Properties properties = new Properties();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-1", new MessagelListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message);

return Action.CommitMessage;

});

consumer.start () ;

Code on JVM-2:

> Document Version: 20220816 316

User Guide- Service usage FAQ Alibaba Cloud Message Queue

Properties properties = new Properties|();
properties.put (PropertyKeyConst.GROUP ID, "GID-MQ-FAQ");
Consumer consumer = ONSFactory.createConsumer (properties);
consumer.subscribe ("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-2", new MessagelListener () {
public Action consume (Message message, ConsumeContext context) {
System.out.println ("Receive: " + message);

return Action.CommitMessage;

});

consumer.start () ;

Solution

Performthe following steps:

1. Checkthe subscription code of different consumers. Make sure that the subscriptions of all
consumers identified by the same group ID are consistent. This means that the topics and tags
subscribed to by the consumers are all identical.

2. Restart all consumer applications.

Verification

e Consumers can receive messages as expected.

e Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups. On the Groups page, find the group ID that you want to view and click Consumer Status in
the Actions column. In the Consumer Status panel, the value of Consistent Subscription is Yes.

8.3.3. Message accumulation

This topic describes the symptoms of message accumulation, analyzes causes, provides a solution, and
verifies the solution.

Problem description

e The value of Accumulated Messages is higher than expected. To query the number of
accumulated messages, log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Groups. On the Groups page, find the group ID that you want to view and click
Consumer Status inthe Actions column. In the Consumer Status panel, check the value of
Accumulated Messages in the Connection Information section.

e Some messages have been sent to the Message Queue for Apache RocketMQ broker but are not
delivered to consumers. To query message traces, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Message Tracing. On the Message Tracing
page, click Create Query Task. In the Create Query Task dialog box, click the By Message ID tab.
Specify the corresponding topic and message ID to query the trace of a message.

Problem analysis

In Message Queue for Apache Rocket MQ, messages are first sent to the broker. Then, consumers
identified by the group ID pull some messages fromthe broker to the on-premises machine for
consumption based on the current consumer offset. In the consumption process, it may take a long
time to consume a single message due to various reasons, such as access to locked shared resources,
competition forl/0 and network resources, and no timeout set for HTTP calls. As a result, messages
start to accumulate on the broker.

317 > Document Version: 20220816

Alibaba Cloud Message Queue User Guide- Service usage FAQ

If messages are not accumulated, check whether the threshold value is excessively small and causes
alerts on message accumulation.

Solution
Perform the following operations for troubleshooting:

e Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Resource Statistics. Onthe Resource Statistics page, clickthe Message Consumption tab. Enter
the information to query historical consumption records. If message writing is faster than message
consumption, modify the code or scale out the consumer.

e Print the Jstackinformation jstack -1 {PID} | grep ConsumeMessageT hread in the application. If
messages are blocked, print the Jstack information for five consecutive times and identify the spot
where the consumer thread is stuck. Then, rectify the fault and restart the application. Check
whether messages can be consumed.

Verification

e Print the Jstackinformation jstack -1 {PID} | grep ConsumeMessageT hread in the application.
Verify that no consumer thread is blocked.

e Log onto the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Groups. On the Groups page, find the group ID that you want to view and click Consumer Status in
the Actions column. In the Consumer Status panel, check whether the value of Real-time
Consumption Speed increases and the value of Accumulated Messages decreases.

8.3.4. Message accumulation in Java processes

Problem description

In the Consumer Status panel of the Message Queue for Apache RocketMQ console, the number of
real-time accumulated messages of the group ID is higher than expected, and the performance is much
lower.

Cause

The number of real-time accumulated messages of the group ID is higher than expected due to an
excessive number of messages accumulated in the Java process.

Solution

Procedure

1. Log onto the Message Queue for Apache RocketMQ console. Navigate to the Consumer Status
panel, obtain the host IP address of the consumer instance that has accumulated messages, and
then log onto the host or container.

2. Run one of the following commands to view the PID of the Java process and record the PID:

ps -ef |grep java
Jjps —-1m

3. Runthe following command to view the stackinformation:

jstack -1 pid > /tmp/pid.Jjstack

> Document Version: 20220816 318

User Guide- Service usage FAQ Alibaba Cloud Message Queue

4. Runthe following command to view the information about consumeMessageThread and focuson
the thread status and stack:

cat /tmp/pid.Jjstack|grep ConsumeMessageThread -A 10 --color

The following figure shows an example of command out put.

e

1d=0x00007f08085d9000 nid=0x42cl waiting for monitor entry [@x@0007f07cc30c000]

java.lang.Thread.State: BLOCKED (on object monitor)

at com.taobao.txc.a.b.g.c(Unknown Source)

- waiting to lock <0x@000000702f7d9de> (a java.lang.Object)

at com.taobao.txc.a.b.g.a(Unknown Source)

at com.taobao.txc.a.b.g.b(Unknown Source)

at com.taobao.txc.a.b.g.a(Unknown Source)

at com.taobao.txc.client.a.a.a.a(Unknown Source)

at com.taobao.txc.client.a.a.a.b(Unknown Source)

at com.taobao.txc.client.a.a.a.a(Unknown Source)

at com.taobao.txc.client.b.b.a(Unknown Source)

at com.taobao.txc.client.aop.b.invoke(Unknown Source)

at org.springframework.aop.framework.ReflectiveMethodInvocation.proceed(ReflectiveMethodInvocation.java:179)

at org.springframework.aop . framework.JdkDynamicAopProxy . invoke(JdkDynamicAopProxy. java:207)

at com.sun.proxy.$Proxy159.orderAutoAdaptation(Unknown Source)

at com.xtep.o020.order.adaptation.orderAutoAdaptation.mq.ConsumerOrderAdaptationMQ.consumerMassage(ConsumerOrderAdaptationMQ. java:84)
at com.xtep.mq.0OnsConsumerSpringBean$1. consume(OnsConsumerSpringBean. java:79)

at com.aliyun.openservices.ons.api.impl.rocketmq.ConsumerImpl$MessagelListenerImpl.consumeMessage(ConsumerImpl.java:179)
at com.alibaba.rocketmqg.client.impl.consumer.ConsumeMessageConcurrentlyService$ConsumeRequest . run(ConsumeMessageConcurrentlyService. java:414)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)

at java.util.concurrent.FutureTask.run(FutureTask.java:266)

at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor. java:1142)

at java.util.concurrent.ThreadPoolExecutor$Worker . run(ThreadPoolExecutor. java:617)

at java.lang.Thread.run(Thread.java:745)

For more information about the thread status, see official Java documentation.

@ Note Message Queue for Apache RocketMQ can support 1 billion accumulated messages
without compromising the performance. If the problem of compromised performance is not
solved after you performthe preceding steps, contact O&M engineers and provide the
following information:

o The heap.binfile. Runthe jmap -dump:format=b, file=heap.bin [$PID] command to
obtainthis file. Then, runthe gzip heap.bin command to generate a compressed
package.[$PID] represents the PID of the Java process recorded in Step 2.

o The local ons.logfile of the consumer client where messages are accumulated.

o The version of the consumer client.

8.3.5. Application OOM due to message caching
on the client

This topic describes the symptoms of application out of memory (OOM), analyzes causes, provides
solutions, and verifies each solution.

Problem description
e [Symptom 1]: The memory is exhausted on the machine where the application is deployed.
e [Symptom 2]: The keyword Out Of Memory can be found in /{user.home}/logs/ons.log

e [Symptom 3]: In the Message Queue for Apache RocketMQ console, Real-time Accumulated
Messages in the Consumer Status panel of the Groups page shows that a large number of
messages are accumulated. The Connection Information section displays the number of accumulated
messages for each connected consumer client. In addition, the result of check by running the jstack
command indicates that consumeMessageThread is not blocked.

319 > Document Version: 20220816

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html?spm=a2c4g.11186623.2.18.77e94c07b6JihO#RUNNABLE

Alibaba Cloud Message Queue User Guide- Service usage FAQ

Analysis

Analysis: A Message Queue for Apache RocketMQ consumer proactively pulls messages fromthe
Message Queue for Apache RocketMQ broker and caches themto the client. Then, the messages are
consumed based on the consumption logic of the client. In versions earlier than 1.7.0.Final, the client
caches up to 1,000 messages for each queue of each topic by default. Assume that each topic has 16
queues (two primary brokers and two secondary brokers, and eight queues on each broker). The
average size of a message in this topic is 64 KB. The final message size cached for this topic onthe
client is calculated by using the following formula: 16 x 1000 x 64 KB = 1 GB. If you subscribe to eight
topics at the same time and caches messages of all these topics in the client memory, the memory
consumed will exceed the memory size specified in the JVM configuration. In this case, OOM occurs.

e [Cause 1]:An ons-client version earlier than 1.7.0.Final is depended on, and the average size of a
message in each topic exceeds 4 KB. In addition, message consumption is slow. This is prone to
message caching in the memory of the client.

o Confirmation: Check whether the keyword OutOf Memory can be found in /{user.home}/logs/on
s.log ,orrunthe Jmap -dump:live, format=b, file=heap.bin <pid> command to detect the
objects that occupy a large amount of memory.

o Solution: Update the ons-client versionto 1.7.0.Final or later and set the com.aliyun.openservic
es.ons.api.PropertyKeyConst#MaxCachedMess ageSizeInMiB parameterto an appropriate value
forthe corresponding ConsumerBean. Then, restart the application.

e [Cause 2]:ons-client-1.7.0.Final or later is depended on, and the default maximum memory consumed
is 512 MB, which is the total cache capacity of all topics to which consumer instances identified by a
group ID subscribe. If the application still suffers OOM, set the com.aliyun.openservices.ons.api.Pr
opertyKeyConst#MaxCachedMessageSizeInMiB pParameterto a value within the valid range from 16 MB
to 2048 MB to customize the maximum memory that can be consumed during the startup of
ConsumerBean.

o Confirmation: Checkthe ons-client version used by the application and check the memory size
allocated to the process based on the JVM configuration.

o Solution: Set the com.aliyun.openservices.ons.api.PropertyKeyConst#MaxCachedMess ageSizel
nMiB parameter forthe corresponding ConsumerBean, based on the memory usage of the
machine where the application runs. Then, restart the application.

Verification

e [Verification 1]: The keyword Out Of Memory disappears from /{user.home}/logs/ons.log

e [Verification 2]: Log onto the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Groups. On the Groups page, select your instance and click Consumer Status
in the Actions column. In the Consumer Status panel, the value of Real-time Consumption Speed
increases, whereas the value of Real-time Accumulated Messages decreases.

8.3.6. AuthenticationException reported due to

failure in sending or receiving messages

Problem description

The application cannot send messages and AuthenticationException isreported inthe
{user.home}/logs/ons.log log of the host.

> Document Version: 20220816 320

User Guide- Service usage FAQ Alibaba Cloud Message Queue

Cause

A wrong AccessKey ID or AccessKey secret is used.

Solution

Procedure

1. Check whether you use an Apsara Stacktenant account or a Resource Access Management (RAM)
user.

The following table describes the Apsara Stacktenant account and RAM user.

Apsara Uni-manager RocketMQ
Organization administrator Apsara Stack tenant account
Resource user RAM user

You can create roles in the Apsara Uni-manager Management Console. If you want arole to
become a resource user, the selected permissions must be consistent with the default
configuration in the system.

2. Checkthe permissions of the user who creates resources.

The Apsara Stack tenant account can create a topic and a group ID in the Message Queue for
Apache RocketMQ console. The created resources are of the current organization level. A RAM user
cannot create a topic, but can create a group ID. The created resource is of the RAM user level.

o If you need to use a RAM user to send and receive messages, use the Apsara Stack tenant
account to create a topic in the Message Queue for Apache RocketMQ console. For example, you
can create a topic named Topic_bumen. Then, grant the permissions on the topic to a RAM user.
At this point, the RAM user can view Topic_bumen in the Message Queue for Apache RocketMQ
console. The RAM user can create its own group ID, for example, GID_zizhanghao. Then, the
messaging program of the client can send and receive messages by using Topic_bumen,
GID_zizhanghao, and the AccessKey ID and AccessKey secret of the RAM user.

o If you need to use the topics and group IDs created by the Apsara Stack tenant account to send
and receive messages, the AccessKey ID and AccessKey secret of the organization level must be
configured because the topics and group IDs created by the Apsara Stacktenant account are of
the organizational level and do not belong to the account itself.

321 > Document Version: 20220816

	1.What is Message Queue for Apache RocketMQ?
	2.Updates
	3.Quick start
	3.1. Overview
	3.2. Log on to the Message Queue for Apache RocketMQ console
	3.3. Create resources
	3.4. Send messages
	3.4.1. Use the TCP client SDK for Java to send and subscribe to normal messages
	3.4.2. Use the HTTP client SDK for Java to send and subscribe to normal messages
	3.4.3. Check whether messages are sent

	3.5. Subscribe to messages

	4.Message types
	4.1. Normal messages
	4.2. Scheduled messages and delayed messages
	4.3. Transactional messages
	4.4. Ordered messages

	5.Console guide
	5.1. Resource management
	5.1.1. Resource management overview
	5.1.2. Manage instances
	5.1.3. Manage topics
	5.1.4. Manage groups

	5.2. Message query
	5.2.1. Overview
	5.2.2. Query messages
	5.2.3. Query results

	5.3. Message tracing
	5.3.1. Overview
	5.3.2. Query message traces
	5.3.3. Status in message traces

	5.4. View the consumer status
	5.5. Reset consumer offsets
	5.6. Dead-letter queues
	5.7. Resource statistics
	5.7.1. Overview
	5.7.2. Query the statistics of produced messages
	5.7.3. Query the statistics of consumed messages

	5.8. Account authorization management
	5.9. Switch between different access modes
	5.10. Bind a VPC to a Message Queue for Apache RocketMQ instance
	5.11. Route messages from a cluster to another cluster

	6.SDK user guide
	6.1. Overview
	6.2. SDK user guide
	6.2.1. Demo projects
	6.2.1.1. Overview
	6.2.1.2. Prepare the environment
	6.2.1.3. Configure a demo project
	6.2.1.4. Run the demo project

	6.2.2. Client parameters
	6.2.3. Client error codes
	6.2.4. SDK for Java
	6.2.4.1. Usage notes
	6.2.4.2. Prepare the environment
	6.2.4.3. Configure logging
	6.2.4.4. Spring integration
	6.2.4.4.1. Overview
	6.2.4.4.2. Integrate a producer with Spring
	6.2.4.4.3. Integrate a transactional message producer with Spring
	6.2.4.4.4. Integrate a consumer with Spring

	6.2.4.5. Three modes for sending messages
	6.2.4.5.1. Overview
	6.2.4.5.2. Reliable synchronous transmission
	6.2.4.5.3. Reliable asynchronous transmission
	6.2.4.5.4. One-way transmission

	6.2.4.6. Send messages by using multiple threads
	6.2.4.7. Send and subscribe to ordered messages
	6.2.4.8. Send and subscribe to transactional messages
	6.2.4.9. Send and subscribe to delayed messages
	6.2.4.10. Send and subscribe to scheduled messages
	6.2.4.11. Subscribe to messages

	6.2.5. SDK for C or C++
	6.2.5.1. Prepare the SDK for C or C++ environment
	6.2.5.1.1. Overview
	6.2.5.1.2. Download SDK for C++
	6.2.5.1.3. Use SDK for C++ in Linux

	6.2.5.2. Send and subscribe to normal messages
	6.2.5.3. Send and subscribe to ordered messages
	6.2.5.4. Send and subscribe to scheduled messages
	6.2.5.5. Send and subscribe to transactional messages
	6.2.5.6. Subscribe to messages

	6.2.6. SDK for .NET
	6.2.6.1. .Prepare the SDK for .NET environment
	6.2.6.1.1. Overview
	6.2.6.1.2. Download SDK for .NET
	6.2.6.1.3. .Configure SDK for .NET

	6.2.6.2. Send and subscribe to normal messages
	6.2.6.3. Send and subscribe to ordered messages
	6.2.6.4. Send and subscribe to scheduled messages
	6.2.6.5. Send and subscribe to transactional messages
	6.2.6.6. Subscribe to messages

	6.3. HTTP client SDK reference
	6.3.1. Protocol description
	6.3.1.1. Common parameters
	6.3.1.2. Request signatures
	6.3.1.3. Operation for sending messages
	6.3.1.4. Operation for consuming messages
	6.3.1.5. Operation for acknowledging messages

	6.3.2. Java SDK
	6.3.2.1. Prepare the environment
	6.3.2.2. Send and consume normal messages
	6.3.2.3. Send and consume ordered messages
	6.3.2.4. Send and consume scheduled messages and delayed messages
	6.3.2.5. Send and consume transactional messages

	6.3.3. Go SDK
	6.3.3.1. Prepare the environment
	6.3.3.2. Send and consume normal messages
	6.3.3.3. Send and consume ordered messages
	6.3.3.4. Send and consume scheduled messages and delayed messages
	6.3.3.5. Send and consume transactional messages

	6.3.4. Python SDK
	6.3.4.1. Prepare the environment
	6.3.4.2. Send and consume normal messages
	6.3.4.3. Send and consume ordered messages
	6.3.4.4. Send and consume scheduled messages and delayed messages
	6.3.4.5. Send and consume transactional messages

	6.3.5. Node.js SDK
	6.3.5.1. Prepare the environment
	6.3.5.2. Send and consume normal messages
	6.3.5.3. Send and consume ordered messages
	6.3.5.4. Send and consume scheduled messages and delayed messages
	6.3.5.5. Send and consume transactional messages

	6.3.6. PHP SDK
	6.3.6.1. Prepare the environment
	6.3.6.2. Send and consume normal messages
	6.3.6.3. Send and consume ordered messages
	6.3.6.4. Send and consume scheduled messages and delayed messages
	6.3.6.5. Send and consume transactional messages

	6.3.7. C# SDK
	6.3.7.1. Prepare the environment
	6.3.7.2. Send and consume normal messages
	6.3.7.3. Send and consume ordered messages
	6.3.7.4. Send and consume scheduled messages and delayed messages
	6.3.7.5. Send and consume transactional messages

	6.3.8. C++ SDK
	6.3.8.1. Prepare the environment
	6.3.8.2. Send and consume normal messages
	6.3.8.3. Send and consume ordered messages
	6.3.8.4. Send and consume scheduled messages and delayed messages
	6.3.8.5. Send and consume transactional messages

	7.Best practices
	7.1. Clustering consumption and broadcasting consumption
	7.2. Message filtering
	7.3. Subscription consistency
	7.4. Consumption idempotence
	7.5. Active geo-redundancy
	7.6. Message routing

	8.Service usage FAQ
	8.1. FAQ
	8.1.1. Quick start
	8.1.2. Configurations
	8.1.3. Message tracing
	8.1.4. Alert handling
	8.1.5. Ordered messages

	8.2. Exceptions
	8.2.1. Usage-related exceptions
	8.2.2. Nonexistent resources
	8.2.3. Inconsistent status

	8.3. Troubleshooting
	8.3.1. Unexpected consumer connections
	8.3.2. Inconsistent subscriptions
	8.3.3. Message accumulation
	8.3.4. Message accumulation in Java processes
	8.3.5. Application OOM due to message caching on the client
	8.3.6. AuthenticationException reported due to failure in sending or receiving messages

