
Alibaba CloudAlibaba Cloud
Apsara Stack Enterprise

Alibaba Cloud Message Queue
User Guide

Product Version: v3.16.2

Document Version: 20220816

Alibaba CloudAlibaba Cloud
Apsara Stack Enterprise

Alibaba Cloud Message Queue
User Guide

Product Version: v3.16.2

Document Version: 20220816

Legal disclaimer
Alibaba Cloud reminds you t o carefully read and fully underst and t he t erms and condit ions of t his legal
disclaimer before you read or use t his document . If you have read or used t his document , it shall be deemed
as your t ot al accept ance of t his legal disclaimer.

1. You shall download and obt ain t his document from t he Alibaba Cloud websit e or ot her Alibaba Cloud-
aut horized channels, and use t his document for your own legal business act ivit ies only. The cont ent of
t his document is considered confident ial informat ion of Alibaba Cloud. You shall st rict ly abide by t he
confident ialit y obligat ions. No part of t his document shall be disclosed or provided t o any t hird part y for
use wit hout t he prior writ t en consent of Alibaba Cloud.

2. No part of t his document shall be excerpt ed, t ranslat ed, reproduced, t ransmit t ed, or disseminat ed by
any organizat ion, company or individual in any form or by any means wit hout t he prior writ t en consent of
Alibaba Cloud.

3. The cont ent of t his document may be changed because of product version upgrade, adjust ment , or
ot her reasons. Alibaba Cloud reserves t he right t o modify t he cont ent of t his document wit hout not ice
and an updat ed version of t his document will be released t hrough Alibaba Cloud-aut horized channels
from t ime t o t ime. You should pay at t ent ion t o t he version changes of t his document as t hey occur and
download and obt ain t he most up-t o-dat e version of t his document from Alibaba Cloud-aut horized
channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud product s and services.
Alibaba Cloud provides t his document based on t he "st at us quo", "being defect ive", and "exist ing
funct ions" of it s product s and services. Alibaba Cloud makes every effort t o provide relevant operat ional
guidance based on exist ing t echnologies. However, Alibaba Cloud hereby makes a clear st at ement t hat
it in no way guarant ees t he accuracy, int egrit y, applicabilit y, and reliabilit y of t he cont ent of t his
document , eit her explicit ly or implicit ly. Alibaba Cloud shall not t ake legal responsibilit y for any errors or
lost profit s incurred by any organizat ion, company, or individual arising from download, use, or t rust in
t his document . Alibaba Cloud shall not , under any circumst ances, t ake responsibilit y for any indirect ,
consequent ial, punit ive, cont ingent , special, or punit ive damages, including lost profit s arising from t he
use or t rust in t his document (even if Alibaba Cloud has been not ified of t he possibilit y of such a loss).

5. By law, all t he cont ent s in Alibaba Cloud document s, including but not limit ed t o pict ures, archit ect ure
design, page layout , and t ext descript ion, are int ellect ual propert y of Alibaba Cloud and/or it s
affiliat es. This int ellect ual propert y includes, but is not limit ed t o, t rademark right s, pat ent right s,
copyright s, and t rade secret s. No part of t his document shall be used, modified, reproduced, publicly
t ransmit t ed, changed, disseminat ed, dist ribut ed, or published wit hout t he prior writ t en consent of
Alibaba Cloud and/or it s affiliat es. The names owned by Alibaba Cloud shall not be used, published, or
reproduced for market ing, advert ising, promot ion, or ot her purposes wit hout t he prior writ t en consent of
Alibaba Cloud. The names owned by Alibaba Cloud include, but are not limit ed t o, "Alibaba Cloud",
"Aliyun", "HiChina", and ot her brands of Alibaba Cloud and/or it s affiliat es, which appear separat ely or in
combinat ion, as well as t he auxiliary signs and pat t erns of t he preceding brands, or anyt hing similar t o
t he company names, t rade names, t rademarks, product or service names, domain names, pat t erns,
logos, marks, signs, or special descript ions t hat t hird part ies ident ify as Alibaba Cloud and/or it s
affiliat es.

6. Please direct ly cont act Alibaba Cloud for any errors of t his document .

Alibaba Cloud Message Queue User Guide··Legal disclaimer

> Document Version: 20220816 I

Document conventions
St yleSt yle Descript ionDescript ion ExampleExample

 DangerDanger
A danger notice indicates a situation that
will cause major system changes, faults,
physical injuries, and other adverse
results.

 Danger:Danger:

Resetting will result in the loss of user
configuration data.

 WarningWarning
A warning notice indicates a situation
that may cause major system changes,
faults, physical injuries, and other adverse
results.

 Warning:Warning:

Restarting will cause business
interruption. About 10 minutes are
required to restart an instance.

 Not iceNot ice
A caution notice indicates warning
information, supplementary instructions,
and other content that the user must
understand.

 Not ice:Not ice:

If the weight is set to 0, the server no
longer receives new requests.

 Not eNot e
A note indicates supplemental
instructions, best practices, t ips, and
other content.

 Not e:Not e:

You can use Ctrl + A to select all files.

>
Closing angle brackets are used to
indicate a multi-level menu cascade.

Click Set t ingsSet t ings > Net workNet work> Set net workSet net work
t ypet ype.

BoldBold
Bold formatting is used for buttons ,
menus, page names, and other UI
elements.

Click OKOK.

Courier font Courier font is used for commands
Run the cd /d C:/window command to
enter the Windows system folder.

Italic Italic formatting is used for parameters
and variables.

bae log list --instanceid

Instance_ID

[] or [a|b]
This format is used for an optional value,
where only one item can be selected.

ipconfig [-all|-t]

{} or {a|b}
This format is used for a required value,
where only one item can be selected.

switch {active|stand}

Alibaba Cloud Message Queue User Guide··Document convent ions

> Document Version: 20220816 I

Table of Contents
1.What is Message Queue for Apache RocketMQ?

2.Updates

3.Quick start

3.1. Overview

3.2. Log on to the Message Queue for Apache RocketMQ console …

3.3. Create resources

3.4. Send messages

3.4.1. Use the TCP client SDK for Java to send and subscribe to normal messages …

3.4.2. Use the HTTP client SDK for Java to send and subscribe to normal messages …

3.4.3. Check whether messages are sent

3.5. Subscribe to messages

4.Message types

4.1. Normal messages

4.2. Scheduled messages and delayed messages

4.3. Transactional messages

4.4. Ordered messages

5.Console guide

5.1. Resource management

5.1.1. Resource management overview

5.1.2. Manage instances

5.1.3. Manage topics

5.1.4. Manage groups

5.2. Message query

5.2.1. Overview

5.2.2. Query messages

5.2.3. Query results

10

11

13

13

15

16

18

18

21

25

25

27

27

27

29

31

35

35

35

35

36

38

40

40

41

42

Alibaba Cloud Message Queue User Guide··Table of Cont ent s

> Document Version: 20220816 I

5.3. Message tracing

5.3.1. Overview

5.3.2. Query message traces

5.3.3. Status in message traces

5.4. View the consumer status

5.5. Reset consumer offsets

5.6. Dead-letter queues

5.7. Resource statistics

5.7.1. Overview

5.7.2. Query the statistics of produced messages

5.7.3. Query the statistics of consumed messages

5.8. Account authorization management

5.9. Switch between different access modes

5.10. Bind a VPC to a Message Queue for Apache RocketMQ instance …

5.11. Route messages from a cluster to another cluster

6.SDK user guide

6.1. Overview

6.2. SDK user guide

6.2.1. Demo projects

6.2.1.1. Overview

6.2.1.2. Prepare the environment

6.2.1.3. Configure a demo project

6.2.1.4. Run the demo project

6.2.2. Client parameters

6.2.3. Client error codes

6.2.4. SDK for Java

6.2.4.1. Usage notes

6.2.4.2. Prepare the environment

43

43

45

47

48

50

51

54

54

54

55

56

58

58

61

69

69

69

70

70

70

70

72

73

80

84

85

87

User Guide··Table of Cont ent s Alibaba Cloud Message Queue

II > Document Version: 20220816

6.2.4.3. Configure logging

6.2.4.4. Spring integration

6.2.4.4.1. Overview

6.2.4.4.2. Integrate a producer with Spring

6.2.4.4.3. Integrate a transactional message producer with Spring …

6.2.4.4.4. Integrate a consumer with Spring

6.2.4.5. Three modes for sending messages

6.2.4.5.1. Overview

6.2.4.5.2. Reliable synchronous transmission

6.2.4.5.3. Reliable asynchronous transmission

6.2.4.5.4. One-way transmission

6.2.4.6. Send messages by using multiple threads

6.2.4.7. Send and subscribe to ordered messages

6.2.4.8. Send and subscribe to transactional messages

6.2.4.9. Send and subscribe to delayed messages

6.2.4.10. Send and subscribe to scheduled messages

6.2.4.11. Subscribe to messages

6.2.5. SDK for C or C++

6.2.5.1. Prepare the SDK for C or C++ environment

6.2.5.1.1. Overview

6.2.5.1.2. Download SDK for C++

6.2.5.1.3. Use SDK for C++ in Linux

6.2.5.2. Send and subscribe to normal messages

6.2.5.3. Send and subscribe to ordered messages

6.2.5.4. Send and subscribe to scheduled messages

6.2.5.5. Send and subscribe to transactional messages

6.2.5.6. Subscribe to messages

6.2.6. SDK for .NET

87

90

90

90

92

94

96

96

97

99

101

103

105

108

112

114

115

118

118

118

118

119

119

119

122

124

126

128

Alibaba Cloud Message Queue User Guide··Table of Cont ent s

> Document Version: 20220816 III

6.2.6.1. .Prepare the SDK for .NET environment

6.2.6.1.1. Overview

6.2.6.1.2. Download SDK for .NET

6.2.6.1.3. .Configure SDK for .NET

6.2.6.2. Send and subscribe to normal messages

6.2.6.3. Send and subscribe to ordered messages

6.2.6.4. Send and subscribe to scheduled messages

6.2.6.5. Send and subscribe to transactional messages

6.2.6.6. Subscribe to messages

6.3. HTTP client SDK reference

6.3.1. Protocol description

6.3.1.1. Common parameters

6.3.1.2. Request signatures

6.3.1.3. Operation for sending messages

6.3.1.4. Operation for consuming messages

6.3.1.5. Operation for acknowledging messages

6.3.2. Java SDK

6.3.2.1. Prepare the environment

6.3.2.2. Send and consume normal messages

6.3.2.3. Send and consume ordered messages

6.3.2.4. Send and consume scheduled messages and delayed messages …

6.3.2.5. Send and consume transactional messages

6.3.3. Go SDK

6.3.3.1. Prepare the environment

6.3.3.2. Send and consume normal messages

6.3.3.3. Send and consume ordered messages

6.3.3.4. Send and consume scheduled messages and delayed messages …

6.3.3.5. Send and consume transactional messages

128

128

128

129

135

136

139

140

145

147

147

147

148

149

151

156

159

159

160

164

168

172

178

178

179

183

187

191

User Guide··Table of Cont ent s Alibaba Cloud Message Queue

IV > Document Version: 20220816

6.3.4. Python SDK

6.3.4.1. Prepare the environment

6.3.4.2. Send and consume normal messages

6.3.4.3. Send and consume ordered messages

6.3.4.4. Send and consume scheduled messages and delayed messages …

6.3.4.5. Send and consume transactional messages

6.3.5. Node.js SDK

6.3.5.1. Prepare the environment

6.3.5.2. Send and consume normal messages

6.3.5.3. Send and consume ordered messages

6.3.5.4. Send and consume scheduled messages and delayed messages …

6.3.5.5. Send and consume transactional messages

6.3.6. PHP SDK

6.3.6.1. Prepare the environment

6.3.6.2. Send and consume normal messages

6.3.6.3. Send and consume ordered messages

6.3.6.4. Send and consume scheduled messages and delayed messages …

6.3.6.5. Send and consume transactional messages

6.3.7. C# SDK

6.3.7.1. Prepare the environment

6.3.7.2. Send and consume normal messages

6.3.7.3. Send and consume ordered messages

6.3.7.4. Send and consume scheduled messages and delayed messages …

6.3.7.5. Send and consume transactional messages

6.3.8. C++ SDK

6.3.8.1. Prepare the environment

6.3.8.2. Send and consume normal messages

6.3.8.3. Send and consume ordered messages

197

197
198

201

205

208

213

214

214

217

221

225

230

230

231

235

239

243

248

248

249

253

257

261

268

268

271

275

Alibaba Cloud Message Queue User Guide··Table of Cont ent s

> Document Version: 20220816 V

6.3.8.4. Send and consume scheduled messages and delayed messages …

6.3.8.5. Send and consume transactional messages

7.Best practices

7.1. Clustering consumption and broadcasting consumption

7.2. Message filtering

7.3. Subscription consistency

7.4. Consumption idempotence

7.5. Active geo-redundancy

7.6. Message routing

8.Service usage FAQ

8.1. FAQ

8.1.1. Quick start

8.1.2. Configurations

8.1.3. Message tracing

8.1.4. Alert handling

8.1.5. Ordered messages

8.2. Exceptions

8.2.1. Usage-related exceptions

8.2.2. Nonexistent resources

8.2.3. Inconsistent status

8.3. Troubleshooting

8.3.1. Unexpected consumer connections

8.3.2. Inconsistent subscriptions

8.3.3. Message accumulation

8.3.4. Message accumulation in Java processes

8.3.5. Application OOM due to message caching on the client

8.3.6. AuthenticationException reported due to failure in sending or receiving messages …

279

283

291

291

293

295

298

299

301

304

304

304

305

306

307

307

308

308

310

311

314

314

315

317

318

319

320

User Guide··Table of Cont ent s Alibaba Cloud Message Queue

VI > Document Version: 20220816

Message Queue for Apache RocketMQ is a distributed messaging middleware that is developed based
on Apache RocketMQ. Message Queue for Apache RocketMQ features low latency, high concurrency,
high availability, and high reliability.

Message Queue for Apache RocketMQ provides a complete set of cloud messaging services based on
the technologies that are used for building highly available and distributed clusters. The messaging
services include message subscript ion and publishing, message tracing, scheduled and delayed
messages, and resource stat ist ics. Message Queue for Apache RocketMQ is used as a core service in an
enterprise-grade Internet architecture. Message Queue for Apache RocketMQ provides asynchronous
decoupling and peak-load shift ing capabilit ies for distributed application systems. It also supports
various features for Internet applications, including accumulation of large numbers of messages, high
throughput, and reliable message consumption retries. Message Queue for Apache RocketMQ is one of
the core cloud services that are used to support the Double 11 Shopping Fest ival.

Message Queue for Apache RocketMQ supports connections over TCP and HTTP and supports mult iple
programming languages such as Java, C++, and .NET. This allows you to connect applications that are
developed in different programming languages to Message Queue for Apache RocketMQ.

1.What is Message Queue for1.What is Message Queue for
Apache RocketMQ?Apache RocketMQ?

Alibaba Cloud Message Queue User Guide··What is Message Queue
for Apache Rocket MQ?

> Document Version: 20220816 10

This topic describes the updates of Message Queue for Apache RocketMQ from V3.8.0 to V3.8.1 to help
you get started with the updated version.

Optimization of resource isolation by instanceOptimization of resource isolation by instance
Message Queue for Apache RocketMQ provides instances for mult i-tenancy isolat ion. Each user can
purchase mult iple instances and logically isolate them from each other.

To ensure the compatibility with the exist ing resources of exist ing users, Message Queue for Apache
RocketMQ provides the following types of instances and namespaces:

Default instances, which are compatible with the exist ing resources of exist ing users

This type of instance has no separate namespace. Resource names must be globally unique within
and across all instances.

By default , an instance without a namespace is automatically generated for the exist ing resources
of each exist ing user. If no exist ing resources are available, you can create at most one instance
without a namespace.

You can configure the endpoint, which can be obtained from the Inst ancesInst ances page in the Message
Queue for Apache RocketMQ console.

// Recommended configuration:
properties.put(PropertyKeyConst.NAMESRV_ADDR, "xxxx");
// Compatible configuration, which is not recommended. We recommend that you update thi
s configuration to the recommended configuration:
properties.put(PropertyKeyConst.ONSAddr, "xxxx");

New instances

A new instance has a separate namespace. Resource names must be unique within an instance but
can be the same across different instances.

You can configure the endpoint, which can be obtained from the Inst ancesInst ances page in the Message
Queue for Apache RocketMQ console.

// Recommended configuration:
properties.put(PropertyKeyConst.NAMESRV_ADDR, "xxx");

A RocketMQ client must be updated to the following latest versions for different programming
languages:

Java: V1.8.7.1.Final

C and C++: V2.0.0

.NET: V1.1.3

Optimization of resource applicationOptimization of resource application
Previously, Message Queue for Apache RocketMQ resources consisted of topics, producer IDs, and
consumer IDs. Each two of the resources have a many-to-many relat ionship, which was difficult to
comprehend. Each t ime you created a topic, you must associate the topic with a producer ID and a
consumer ID. This process was too complex for medium- and large-sized enterprise customers.

To optimize user experience and help new users get started, the resource application process has been
simplified.

2.Updates2.Updates

User Guide··Updat es Alibaba Cloud Message Queue

11 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.7.1.Final/ons-client-1.8.7.1.Final.jar?spm=a2c4g.11186623.2.19.28e57c33GHLvgc&file=ons-client-1.8.7.1.Final.jar
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.4b6a10d9123MR2&file=aliyun-mq-linux-cpp-sdk.tar.gz
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.7524160crag7cy&file=aliyun-mq-windows-net-sdk.rar

The resource application process has been optimized in the following aspects:

Topic management, which is unchanged

You need to apply for a topic. A topic is used to classify messages. It is the primary classifier.

Group management

You do not need to apply for a producer ID. Producer IDs and consumer IDs are integrated into
group IDs. In the Message Queue for Apache RocketMQ console, the Producers module has been
removed. The Producers and Consumers modules have been integrated into the Groups module.

You do not need to associate a producer ID or consumer ID with a topic. Instead, you need only to
apply for a group ID and associate it with a topic in the code.

Compatibility:

The list of producer IDs is no longer displayed. This does not affect the current services.

The consumer IDs that start with CID- or CID_ and that you have applied for can st ill be used and
can be set in the PropertyKeyConst.ConsumerId or PropertyKeyConst.GROUP_ID parameter of the
code.

Sample code

Not eNot e

We recommend that you update a RocketMQ client to the following latest versions for
different programming languages:

Java: V1.8.7.1.Final

C and C++: V2.0.0

.NET: V1.1.3

Exist ing producer IDs or consumer IDs can st ill be used and do not affect the current
services. However, we recommend that you update your instance configuration to the
recommended configuration.

Recommended configuration: Integrate producer IDs and consumer IDs into group IDs.

// Set the PropertyKeyConst.GROUP_ID parameter. The original PropertyKeyConst.ProducerI
d and PropertyKeyConst.ConsumerId parameters are deprecated.
properties.put(PropertyKeyConst.GROUP_ID, "The original CID-XXX or the GID-XXX");

Compatible configuration: Use a producer ID to identify a producer and a consumer ID to identify a
consumer.

// When you create a producer, you must set the PropertyKeyConst.ProducerId parameter.
properties.put(PropertyKeyConst.ProducerId, "The original PID-XXX or the GID-XXX");
// When you create a consumer, you must set the PropertyKeyConst.ConsumerId parameter.
properties.put(PropertyKeyConst.ConsumerId, "The original CID-XXX or the GID-XXX");

Alibaba Cloud Message Queue User Guide··Updat es

> Document Version: 20220816 12

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.7.1.Final/ons-client-1.8.7.1.Final.jar?spm=a2c4g.11186623.2.19.28e57c33GHLvgc&file=ons-client-1.8.7.1.Final.jar
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.4b6a10d9123MR2&file=aliyun-mq-linux-cpp-sdk.tar.gz
https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.7524160crag7cy&file=aliyun-mq-windows-net-sdk.rar

Message Queue for Apache RocketMQ provides TCP client SDKs and HTTP client SDKs for mult iple
programming languages. You can use the SDKs to send and subscribe to different types of messages.
This topic describes how to use TCP client SDKs and HTTP client SDKs for mult iple programming
languages to send and subscribe to normal messages and the relevant usage notes.

Background informationBackground information
If your application that is deployed on a server uses Message Queue for Apache RocketMQ, we
recommend that you use an SDK to access Message Queue for Apache RocketMQ. This method is easy-
to-use and provides high availability.

This topic provides examples to show how to use the SDK for Java to connect to Message Queue for
Apache RocketMQ and send and subscribe to messages over TCP or HTTP.

Message Queue for Apache RocketMQ supports four types of messages. For more information, see
Message types. In the following examples, normal messages are used. The topics that you create by
using the procedure that is described in the following sect ion cannot be used to send or subscribe to
other types of messages. Each topic can be used to send and subscribe to messages only of a specific
type.

ProcessProcess

3.Quick start3.Quick start
3.1. Overview3.1. Overview

User Guide··Quick st art Alibaba Cloud Message Queue

13 > Document Version: 20220816

You can follow the process illustrated in the following figure based on the protocol that you select.

1. Create resources. You must create a Message Queue for Apache RocketMQ instance, a topic, and a
group, and obtain the endpoint information of the instance.

2. Use the corresponding SDK to send and subscribe to messages based on the protocol that you
select.

Call SDKs to send messages

Use the HTTP client SDK for Java to send and subscribe to normal messages

Usage notesUsage notes
Message Queue for Apache RocketMQ provides TCP client SDKs and HTTP client SDKs for you to send
and consume messages. You cannot specify the same group ID in the code of a TCP client SDK and
the code of an HTTP client SDK at the same t ime. If you want to use a TCP client SDK to send and
consume messages, you must create a group for the TCP protocol. You cannot specify a group that
is created for the HTTP protocol in the code of the TCP client SDK.

A Message Queue for Apache RocketMQ instance provides a TCP endpoint and an HTTP endpoint. An
endpoint for a specific protocol must be used together with an SDK for the same protocol. For
example, if you want to use a TCP client SDK to send and consume messages, you must obtain the
TCP endpoint of your Message Queue for Apache RocketMQ instance. You cannot use the HTTP
endpoint to connect to the instance.

ReferencesReferences

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 14

For information about how to use TCP client SDKs and HTTP client SDKs for other programming
languages to send and subscribe to messages, see the following topics:

T CPT CP

C and C++: Send and receive normal messages

.NET: Send and subscribe to normal messages

HT T PHT T P

Go: Send and consume normal messages

Python: Send and consume normal messages

Node.js: Send and consume normal messages

PHP: Send and consume normal messages

C#: Send and consume normal messages

C++: Send and consume normal messages

This topic describes how to log on to the Message Queue for Apache RocketMQ console.

PrerequisitesPrerequisites
The URL of the Apsara Uni-manager Management Console is obtained from the deployment
personnel before you log on to the Apsara Uni-manager Management Console.

A browser is available. We recommend that you use the Google Chrome browser.

ProcedureProcedure
1. In the address bar, enter the URL of the Apsara Uni-manager Management Console. Press the Enter

key.

2. Enter your username and password.

Obtain the username and password that you can use to log on to the console from the operations
administrator.

Not e Not e When you log on to the Apsara Uni-manager Management Console for the first
t ime, you must change the password of your username. Your password must meet complexity
requirements. The password must be 8 to 20 characters in length and must contain at least
two of the following character types:

Uppercase or lowercase letters

Digits

Special characters, which include ! @ # $ %

3. Click LoginLogin.

4. If your account has mult i-factor authentication (MFA) enabled, perform corresponding operations
in the following scenarios:

It is the first t ime that you log on to the console after MFA is forcibly enabled by the

3.2. Log on to the Message Queue for3.2. Log on to the Message Queue for
Apache RocketMQ consoleApache RocketMQ console

User Guide··Quick st art Alibaba Cloud Message Queue

15 > Document Version: 20220816

administrator.

a. On the Bind Virtual MFA Device page, bind an MFA device.

b. Enter the account and password again as in Step 2 and click Log OnLog On.

c. Enter a six-digit MFA verificat ion code and click Aut hent icat eAut hent icat e.

You have enabled MFA and bound an MFA device.

Enter a six-digit MFA authentication code and click Aut hent icat eAut hent icat e.

Not e Not e For more information, see the Bind a virtual MFA device to enable MFA topic in A
psara Uni-manager Operations Console User Guide.

5. In the top navigation bar, choose Product sProduct s > > MiddlewareMiddleware > > Message QueueMessage Queue.

Before you use a client SDK to send and subscribe to messages, create the required resources and
obtain the resource information in the Message Queue for Apache RocketMQ console. When you use the
SDK, you must configure the resource parameters based on the resource information.

ContextContext
If you want to connect a new application to Message Queue for Apache RocketMQ, you must create
the following resources for the application:

Instance: a virtual machine that provides the Message Queue for Apache RocketMQ service. An
instance stores topics and group IDs.

Topic: a topic of messages. In Message Queue for Apache RocketMQ, a producer sends a message to
a specified topic, and a consumer subscribes to the topic to consume the message.

Group ID: a group ID that is used to identify a group of producers or consumers.

Not ice Not ice A TCP client cannot share a group ID with an HTTP client. You must create a group
for each of them. For example, if you want to use the TCP client SDK to send and subscribe to
messages, you must use the group that is created only for TCP clients.

Endpoint: an endpoint of the Message Queue for Apache RocketMQ broker. You can use an endpoint
to connect producer or consumer clients to a specified Message Queue for Apache RocketMQ
instance.

Not ice Not ice A Message Queue for Apache RocketMQ instance has a TCP endpoint and an HTTP
endpoint. Each endpoint can be used only for clients over the same protocol. For example, if you
want to use the TCP client SDK to send and subscribe to messages, you must specify the TCP
endpoint in the SDK. You cannot use the HTTP endpoint in the SDK.

AccessKey ID and AccessKey secret: the user credentials that are used to verify the identity of the
user. For more information, see the Obtain an AccessKey pair topic of Message Queue for Apache Roc
ketMQ Developer Guide.

Create an instanceCreate an instance
1. Log on to the Message Queue for Apache RocketMQ console and click Inst ancesInst ances in the left-side

3.3. Create resources3.3. Create resources

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 16

navigation pane. For information about how to log on to the Message Queue for Apache
RocketMQ console, see Log on to the Message Queue for Apache RocketMQ console.

2. On the Inst ancesInst ances page, click Creat e Inst anceCreat e Inst ance.

3. On the Creat e Inst anceCreat e Inst ance page, configure the parameters and click SubmitSubmit .

4. In the message that appears, click Back t o ConsoleBack t o Console.
On the Inst ancesInst ances page, you can view the basic information about the instance that is created.

Obtain an endpointObtain an endpoint
1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click

Inst ancesInst ances.

2. In the upper part of the Inst ancesInst ances page, select the name of the instance that you want to view.

3. Click the Net work ManagementNet work Management tab. On this tab, view the endpoint information of the instance.

T CP EndpointT CP Endpoint : If you want to use the TCP client SDK to send and subscribe to messages,
specify the TCP endpoint in the code.

HT T P EndpointHT T P Endpoint : If you want to use the HTTP client SDK to send and subscribe to messages,
specify the HTTP endpoint in the code.

Create a topicCreate a topic
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

T opicsT opics.

2. In the upper part of the T opicsT opics page, select the instance that you want to manage.

3. Click Creat e T opicCreat e T opic.

4. In the Creat e T opicCreat e T opic dialog box, enter a name for the topic in the T opicT opic field.

5. From the Message T ypeMessage T ype drop-down list , select a message type. Your topic is used to send and
subscribe to messages of this type.

In this example, Normal MessageNormal Message is selected to create a topic. For more information about other
message types, see Message types.

6. In the Descript ionDescript ion field, enter a descript ion about the topic. Then, click OKOK.
The topic that you created appears in the topic list .

Create a groupCreate a group
1. Log on to the Message Queue for Apache RocketMQ console and click GroupsGroups in the left-side

navigation pane.

2. On the GroupsGroups page, click the name of the Message Queue for Apache RocketMQ instance in which
you want to a group.

3. Select a protocol for the group that you want to create.

If you want to use TCP-based SDKs to publish and consume messages, you must click the T CPT CP
Prot ocolProt ocol tab to create a group.

If you want to use HTTP-based SDKs to publish and consume messages, you must click the HT T PHT T P
Prot ocolProt ocol tab to create a group.

Click Creat e Group IDCreat e Group ID.

In the Creat e Group IDCreat e Group ID dialog box, configure the Group IDGroup ID parameter and Descript ionDescript ion
parameter. Then, click OKOK.

User Guide··Quick st art Alibaba Cloud Message Queue

17 > Document Version: 20220816

The group that is created appears in the group list .

After you create the required resources in the Message Queue for Apache RocketMQ console, you can
use Message Queue for Apache RocketMQ TCP client SDK for Java to send and subscribe to normal
messages.

Before you beginBefore you begin
Create resources

Install Message Queue for Apache RocketMQ SDK for JavaInstall Message Queue for Apache RocketMQ SDK for Java
You can use one of the following methods to install Message Queue for Apache RocketMQ SDK for
Java:

Int roduce a dependency by using Maven:Int roduce a dependency by using Maven:

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>ons-client</artifactId>
 <!-- Set the value to the version of Message Queue for Apache RocketMQ SDK for Java. -
->
 <version>"XXX"</version>
</dependency>

Download a JAR f ile t hat cont ains a dependencyDownload a JAR f ile t hat cont ains a dependency

For more information about the download link, see Overview.

Use the TCP client SDK for Java to send normal messagesUse the TCP client SDK for Java to send normal messages
The following sample code provides an example on how to use the TCP client SDK for Java to send
normal messages. Before you run the code, we recommend that you specify the information about the
required resources that are created in advance based on the comments included in the code.

 import com.aliyun.openservices.ons.api.Message;
 import com.aliyun.openservices.ons.api.Producer;
 import com.aliyun.openservices.ons.api.SendResult;
 import com.aliyun.openservices.ons.api.ONSFactory;
 import com.aliyun.openservices.ons.api.PropertyKeyConst;
 import java.util.Properties;
 public class ProducerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // Specify the ID of the group that you created for TCP clients in the Message Que
ue for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // Specify the AccessKey ID for identity verification.
 properties.put(PropertyKeyConst.AccessKey,"XXX");
 // Specify the AccessKey secret for identity verification.

3.4. Send messages3.4. Send messages
3.4.1. Use the TCP client SDK for Java to send and3.4.1. Use the TCP client SDK for Java to send and
subscribe to normal messagessubscribe to normal messages

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 18

 // Specify the AccessKey secret for identity verification.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Specify the TCP endpoint of your instance. To view the TCP endpoint, log on to
the Message Queue for Apache RocketMQ console and go to the Network Management tab of the I
nstances page.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,"XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you send a message, call the start() method only once to start the produ
cer.
 producer.start();
 // Cyclically send messages.
 while(true){
 Message msg = new Message(
 // Specify the topic that you created in the Message Queue for Apache Rock
etMQ console. The value is the name of the topic to which you want to send messages.
 "TopicTestMQ",
 // Message Tag,
 // Specify the message tag, which is similar to a Gmail tag. The message t
ag is used to sort messages and filter messages for the consumer on the Message Queue for A
pache RocketMQ broker based on specified conditions.
 "TagA",
 // Message Body
 // Specify the message body in the binary format. Message Queue for Apache
RocketMQ does not process the message body.
 // The producer and consumer must agree on the message serialization and d
eserialization methods.
 "Hello MQ".getBytes());
 // Specify the message key. The message key is the business-specific attribute
of the message and must be globally unique. A unique key helps you query and resend a messa
ge in the console if the message fails to be consumed.
 // Note: You can send and subscribe to messages even if you do not specify mes
sage keys.
 msg.setKey("ORDERID_100");
 // Send the message. If no exception is thrown, the message is sent.
 // Print the message ID. The message ID can be used to query the sending statu
s of the message.
 SendResult sendResult = producer.send(msg);
 System.out.println("Send Message success. Message ID is: " + sendResult.getMes
sageId());
 }
 // Before you exit the application, shut down the producer.
 // Note: This step is optional.
 producer.shutdown();
 }
 }

You can also send messages by performing the following operations in the Message Queue for Apache
RocketMQ console: Log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Topics. On the T opicsT opics page, find the topic that you created, and click SendSend
MessageMessage in the Act ionsAct ions column.

Use the TCP client SDK for Java to subscribe to normal messagesUse the TCP client SDK for Java to subscribe to normal messages

User Guide··Quick st art Alibaba Cloud Message Queue

19 > Document Version: 20220816

The following sample code provides an example on how to use the TCP client SDK for Java to subscribe
to normal messages. Before you run the code, we recommend that you specify the information about
the required resources that are created in advance based on the comments included in the code.

import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Consumer;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ConsumerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // Specify the ID of the group that you created for TCP clients in the Message Queu
e for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // Specify the AccessKey ID for identity verification.
 properties.put(PropertyKeyConst.AccessKey,"XXX");
 // Specify the AccessKey secret for identity verification.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // Specify the TCP endpoint of your instance. To view the TCP endpoint, log on to
the Message Queue for Apache RocketMQ console and go to the Network Management tab of the I
nstances page.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,"XXX");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("TopicTestMQ", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();
 System.out.println("Consumer Started");
 }
}

Check whether your message subscription is successfulCheck whether your message subscription is successful
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

GroupsGroups.

2. In the upper part of the GroupsGroups page, select the instance that you want to manage.

3. On the Groups page, find the group ID for the consumer of which you want to view the
subscript ion, and click Subscript ionSubscript ion in the Act ionsAct ions column.

If the value of OnlineOnline is YesYes, the consumer has been started and the subscript ion is successful.
Otherwise, the subscript ion fails.

What's nextWhat's next
Query messages

Query message traces

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 20

After you create the required resources in the Message Queue for Apache RocketMQ console, you can
use Message Queue for Apache RocketMQ HTTP client SDK for Java to send and subscribe to normal
messages.

Before you beginBefore you begin
Create resources

Install Message Queue for Apache RocketMQ SDK for JavaInstall Message Queue for Apache RocketMQ SDK for Java
You can use one of the following methods to install Message Queue for Apache RocketMQ SDK for
Java:

Int roduce a dependency by using Maven:Int roduce a dependency by using Maven:

<dependency>
 <groupId>com.aliyun.mq</groupId>
 <artifactId>mq-http-sdk</artifactId>
 <!-- Set the value to the version of Message Queue for Apache RocketMQ SDK for Java.
-->
 <version>X.X.X</version>
 <classifier>jar-with-dependencies</classifier>
</dependency>

Download a JAR f ile t hat cont ains a dependencyDownload a JAR f ile t hat cont ains a dependency

For more information about the download link, see Overview.

Use the HTTP client SDK for Java to send normal messagesUse the HTTP client SDK for Java to send normal messages
The following sample code provides an example on how to use the HTTP client SDK for Java to send
normal messages. Before you run the code, we recommend that you specify the information about the
required resources that are created in advance based on the comments included in the code.

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQProducer;
import com.aliyun.mq.http.model.TopicMessage;
import java.util.Date;
public class Producer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // Specify the HTTP endpoint of your instance. To view the HTTP endpoint, l
og on to the Message Queue for Apache RocketMQ console and go to the Network Management tab
of the Instances page.
 "${HTTP_ENDPOINT}",
 // Specify the AccessKey ID for identity verification.
 "${ACCESS_KEY}",
 // Specify the AccessKey secret for identity verification.
 "${SECRET_KEY}"
);
 // Specify the topic that you created in the Message Queue for Apache RocketMQ cons
ole. The value is the name of the topic to which you want to send messages.

3.4.2. Use the HTTP client SDK for Java to send3.4.2. Use the HTTP client SDK for Java to send
and subscribe to normal messagesand subscribe to normal messages

User Guide··Quick st art Alibaba Cloud Message Queue

21 > Document Version: 20220816

ole. The value is the name of the topic to which you want to send messages.
 final String topic = "${TOPIC}";
 // Specify the ID of the instance on which the topic is created.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the Message Queue for Apache R
ocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 // Obtain the producer that sends messages to the topic.
 MQProducer producer;
 if (instanceId != null && instanceId != "") {
 producer = mqClient.getProducer(instanceId, topic);
 } else {
 producer = mqClient.getProducer(topic);
 }
 try {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++) {
 TopicMessage pubMsg; // Specify the normal message.
 pubMsg = new TopicMessage(
 // Specify the content of the message.
 "hello mq!".getBytes(),
 // Specify the message tag.
 "A"
);
 // Specify the custom attributes of the message.
 pubMsg.getProperties().put("a", String.valueOf(i));
 // Specify the key of the message.
 pubMsg.setMessageKey("MessageKey");
 // Send the message in synchronous mode. If no exception is thrown, the message
is sent.
 TopicMessage pubResultMsg = producer.publishMessage(pubMsg);
 // Send the message in synchronous mode. If no exception is thrown, the message
is sent.
 System.out.println(new Date() + " Send mq message success. Topic is:" + topic +
", msgId is: " + pubResultMsg.getMessageId()
 + ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5());
 }
 } catch (Throwable e) {
 // Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + topic);
 e.printStackTrace();
 }
 mqClient.close();
 }
}

You can also send messages by performing the following operations in the Message Queue for Apache
RocketMQ console: Log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Topics. On the T opicsT opics page, find the topic that you created, and click SendSend
MessageMessage in the Act ionsAct ions column.

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 22

Use the HTTP client SDK for Java to subscribe to normal messagesUse the HTTP client SDK for Java to subscribe to normal messages
The following sample code provides an example on how to use the HTTP client SDK for Java to
subscribe to normal messages. Before you run the code, we recommend that you specify the
information about the required resources that are created in advance based on the comments included
in the code.

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // Specify the HTTP endpoint of your instance. To view the HTTP endpoint, l
og on to the Message Queue for Apache RocketMQ console and go to the Network Management tab
of the Instances page.
 "${HTTP_ENDPOINT}",
 // Specify the AccessKey ID for identity verification.
 "${ACCESS_KEY}",
 // Specify the AccessKey secret for identity verification.
 "${SECRET_KEY}"
);
 // Specify the topic that you created in the Message Queue for Apache RocketMQ cons
ole. The value is the name of the topic from which you want to consume messages.
 final String topic = "${TOPIC}";
 // Specify the ID of the group that you created for HTTP clients in the Message Que
ue for Apache RocketMQ console.
 final String groupId = "${GROUP_ID}";
 // Specify the ID of the instance on which the topic is created.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 final MQConsumer consumer;
 if (instanceId != null && instanceId != "") {
 consumer = mqClient.getConsumer(instanceId, topic, groupId, null);
 } else {
 consumer = mqClient.getConsumer(topic, groupId);
 }
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 do {
 List<Message> messages = null;
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 messages = consumer.consumeMessage(
 3,// Specify the maximum number of messages that can be consumed at
a time. In this example, the value is set to 3. The maximum value that you can specify is 1

User Guide··Quick st art Alibaba Cloud Message Queue

23 > Document Version: 20220816

a time. In this example, the value is set to 3. The maximum value that you can specify is 1
6.
 3// Specify the duration of a long polling cycle. Unit: seconds. In
this example, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (Throwable e) {
 e.printStackTrace();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }
 }
 // No messages in the topic are available for consumption.
 if (messages == null || messages.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + ": no new message, co
ntinue!");
 continue;
 }
 // Specify the message consumption logic.
 for (Message message : messages) {
 System.out.println("Receive message: " + message);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker sends the message for con
sumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 {
 List<String> handles = new ArrayList<String>();
 for (Message message : messages) {
 handles.add(message.getReceiptHandle());
 }
 try {
 consumer.ackMessage(handles);
 } catch (Throwable e) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(err
orHandle).getErrorMessage());
 }
 }
 continue;
 }
 e.printStackTrace();
 }
 }

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 24

 }
 } while (true);
 }
}

Check whether your message subscription is successfulCheck whether your message subscription is successful
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

GroupsGroups.

2. In the upper part of the GroupsGroups page, select the instance that you want to manage.

3. On the Groups page, find the group ID for the consumer of which you want to view the
subscript ion, and click Subscript ionSubscript ion in the Act ionsAct ions column.

If the value of OnlineOnline is YesYes, the consumer has been started and the subscript ion is successful.
Otherwise, the subscript ion fails.

What's nextWhat's next
Query messages

Query message traces

After you send a message, you can check the status of the message in the console.

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

Message QueryMessage Query.

2. On the Message QueryMessage Query page, click the By Message IDBy Message ID tab.

3. In the search box, enter the topic name that corresponds to the message and the message ID
returned after the message is sent, and click SearchSearch to query the sending status of the message.

St orage T imeSt orage T ime indicates the t ime when the Message Queue for Apache RocketMQ broker stores
the message. If the message appears in the search results, the message has been sent to the
Message Queue for Apache RocketMQ broker.

Not ice Not ice This step demonstrates the situation where Message Queue for Apache
RocketMQ is used for the first t ime and the consumer has never been started. Therefore, no
consumption data appears in the message status information.

What's nextWhat's next
You can start the consumer and subscribe to messages. For more information, see Subscribe to
messages. For more information about the message status, see Query messages and Message tracing
status.

3.4.3. Check whether messages are sent3.4.3. Check whether messages are sent

3.5. Subscribe to messages3.5. Subscribe to messages

User Guide··Quick st art Alibaba Cloud Message Queue

25 > Document Version: 20220816

After a message is sent, the consumer can subscribe to the message. You need to use the SDK for the
corresponding protocol and programming language to subscribe to the message. This topic describes
how to subscribe to messages by using TCP client SDK for Java.

ProcedureProcedure
1. Run the following sample code to test the message subscript ion feature. Set parameters based on

the descript ions before you run the code.

import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Consumer;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ConsumerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID that you created in the console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID used for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret used for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Ap
ache RocketMQ console. In the left-side navigation pane, click Instance Details. In the
upper part of the Instance Details page, select your instance. On the Instance Informat
ion tab, view the endpoint in the Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,"XXX");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("TopicTestMQ", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();
 System.out.println("Consumer Started");
 }
}

After you run the code, you can check whether the consumer is started in the Message Queue for
Apache RocketMQ console. This operation checks whether the message subscript ion is successful.

2. Log on to the Message Queue for Apache RocketMQ console.

3. In the left-side navigation pane, click GroupsGroups.

4. Find the group ID of the consumer whose subscript ion you want to view, and click Subscript ionSubscript ion in
the Act ionsAct ions column.

If the value of OnlineOnline is YesYes, the consumer has been started and the subscript ion is successful.
Otherwise, the subscript ion fails.

Alibaba Cloud Message Queue User Guide··Quick st art

> Document Version: 20220816 26

This topic describes the definit ion of normal messages and provides the sample code for sending and
subscribing to normal messages.

In Message Queue for Apache RocketMQ, normal messages do not have special features. They are
different from the following featured messages: scheduled messages, delayed messages, ordered
messages, and transactional messages. For more information about these featured messages, see
Scheduled messages and delayed messages, Ordered messages, and Transactional messages. The
following sample code provide examples on how to use TCP client SDKs and HTTP client SDKs for
different programming languages to send and subscribe to normal messages:

Sample code for using TCP client SDKsSample code for using TCP client SDKs
For information about the sample code for using TCP client SDKs to send and subscribe to normal
messages, see the following topics:

The SDK for Java:

Overview

Send messages in mult iple threads

Subscribe to messages

The SDK for C and the SDK for C++: Send and receive normal messages

The SDK for .NET: Send and subscribe to normal messages

Sample code for using HTTP client SDKsSample code for using HTTP client SDKs
For information about the sample code for using HTTP client SDKs to send and subscribe to normal
messages, see the following topics:

The SDK for Java: Send and subscribe to normal messages

The SDK for Go: Send and subscribe to normal messages

The SDK for Python: Send and subscribe to normal messages

The SDK for Node.js: Send and subscribe to normal messages

The SDK for PHP: Send and subscribe to normal messages

The SDK for C#: Send and subscribe to normal messages

The SDK for C++: Send and subscribe to normal messages

This topic introduces the concepts related to scheduled messages and delayed messages and
describes the scenarios, usage, and usage notes of these messages in Message Queue for Apache
RocketMQ.

ConceptsConcepts

4.Message types4.Message types
4.1. Normal messages4.1. Normal messages

4.2. Scheduled messages and delayed4.2. Scheduled messages and delayed
messagesmessages

User Guide··Message t ypes Alibaba Cloud Message Queue

27 > Document Version: 20220816

Scheduled message: A scheduled message is not immediately sent to consumers after the Message
Queue for Apache RocketMQ broker receives the message from the producer. The broker is
configured to send the message to consumers at a specific point in t ime later than the current t ime.

Delayed message: A delayed message is not immediately sent to consumers after the Message
Queue for Apache RocketMQ broker receives the message. The broker is configured to send the
message to consumers after a specific period of t ime elapses.

Scheduled messages and delayed messages are slightly different in coding, but are consistent in the
effect. Scheduled messages and delayed messages are not immediately sent to consumers after the
Message Queue for Apache RocketMQ broker receives the messages. These messages are sent to
consumers after being delayed for a specific period of t ime, which is specified in the attributes of the
messages.

ScenariosScenarios
Scheduled messages and delayed messages can be used in the following scenarios:

A t ime window between message production and message consumption is required. For example,
when a transaction order is created on an e-commerce platform, a producer sends a delayed
message to the Message Queue for Apache RocketMQ broker. A delay of 30 minutes is specified for
the message to be sent to a consumer. The message is used to remind the consumer to check
whether the order is paid. If the order is not paid, the related system closes the order. If the order is
paid, the consumer ignores the message.

Scheduled messages are sent to trigger scheduled tasks. For example, a notificat ion message is sent
to a user at a specified point in t ime.

UsageUsage
Scheduled messages and delayed messages are slightly different in coding.

To send a scheduled message, specify a point in t ime that is later than the point in t ime when the
message is sent by a producer. The broker sends the message to consumers at the specified point in
t ime.

To send a delayed message, specify a period of t ime that starts from the point in t ime when the
message is sent by a producer. The broker sends the message to consumers after the specified
period of t ime elapses.

Usage notesUsage notes
The msg.setStartDeliverTime parameter for a scheduled message or a delayed message must be set
to a specific point in t ime after the current t imestamp. Unit: milliseconds. If the scheduled t ime is
earlier than the current t ime, the message is immediately sent to the consumer.

The msg.setStartDeliverTime parameter for a scheduled message or a delayed message can be set to
a specific point in t ime within 40 days after the scheduled message or the delayed message is
generated. Unit: milliseconds. If the specified point in t ime is not within the 40 days, the message
cannot be sent.

The StartDeliverTime parameter specifies the t ime when the Message Queue for Apache RocketMQ
broker starts to send the message to the consumer. If messages have been accumulated for the
consumer, the scheduled message or the delayed message are queued after the accumulated
messages, and are not sent to the consumer at the specified t ime.

Due to the potential t ime difference between the producer and the broker, the actual delivery t ime
may be different from the delivery t ime specified in the producer.

Scheduled messages and delayed messages can be retained for at most three days on the Message

Alibaba Cloud Message Queue User Guide··Message t ypes

> Document Version: 20220816 28

Queue for Apache RocketMQ broker. For example, a message is scheduled to be consumed in 5 days.
If the message is not consumed after 5 days, the message will be deleted on the eighth day.

Sample code for using TCP client SDKsSample code for using TCP client SDKs
For information about the sample code for using TCP client SDKs to send and subscribe to scheduled
messages or delayed messages, see the following topics:

Java SDK

Send and receive scheduled messages

Send and receive delayed messages

The SDK for C++: Send and receive scheduled messages

The SDK for .NET: Send and subscribe to scheduled messages

Sample code for using HTTP client SDKsSample code for using HTTP client SDKs
For information about the sample code for using HTTP client SDKs to send and subscribe to scheduled
messages and delayed messages, see the following topics:

The SDK for Java: Send and subscribe to scheduled messages and delayed messages

The SDK for Go: Send and consume scheduled messages and delayed messages

The SDK for Python: Send and consume scheduled messages and delayed messages

The SDK for Node.js: Send and consume scheduled messages and delayed messages

The SDK for PHP: Send and consume scheduled messages and delayed messages

The SDK for C#: Send and consume scheduled messages and delayed messages

The SDK for C++: Send and consume scheduled messages and delayed messages

This topic introduces the terms that are related to transactional messages in Message Queue for
Apache RocketMQ. This topic also describes the scenarios, methods, and usage notes of using
transactional messages.

TermsTerms
Transactional message: Message Queue for Apache RocketMQ provides a distributed transaction
processing feature that is similar to X/Open XA to ensure transaction consistency by using
transactional messages.

Half transactional message: A half transactional message is a message that cannot be sent to
consumers by the Message Queue for Apache RocketMQ broker. If a Message Queue for Apache
RocketMQ broker receives a message from a producer and does not receive the second
acknowledgment (ACK) from the producer, the message is temporarily undeliverable. A message in
this state is called a half transactional message.

Message status check: In scenarios such as a transient connection occurs in the network or the
producer application is restarted, the Message Queue for Apache RocketMQ broker does not receive
the second ACK for a transactional message. When the Message Queue for Apache RocketMQ broker
finds that a message remains as a half transactional message for an excessive long period of t ime,
the broker sends a request to the producer to check whether the final status of the message is
Commit or Rollback.

4.3. Transactional messages4.3. Transactional messages

User Guide··Message t ypes Alibaba Cloud Message Queue

29 > Document Version: 20220816

Common scenariosCommon scenarios
Message Queue for Apache RocketMQ allows you to use transactional messages in the following
scenarios:

The distributed transaction processing feature provided by Message Queue for Apache RocketMQ can
be used to ensure transaction consistency based on transactional messages. The distributed
transaction processing feature is similar to X/Open XA.

For example, an e-commerce platform provides a shopping cart system and a transaction system. When
customers use the shopping cart to place orders, the customer entry point is the shopping cart system,
and the entry point for order placement is the transaction system. Data in the two systems must be
eventually consistent. In this case, transactional messages can be used. After an order is placed, the
transaction system sends a transactional message about the order to Message Queue for Apache
RocketMQ. The shopping cart system subscribes to the transactional message about the order from
Message Queue for Apache RocketMQ, performs the required operations, and then updates data.

How to use transactional messagesHow to use transactional messages
Interact ion process

The following figure shows the process of using transactional messages in Message Queue for Apache
RocketMQ.

The procedure to send a transactional message includes the following steps:

1. A producer sends a message to the Message Queue for Apache RocketMQ broker.

2. The Message Queue for Apache RocketMQ broker persists the message and sends an ACK to the
producer. At this stage, the message is a half transactional message.

3. The producer executes a local transaction.

4. The producer sends an ACK to the Message Queue for Apache RocketMQ broker to submit the
execution result of the local transaction. In the execution result , the status of the transaction may
be Commit or Rollback. If the status of the transaction is Commit, the broker marks the half
transactional message as deliverable. Then, consumers can consume the message. If the status of
the transaction is Rollback, the broker deletes the message. In this case, consumers cannot
consume the message.

The following list describes how to check the status of a transactional message:

If the Message Queue for Apache RocketMQ broker does not receive an ACK from the producer
because the network is disconnected or the message producer application is restarted, the Message
Queue for Apache RocketMQ broker sends a request to query the status of the message after a
specific period of t ime.

Alibaba Cloud Message Queue User Guide··Message t ypes

> Document Version: 20220816 30

After the producer receives the request, the producer checks the final status of the local transaction
that corresponds to the message.

The producer sends a new ACK to the Message Queue for Apache RocketMQ broker based on the
final status of the local transaction. The broker processes the half transactional message based on
the content of the ACK. For more information, see Step 4.

Usage notesUsage notes
1. Producers of transactional messages cannot be in the same group to which producers of messages

of other types belong. Message Queue for Apache RocketMQ brokers perform status check
operations for transactional messages based on the IDs of the groups to which the producers
belong.

2. You must specify the implementation class of the LocalTransactionChecker method when you call
ONSFactory.createTransactionProducer to create a transactional message producer. This way, the
broker can check the status of transactional messages after exceptions occur.

3. After the local transaction that corresponds to a transactional message is executed, the execute
method returns one of the following results:

TransactionStatus.CommitTransaction: The transaction is committed. The message can be
consumed by consumers.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

TransactionStatus.Unknow: The transaction is in an unknown state. The Message Queue for
Apache RocketMQ broker is expected to send a request to the producer to check the status of
the transaction again after a specific period of t ime.

Sample code for using TCP SDKsSample code for using TCP SDKs
For information about sample code, see the following references:

SDK for Java: Send and subscribe to transactional messages

SDK for C and C++: Send and receive transactional messages

SDK for .NET: Send and receive transactional messages

Sample code for using HTTP-based SDKsSample code for using HTTP-based SDKs
For information about sample code, see the following references:

SDK for Java: Send and consume transactional messages

SDK for Go: Send and consume transactional messages

SDK for Python: Send and consume transactional messages

SDK for Node.js: Send and consume transactional messages

SDK for PHP: Send and consume transactional messages

SDK for C#: Send and consume transactional messages

SDK for C++: Send and consume transactional messages

This topic introduces the terms that are related to ordered messages in Message Queue for Apache
RocketMQ. This topic also describes the scenarios and usage notes of using ordered messages.

4.4. Ordered messages4.4. Ordered messages

User Guide··Message t ypes Alibaba Cloud Message Queue

31 > Document Version: 20220816

TermsTerms
Ordered messages in Message Queue for Apache RocketMQ are messages that are published and
consumed strict ly based on specific orders. Ordered messages are also known as first-in-first-out (FIFO)
messages. Ordered messages are published and consumed in FIFO order.

An ordered message involves ordered publishing and ordered consumption.

Ordered publishingOrdered publishing: Each producer sends messages to a specified topic in FIFO order.

Ordered consumpt ionOrdered consumpt ion: Each consumer consumes messages in a specified topic in FIFO order. A
message that is f irst sent is f irst consumed by consumers.

Ordered messages are classified into globally ordered messages and part it ionally ordered messages.

Globally ordered messagesGlobally ordered messages: All messages in a topic are published and consumed in FIFO order.

Part it ionally ordered messagesPart it ionally ordered messages: Messages in a specified topic are part it ioned based on a part it ion
key. Messages in each part it ion are published and consumed in FIFO order. The part it ion key for
ordered messages in a topic is used to dist inguish message part it ions. part it ion keys are used in a
manner that is different from the manner in which message keys of normal messages are used.

Globally ordered messages

Part it ionally ordered messages

Common scenariosCommon scenarios

Globally ordered messagesGlobally ordered messages

Your business does not require high performance and requires that all messages must be published
and consumed in FIFO order.

Part it ionally ordered messagesPart it ionally ordered messages

Your business requires high performance and requires that messages in each part it ion must be
published and consumed in FIFO order. In this case, you can specify a part it ion key field to part it ion
messages to mult iple part it ions.

Examples:

Example 1

Alibaba Cloud Message Queue User Guide··Message t ypes

> Document Version: 20220816 32

When a user signs up with your application, a verificat ion code is used to verify the identity of the
user. In this case, you can use the field that stores user IDs as the part it ion key. This way, messages
that are sent by the same user are published and consumed in FIFO order.

Example 2

To part it ion messages that are generated when orders are made on an e-commerce platform, you
can use the field that stores order IDs as the part it ion key. This way, order creation messages,
payment messages, refund messages, and logist ics messages of the same order are published and
consumed in FIFO order.

All internal e-commerce systems of Alibaba Group use part it ionally ordered messages. This ensures
that messages in each part it ion are in FIFO order and the systems provide high performance.

Comparison between globally ordered messages and partit ionallyComparison between globally ordered messages and partit ionally
ordered messagesordered messages
You are required to create different types of topics for different types of messages in the Message
Queue for Apache RocketMQ console. The following table describes the comparison among types of
topics.

Message typesMessage types

Topic type
Support transactional
messages

Support scheduled
messages

Performance

Unordered messages,
including normal
messages, transactional
messages, scheduled
messages, and delayed
messages

Yes Yes Highest

Partit ionally ordered
messages

No No High

Globally ordered
messages

No No Medium

Methods of sending messagesMethods of sending messages

Message type
Support reliable
synchronous
transmission

Support reliable
asynchronous
transmission

Support one-way
transmission

Unordered messages,
including normal
messages, transactional
messages, scheduled
messages, and delayed
messages

Yes Yes Yes

Partit ionally ordered
messages

Yes No No

User Guide··Message t ypes Alibaba Cloud Message Queue

33 > Document Version: 20220816

Globally ordered
messages

Yes No No

Message type
Support reliable
synchronous
transmission

Support reliable
asynchronous
transmission

Support one-way
transmission

Usage notesUsage notes
Ordered messages cannot be published in a broadcasting manner.

A producer or consumer can publish messages to or consume messages from only one type of topic.
A producer or consumer cannot be used to publish or consume both ordered messages and
unordered messages.

Ordered messages cannot be sent in asynchronous mode. If ordered messages are sent in
asynchronous mode, messages may be disordered.

If you want to use globally ordered messages, we recommend that you create at least two Message
Queue for Apache RocketMQ instances. The mult i-instance structure is used to prevent your business
from being interrupted when the primary instance unexpectedly fails. When the primary instance fails,
another instance immediately takes over the workloads. This helps ensure that your business is not
interrupted. In the mult i-instance structure, only one instance works at a t ime.

Sample code for using TCP SDKsSample code for using TCP SDKs
For information about sample code, see the following references:

SDK for Java: Send and receive ordered messages

SDK for C and C++: Send and receive ordered messages

SDK for .NET: Send and subscribe to ordered messages

Sample code for using HTTP-based SDKsSample code for using HTTP-based SDKs
For information about sample code, see the following references:

SDK for Java: Send and consume ordered messages

SDK for Go: Send and consume ordered messages

SDK for Python: Send and consume ordered messages

SDK for Node.js: Send and consume ordered messages

SDK for PHP: Send and consume ordered messages

SDK for C#: Send and consume ordered messages

SDK for C++: Send and consume ordered messages

Alibaba Cloud Message Queue User Guide··Message t ypes

> Document Version: 20220816 34

This topic describes how to manage resources in Message Queue for Apache RocketMQ.

If a new application needs to access Message Queue for Apache RocketMQ, you must create the
following Message Queue for Apache RocketMQ resources for the application:

Instance: As a virtual machine (VM) resource of Message Queue for Apache RocketMQ, an instance
stores the topics and group IDs of messages.

Topic: In Message Queue for Apache RocketMQ, a producer sends a message to a specified topic, and
a consumer subscribes to the topic to obtain and consume the message.

Group ID: A group ID is used to identify a group of message consumers or producers.

You can add, delete, modify, and query these resources by using the Message Queue for Apache
RocketMQ console or by calling the Message Queue for Apache RocketMQ API.

When you use SDKs to send and subscribe to messages, you must specify the topic and group ID that
you created in the Message Queue for Apache RocketMQ console. You must also enter the AccessKey ID
and AccessKey secret that you created in the Apsara Uni-manager Management Console for identity
authentication.

If you have not obtained the AccessKey ID and AccessKey secret, you can obtain them in the Apsara
Uni-manager Management Console. For more information, see Obtain the AccessKey ID and AccessKey
secret.

In Message Queue for Apache RocketMQ, topics and groups are included in instances. This topic
describes how to create, update, view, and delete an instance in the Message Queue for Apache
RocketMQ console.

Create an instanceCreate an instance
1. Log on to the Message Queue for Apache RocketMQ console and click Inst ancesInst ances in the left-side

navigation pane. For information about how to log on to the Message Queue for Apache
RocketMQ console, see Log on to the Message Queue for Apache RocketMQ console.

2. On the Inst ancesInst ances page, click Creat e Inst anceCreat e Inst ance.

3. On the Creat e Inst anceCreat e Inst ance page, configure the parameters and click SubmitSubmit .

4. In the message that appears, click Back t o ConsoleBack t o Console.
On the Inst ancesInst ances page, you can view the basic information about the instance that is created.

Modify the configuration of an instanceModify the configuration of an instance
You can upgrade or downgrade the specificat ion of an instance.

1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Inst ancesInst ances

2. On the Inst ancesInst ances page, click the name of the instance that you want to modify. Then, click

5.Console guide5.Console guide
5.1. Resource management5.1. Resource management
5.1.1. Resource management overview5.1.1. Resource management overview

5.1.2. Manage instances5.1.2. Manage instances

User Guide··Console guide Alibaba Cloud Message Queue

35 > Document Version: 20220816

Updat e Specif icat ionsUpdat e Specif icat ions.

3. On the Updat e Specif icat ionsUpdat e Specif icat ions page, configure the Maximum T opicsMaximum T opics, Out bound MessageOut bound Message
T PST PS, Inbound Message T PSInbound Message T PS, and Descript ionDescript ion parameters.

Not e Not e The value that you specify for each parameter must be in the range that is
displayed.

4. Click SubmitSubmit .

5. In the message that appears, click Back t o ConsoleBack t o Console.
On the Inst ancesInst ances page, you can view the new configuration of the instance.

View the details of an instanceView the details of an instance
1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click

Inst ancesInst ances.

2. On the Inst ancesInst ances page, click the name of the instance that you want to view. You can view
information about the instance on the details page of the instance.

Delete an instanceDelete an instance
Prerequisit esPrerequisit es

All resources in the instance are deleted, including topics and groups.

No Message Queue for MQTT instances are bound to the instance.

1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click
Inst ancesInst ances.

2. On the Inst ancesInst ances page, click the name of the instance that you want to delete. Then, click Delet eDelet e
Inst anceInst ance.

3. In the message that appears, read the message and click OKOK.
After the instance is deleted, a message whose content is T he inst ance is delet ed.T he inst ance is delet ed. is displayed

ReferencesReferences
If you want to call API operations to perform the operations that are described in this topic, see
Message Queue for Apache RocketMQ Developer Guide.

Topic is the first-level identifier that classifies messages in Message Queue for Apache RocketMQ. For
example, you can create a topic named Topic_Trade to identify transaction-specific messages. This
topic describes how to create, update, view, and delete topics in the Message Queue for Apache
RocketMQ console.

PrerequisitesPrerequisites
Create an instance

Create a topicCreate a topic
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

T opicsT opics.

5.1.3. Manage topics5.1.3. Manage topics

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 36

2. In the upper part of the T opicsT opics page, select your instance.

3. Click Creat e T opicCreat e T opic.

4. In the Creat e T opicCreat e T opic dialog box, enter a name for the topic in the T opicT opic field.

Not ice Not ice The topic name must be unique in the instance where you create the topic and
must comply with the following rules:

The topic name cannot start with CID or GID, because CID and GID are reserved fields for
group IDs.

The topic name can contain only letters, digits, hyphens (-), and underscores (_).

The topic name must be 3 to 64 characters in length.

5. From the Message T ypeMessage T ype drop-down list , select a value. This value defines the type of message
that this topic sends and receives.

We recommend that you create different topics to send different types of messages. For example,
create Topic A for normal messages, Topic B for transactional messages, and Topic C for scheduled
messages or delayed messages. For more information about message types, see Message types.

6. In the Descript ionDescript ion field, enter a descript ion about the topic and click OKOK.
The created topic appears in the topic list .

Modify the description of a topicModify the description of a topic
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

T opicsT opics.

2. In the upper part of the T opicsT opics page, select your instance.

3. In the topic list , f ind the topic whose descript ion you want to modify and click the icon in the

Descript ionDescript ion column.

4. In the Edit T opicEdit T opic dialog box, enter the new descript ion and click OKOK.
The message T he operat ion is successf ul.T he operat ion is successf ul. appears.

View topic informationView topic information
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

T opicsT opics.

2. In the upper part of the T opicsT opics page, click the name of your instance. You can view all topics in the
instance and the details about a specific topic. The details include the subscript ion, permissions,
and message type.

Delete a topicDelete a topic

Not e Not e After a topic is deleted, producers that send messages to the topic and consumers
that subscribe to the topic immediately stop services and all resources are deleted within 10
minutes. Proceed with caution.

1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
T opicsT opics.

2. In the upper part of the T opicsT opics page, select your instance.

User Guide··Console guide Alibaba Cloud Message Queue

37 > Document Version: 20220816

3. Find the topic that you want to delete, click the icon, and then select Delete.

4. In the Caut ionCaut ion message, read the prompt carefully. If you are sure to delete the topic, click OKOK.
The topic no longer appears in the topic list in the instance.

ReferencesReferences
If you need to call the Message Queue for Apache RocketMQ API to perform relevant operations, follow
the instruct ions provided in Message Queue for Apache RocketMQ Developer Guide.

After you create an instance and a topic, you need to create a group for message consumers or
producers. This topic describes how to create, view, and delete a group in the Message Queue for
Apache RocketMQ console.

PrerequisitesPrerequisites
Create an instance

ContextContext
Producers or consumers in a group produce or consume messages of the same type based on the same
logic. To use Message Queue for Apache RocketMQ to produce or consume messages, you must create
a group to identify producer instances or consumer instances of the same type.

A consumer can subscribe to mult iple topics, and a topic can be subscribed to by mult iple consumers in
a group. A producer can send messages to mult iple topics, and a topic can subscribe to mult iple
producers in a group to receive messages.

Usage notesUsage notes
A group cannot be used across instances. For example, a group created in Instance A is unavailable in
Instance B.

All clients in a group communicate with Message Queue for Apache RocketMQ brokers over the same
protocol. Message Queue for Apache RocketMQ allows you to use HTTP-based SDKs and TCP-based
SDKs to produce and consume messages. If you specify TCP as the protocol when you create a
group, clients in the group can use only TCP-based SDKs to send and receive messages.

If a consumer group or an exist ing consumer that was created in an earlier version of Message Queue
for Apache RocketMQ was created by using the credential of a Resource Access Management (RAM)
user, the RAM user and the Apsara Stack tenant account to which the RAM user belongs can use the
consumer group or consumer.

If a consumer group or an exist ing consumer that was created in an earlier version of Message Queue
for Apache RocketMQ was created by using the credential of an Apsara Stack tenant account, only
the Apsara Stack tenant account can use the consumer group or consumer. RAM users of this Apsara
Stack tenant account cannot use the consumer group or consumer.

For information about how to modify exist ing configurations of clients to change consumer IDs and
producer IDs to group IDs, see Updates.

Rules for naming group IDsRules for naming group IDs
The ID of a group must start with CID or GID, and contain 7 to 64 characters in length. A group ID can
consist of only letters, digits, hyphens (-), and underscores (_).

5.1.4. Manage groups5.1.4. Manage groups

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 38

If a group belongs to an instance with a namespace, the ID of the group must be unique within the
instance. Group IDs in different instances can be the same. For example, the ID of a group in Instance
A can be the same as ID of a group in Instance B.

If a group belongs to an instance without a namespace, the group ID must be globally unique across
instances and regions.

The ID of a group cannot be modified after the group is created.

Create a groupCreate a group
1. Log on to the Message Queue for Apache RocketMQ console and click GroupsGroups in the left-side

navigation pane.

2. On the GroupsGroups page, click the name of the Message Queue for Apache RocketMQ instance in which
you want to a group.

3. Select a protocol for the group that you want to create.

If you want to use TCP-based SDKs to publish and consume messages, you must click the T CPT CP
Prot ocolProt ocol tab to create a group.

If you want to use HTTP-based SDKs to publish and consume messages, you must click the HT T PHT T P
Prot ocolProt ocol tab to create a group.

Click Creat e Group IDCreat e Group ID.

In the Creat e Group IDCreat e Group ID dialog box, configure the Group IDGroup ID parameter and Descript ionDescript ion
parameter. Then, click OKOK.
The group that is created appears in the group list .

View information about a groupView information about a group
1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click GroupsGroups.

2. On the GroupsGroups page, click the name of a Message Queue for Apache RocketMQ instance. Then, you
can view all groups in the instance and the details of a specific group, including the subscript ion
relat ionships, permissions, and status of consumers in the group.

Delete a groupDelete a group

Not ice Not ice After a group is deleted, producers and consumers in the group fail authentication
when they attempt to connect to the Message Queue for Apache RocketMQ instance. The
producers and consumers that are connected to the Message Queue for Apache RocketMQ
instance are not affected.

1. In the left-side navigation pane of the Message Queue for Apache RocketMQ console, click GroupsGroups.

2. On the GroupsGroups page, click the name of the Message Queue for Apache RocketMQ instance that
contains the group you want to delete.

3. Find the group that you want to delete and click the icon in the Act ionsAct ions column.

4. In the message that appears, read the message. If you are sure you want to delete the group, click
OKOK.
After the group is deleted, the group is not displayed in the group list of the instance.

ReferencesReferences

User Guide··Console guide Alibaba Cloud Message Queue

39 > Document Version: 20220816

If you want to call API operations to perform the operations that are described in this topic, see
Message Queue for Apache RocketMQ Developer Guide.

If a message is not consumed as expected, you can query the message content to troubleshoot
problems. Message Queue for Apache RocketMQ allows you to query messages by message ID, by
message key, and by topic.

Comparison of query methodsComparison of query methods

Method Condition Type Description

By message ID
Topic+Message
ID

Exact
match

You can specify a topic and a message ID to obtain a
message and its attributes.

By message
key

Topic+Message
Key

Fuzzy
match

You can specify a topic and a message key to query
the 64 messages that are most recently sent and
contain the specified message key. We recommend
that you specify a unique key for each message in
producers whenever possible to ensure that the
number of messages with the same key does not
exceed 64. Otherwise, some messages cannot be
queried.

By topic
Topic and time
range

Range
match

You can specify a topic and a t ime range to query all
messages that meet the specified conditions. This
type of query returns a large number of messages. It is
difficult to find a specific message that you want to
query.

We recommend that you query messages by using the following process.

Message query process

5.2. Message query5.2. Message query
5.2.1. Overview5.2.1. Overview

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 40

This topic describes how to query messages in the Message Queue for Apache RocketMQ console by
using three different methods.

1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click Message QueryMessage Query.

3. On the Message QueryMessage Query page, click a tab. On the tab that appears, enter the information and click
SearchSearch to query messages.

By message IDBy message ID

If you query messages by message ID, exact match is used. You can specify a topic and a
message ID to query a message by using exact match. Therefore, we recommend that you print
the message ID to the log to facilitate troubleshooting after the message is sent.

In the following sample code, SDK for Java is used to obtain a message ID:

SendResult sendResult = producer.send(msg);
String msgId = sendResult.getMessageId();

To obtain the sample code for other programming languages, click GroupsGroups in the left-side
navigation pane. On the Groups page, find the group ID of the message and click Sample CodeSample Code
in the Act ions column.

By message keyBy message key

Message Queue for Apache RocketMQ creates an index for messages based on the message keys
that you specify. When you enter a topic name and a message key to query messages, Message
Queue for Apache RocketMQ returns the matched messages based on the index.

5.2.2. Query messages5.2.2. Query messages

User Guide··Console guide Alibaba Cloud Message Queue

41 > Document Version: 20220816

Not iceNot ice

If you query messages by message key, take note of the following points:

The query condit ion is the specified message key.

Only the 64 messages that are most recently sent and contain the specified message
key are returned. Therefore, we recommend that you specify a unique and business-
dist inct ive key for each message.

The following sample code provides an example on how to specify a message key:

Message msg = new Message("Topic","*","Hello MQ".getBytes());
/**
* Specify the key to be indexed for each message. The key value is the key attribute
of the message. We recommend that you specify a unique key for each message.
* If you do not receive a message as expected, you can query the message in the Messa
ge Queue for Apache RocketMQ console. Messages can be sent and received even if this
attribute is not specified.
*/
msg.setKey("TestKey"+System.currentTimeMillis());

By t opicBy t opic

If you cannot query messages by message ID or message key, query messages by topic. You can
specify a topic and t ime range for message sending, retrieve messages in batches, and then find
the data that you need.

Not iceNot ice

If you query messages by topic, take note of the following points:

If you specify a topic and t ime range to query messages, range match is used to
retrieve all messages that meet the t ime condit ion within the topic. The number of
retrieved messages is large. Therefore, we recommend that you narrow down the
time range.

If you query messages by topic, a large number of messages are returned on mult iple
pages.

This topic describes the results returned when you query messages.

You can view the queried messages on the Message QueryMessage Query page of the Message Queue for Apache
RocketMQ console. The displayed information includes the message ID, tag, key, and storage t ime. In
addit ion, click the corresponding buttons in the Act ions column of a message to download the
message content, Query the message trace, and view the message details.

The delivery status is calculated by Message Queue for Apache RocketMQ based on the consumption
progress of each group ID. For more information about the delivery status, see .

5.2.3. Query results5.2.3. Query results

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 42

Not e Not e The delivery status is est imated based on the consumption progress. Use the message
tracing feature to query the consumption details. The message tracing feature allows you to query
the complete trace of a message. For more information, see Query the message trace.

Message delivery statusMessage delivery status

Delivery status Possible cause

The message has been subscribed to and consumed
at least once.

The group ID has properly consumed the message.

The message has been subscribed to but is filtered
out by the filter expression. Check the tag of the
message.

The tag of the message does not comply with the
subscription of the consumer and the message is
filtered out. To query the subscription of the
consumer, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane,
click GroupsGroups . On the Groups page, find the group ID
of the consumer whose subscription you want to
view and click Consumer St at usConsumer St at us in the Act ionsAct ions
column.

The message has been subscribed to but is not
consumed.

A consumer identified by the group ID has
subscribed to the message, but the message has
not been consumed possibly because the
consumption is slow or is blocked due to an
exception.

The message has been subscribed to but the
consumer that subscribes to the message and is
identified by the group ID is not online. Use the
message tracing feature to query the details about
the message in an exact match.

A consumer identified by the group ID has
subscribed to the message but the consumer is not
online. Check the reason why the consumer is not
online.

An unknown exception occurred. Contact the customer service.

Message Queue for Apache RocketMQ provides the consumption verificat ion feature. You can push a
specified message to a specified online consumer to check whether the consumer can consume the
message based on the correct logic as expected.

Not ice Not ice The consumption verificat ion feature is used only to verify whether consumers can
consume messages based on the correct logic as expected. This feature does not affect the
normal process of receiving messages. Therefore, information such as the consumption status of a
message does not change after the consumption is verified.

5.3. Message tracing5.3. Message tracing
5.3.1. Overview5.3.1. Overview

User Guide··Console guide Alibaba Cloud Message Queue

43 > Document Version: 20220816

A message trace is the complete trace of a message that is sent from a producer to the Message
Queue for Apache RocketMQ broker and then consumed by a consumer. The message trace includes the
time, status, and other information of each node in the preceding process. The message trace provides
robust data support for troubleshooting in production environments. This topic describes the scenarios,
query procedure, and parameters of query results for message tracing.

Message trace dataMessage trace data
In Message Queue for Apache RocketMQ, the complete trace of a message involves three roles:
producer, broker, and consumer. Each role adds relevant information to the trace when the role
processes the message. The information is aggregated to indicate the status of the message. The
following figure shows the relevant data.

Message trace data

ScenariosScenarios
You can use the message tracing feature to troubleshoot problems if a message is not sent or received
as expected in your production environment. You can query the message trace by message ID, message
key, or topic to check whether the message is sent and received as expected within the specified t ime
range.

Usage notesUsage notes

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 44

No extra fees are incurred when you use the message tracing feature. After a message is sent, you can
query the trace of the message based on the ID or key of the message in the Message Queue for
Apache RocketMQ console. You must take note of the following points.

Rules for querying message tracesRules for querying message traces

Message type Query description

Normal messages

A sending trace is generated after the message is
sent. If the message is not consumed, NotNot
ConsumedConsumed appears. After the message is
consumed, the delivery and consumption
information appears.

Ordered messages

A sending trace is generated after the message is
sent. If the message is not consumed, NotNot
ConsumedConsumed appears. After the message is
consumed, the delivery and consumption
information appears.

Scheduled messages and delayed messages
If the current system time does not reach the
specified message consumption time, the trace can
be queried but the message cannot be queried.

Transactional messages
Before the transaction is committed, the trace can
be queried but the message cannot be queried.

ExamplesExamples
If you find that a message is not received as expected based on the log information, perform the
following steps to troubleshoot the problem by using the message trace:

1. Collect the information about the message that is suspected to be abnormal. The information
includes the message ID, message key, topic, and approximate sending t ime.

2. Log on to the Message Queue for Apache RocketMQ console, and create a query task to query the
message trace based on the available information.

3. Check the query results and analyze the cause.

If Not ConsumedNot Consumed appears in the trace, go to the GroupsGroups page to View the consumer status.
Then, you can determine whether message accumulation is the reason why the message is not
consumed.

If the message is consumed, find the corresponding consumer and the t ime when the message is
consumed in the consumption information. Then, log on to the consumer to view the relevant
log.

No extra fees are incurred when you use the message tracing feature. To use this feature, you must
make sure that the version of your client SDK supports this feature. After a message is sent or received,
you can query the trace of the message based on the message attributes in the Message Queue for
Apache RocketMQ console.

PrerequisitesPrerequisites

5.3.2. Query message traces5.3.2. Query message traces

User Guide··Console guide Alibaba Cloud Message Queue

45 > Document Version: 20220816

Make sure that the version of your SDK supports the message tracing feature. You can use the
following versions of SDKs:

SDK for Java: V1.2.7 and later

SDK for C and C++: V1.1.2 and later

.SDK for .NET: V1.1.2 and later

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

Message T racingMessage T racing. On the page that appears, click Creat e Query T askCreat e Query T ask in the upper-right corner.

2. In the Creat e Query T askCreat e Query T ask dialog box, click the By Message ID, By Message Key, or By Topic tab and
enter the information as prompted. Then, click OKOK.

Not ice Not ice Specify a t ime range as accurate as possible to narrow the query scope and
speed up the query.

Message tracing supports the following three query methods. Select a query method and specify
the query criteria.

By message ID: You must specify the unique message ID, topic, and approximate sending t ime of
a message. We recommend that you use this method because this method uses exact match and
allows you to query message traces fast.

By message key: You must specify the message key, topic, and approximate sending t ime of a
message. This method uses fuzzy match. A maximum of 1,000 traces can be displayed for a
query based on the specified message key. This method applies only to scenarios where the
message ID is not recorded but a business-dist inct ive message key is specified.

By topic: You must specify the topic and approximate sending t ime for batch query. This method
uses range match and applies to scenarios where both the message ID and the message key are
unavailable and the message volume is small. We do not recommend this query method, because
a large volume of messages exist in a topic within the specified t ime range and you cannot find
the message you want among these messages in this t ime range.

After you create a query task, you can view the query task on the Message T racingMessage T racing page. If the
value of T ask St at usT ask St at us is QueryingQuerying, you cannot view the message trace.

3. In the upper-right corner, click Ref reshRef resh until the value of Task Status becomes Query Complet edQuery Complet ed.
You can click the ++ icon to view the brief trace information, including the message attributes and
consumption status.

If no data is found, verify whether the query information you entered is valid.

If the trace is queried out, brief trace information appears, including the message attributes and
consumption status.

4. Click View T racesView T races to check the complete trace.

The message trace consists of three parts:

Producer information

Topic information

Consumer information

You can move the pointer over a field to view the details about the field.

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 46

If you query traces by message key or topic, mult iple traces may be displayed. You can page up and
down to view and compare the traces.

For more information about the query results of message traces, see Message tracing status.

This topic describes the terms and status information displayed on the Message Trace page.

Terms for message tracingTerms for message tracing

Role Field Description

Producer

Sending T ime

The time when the message was
sent from the producer. The time
follows the ISO 8601 standard in
the yyyy-MM-ddThh:mm:ssZ
format. The time is displayed in
UTC.

T ime Consumed

The period of t ime that the
producer took to send a
message by calling the Send
method. Unit: milliseconds.

Topic Region
The region where the message is
stored or the region where the
consumer is located.

Consumer

T ime Consumed

The period of t ime that the
consumer took to execute the
consumeMessage method after
the message is pushed to the
consumer.

Delivery T ime

The time when the consumer
executed the consumeMessage
method to start consuming the
message. The time follows the
ISO 8601 standard in the yyyy-
MM-ddThh:mm:ssZ format. The
time is displayed in UTC.

Sending status and consumption statusSending status and consumption status

Sending status and consumption
status

Field Description

Sent
The message is sent and stored
in the Message Queue for Apache
RocketMQ broker.

5.3.3. Status in message traces5.3.3. Status in message traces

User Guide··Console guide Alibaba Cloud Message Queue

47 > Document Version: 20220816

Sending status
Sending Failed

The message fails to be sent and
is not stored in the Message
Queue for Apache RocketMQ
broker. In this case, the broker
tries to redeliver the message.

Message Standing By
The message is a scheduled or
delayed message and it is not
the time to deliver the message.

Transaction Uncommitted
The message is a transactional
message and has not been
committed.

Message Rolled Back
The message is a transactional
message and has been rolled
back.

Consumption status

All Succeeded
The message has been
consumed by all the consumers
to which it is delivered.

Partially Succeeded

The message fails to be
consumed in specific deliveries,
or the message is consumed
after it is redelivered.

All Failed
The message still fails to be
consumed after all delivery
retries.

Not Consumed
The message is not delivered to
consumers.

Consumption Result Unreturned

No results are returned for the
message consumption method
or the method is interrupted.
Therefore, the consumption
status is not returned to the
Message Queue for Apache
RocketMQ broker.

Consumed The message is consumed.

Consumption Failed

A failure result is returned for the
message consumption method,
or the method threw an
exception.

Sending status and consumption
status

Field Description

5.4. View the consumer status5.4. View the consumer status

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 48

The Message Queue for Apache RocketMQ console allows you to check the consumer status to
troubleshoot exceptions that occur during message consumption. This feature allows you to view the
information about a group ID or a consumer identified by the group ID. The information includes the
connection status, subscript ion, consumption TPS, number of accumulated messages, and thread
stacks. This topic describes how to view the information.

ContextContext
The cause of an exception that occurs during message consumption is complicated. In most cases, the
consumer status information in the console alone is insufficient to troubleshoot a problem. You must
perform further troubleshooting by analyzing logs and business scenarios.

ScenariosScenarios
You can query the consumer status for troubleshooting in the following scenarios:

Subscript ion inconsistency

Symptom: In the Consumer St at usConsumer St at us panel, the value of Consist ent Subscript ionConsist ent Subscript ion column is NoNo
for the group ID.

Solut ion: For more information about how to handle subscript ion inconsistency, see Subscript ion
inconsistency.

Message accumulation alerts

Symptom: In the Consumer St at usConsumer St at us panel, the value in the Accumulat ed MessagesAccumulat ed Messages column is
large for the group ID.

Solut ion: For more information about how to handle message accumulation alerts, see Message
accumulation.

View the information about a group IDView the information about a group ID
1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click GroupsGroups.

3. On the GroupsGroups page, find the group ID that you want to view and click Consumer St at usConsumer St at us in the
Act ionsAct ions column.

The following table describes the fields in the Consumer St at usConsumer St at us panel.

Description of fields in the Consumer Status panelDescription of fields in the Consumer Status panel

Field Description

Online status icon

The value is YesYes if one consumer instance
identified by the group ID is online. In this case,
you can view information about all online
consumer instances in the Connect ionConnect ion
Inf ormat ionInf ormat ion section. If none of the consumer
instances identified by the group ID is online, the
value is Of f lineOf f line and no information is displayed in
the Connect ion Inf ormat ionConnect ion Inf ormat ion section.

User Guide··Console guide Alibaba Cloud Message Queue

49 > Document Version: 20220816

Consistent Subscription

Indicates whether the subscriptions of all
consumer instances identified by the group ID are
consistent. For more information about
subscription consistency, see Subscription
consistency.

Real-time Consumption Speed
The total TPS at which messages are received by
the consumer instances identified by the group ID.
Unit: messages/s.

Real-time Accumulated Messages
The total number of messages that are not
consumed by the consumer instances identified
by the group ID.

Last Consumed At
The time when the consumer instances identified
by the group ID last consumed a message.

Message Delay T ime
The difference between the production time of
the earliest unconsumed message and the current
time.

Field Description

View information about a single consumer instance identified by aView information about a single consumer instance identified by a
specific group IDspecific group ID

1. If the online status of the group ID is YesYes, you can view information about each online consumer
instance identified by the group ID in the Connect ion Inf ormat ionConnect ion Inf ormat ion sect ion. The information
includes the client ID, host or public IP address, current process ID, and number of accumulated
messages.

2. If you want to view more information about a specific consumer instance, click Det ailedDet ailed
Inf ormat ionInf ormat ion in the Det ailed Descript ionDet ailed Descript ion column. The information includes the number of
consumer threads, consumption start t ime, subscript ion, and message consumption stat ist ics.

3. If you want to view the stack information of the current process for a specific consumer instance,
find the consumer instance and click St ack Inf ormat ionSt ack Inf ormat ion in the St ack Inf ormat ionSt ack Inf ormat ion column.

You can reset consumer offsets to skip the accumulated or undesired messages instead of consuming
them, or to consume messages sent after a point in t ime regardless of whether the messages sent
before this point in t ime are consumed.

ContextContext
When you reset consumer offsets, take note of the following points:

You cannot reset consumer offsets in broadcasting consumption mode.

You cannot reset consumer offsets by specifying a message ID, message key, or tag.

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click

GroupsGroups.

5.5. Reset consumer offsets5.5. Reset consumer offsets

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 50

2. Find the group ID whose consumer offset you want to reset, click the More icon in the Act ionsAct ions
column, and then select Reset Consumer Of f setReset Consumer Of f set .

3. In the Reset Consumer Of f setReset Consumer Of f set dialog box, enter the corresponding topic in the T opicT opic field, and
then select one the following options as needed:

Consumpt ion f rom Lat est Of f set (All Accumulat ed Messages Cleared)Consumpt ion f rom Lat est Of f set (All Accumulat ed Messages Cleared): If this option is
selected, consumers identified by the group ID skip all accumulated (unconsumed) messages
within the topic and restart consumption from the latest offset.

If "reconsumeLater" is returned, the messages in the delivery retry process cannot be skipped.

Consumpt ion f rom a Specif ic Point in T imeConsumpt ion f rom a Specif ic Point in T ime: If this option is selected, a t ime picker appears.
Select a point in t ime. Only the messages that are sent after the selected point in t ime will be
consumed.

The period allowed for the t ime picker ranges from the production t ime of the earliest message
stored in the topic to the production t ime of the latest message stored in the topic. You can
select a point in t ime only within the allowed t ime range.

4. Click OKOK to reset the consumer offset.

Dead-letter queues are used to process messages that cannot be consumed as expected. This topic
describes how to query, export, and resend dead-letter messages in dead-letter queues. This helps you
manage dead-letter messages as needed and prevent missing messages.

Background informationBackground information
When a message fails to be consumed for the first t ime, the Message Queue for Apache RocketMQ
broker automatically redelivers the message. If the message st ill cannot be consumed after the broker
redelivers the message for a maximum of allowed t imes, the message cannot be properly consumed.
Instead of immediately discarding the message, Message Queue for Apache RocketMQ sends it to a
part icular queue of the corresponding consumer.

In Message Queue for Apache RocketMQ, a message that cannot be properly consumed is called a
dead-letter message, which is stored in a part icular queue named dead-letter queue.

FeaturesFeatures
Dead-letter messages have the following features:

They can no longer be consumed by consumers as expected.

They have a valid period of three days, which is the same as that of normal messages. After the three
days, dead-letter messages are automatically deleted. Therefore, process dead-letter messages
within three days after they are generated.

Dead-letter queues have the following features:

A dead-letter queue corresponds to a group ID instead of a consumer instance.

If no dead-letter message is generated for a group ID, Message Queue for Apache RocketMQ does
not create a dead-letter queue for the group ID.

A dead-letter queue contains all the dead-letter messages of the corresponding group ID regardless
of the message topic.

In the Message Queue for Apache RocketMQ console, you can query, export, and resend dead-letter
messages.

5.6. Dead-letter queues5.6. Dead-letter queues

User Guide··Console guide Alibaba Cloud Message Queue

51 > Document Version: 20220816

Methods of querying dead-letter messagesMethods of querying dead-letter messages
Message Queue for Apache RocketMQ provides the following methods for you to query dead-letter
messages.

Method Condition Type Description

By group ID Group ID and time range Range match

You can specify a group
ID and a t ime range to
query all messages that
meet the specified
conditions. This type of
query returns a large
number of messages. It
is difficult to find a
specific message that
you want to query.

By message ID Group ID+Message ID Exact match

You can specify a group
ID and a message ID to
query a message by
using exact match.

By group IDBy group ID
You can batch query all the dead-letter messages of a group ID within a t ime range by specifying the
group ID and t ime range.

Not ice Not ice The production t ime of a dead-letter message refers to the t ime when a message is
sent to the dead-letter queue after the maximum number of redelivery retries for this message is
reached.

1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click Dead-let t er QueuesDead-let t er Queues.

3. On the Dead-let t er QueuesDead-let t er Queues page, click the By Group IDBy Group ID tab.

4. From the drop-down list of group IDs, select the group ID whose dead-letter messages you want
to view.

5. Click the icon for the t ime picker and specify the start t ime and end t ime.

6. Click SearchSearch. All dead-letter messages that meet the preceding condit ions appear.

7. Find the dead-letter message that you want to view and click View Det ailsView Det ails in the Act ionsAct ions column
to view the details about the message. The details include the basic attributes, download URL of
the message body, message trace, and delivery status.

By message IDBy message ID
If you query messages by message ID, exact match is used. You can precisely locate a message by
specifying its group ID and message ID.

1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click Dead-let t er QueuesDead-let t er Queues.

3. On the Dead-let t er QueuesDead-let t er Queues page, select your instance and click the By Message IDBy Message ID tab.

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 52

4. From the drop-down list of group IDs, select the group ID whose dead-letter messages you want
to view.

5. In the search box of message IDs, enter the ID of the message that you want to query.

6. Click SearchSearch. All dead-letter messages that meet the preceding condit ions appear.

7. Find the dead-letter message that you want to view and click View Det ailsView Det ails in the Act ionsAct ions column
to view the details about the message. The details include the basic attributes, download URL of
the message body, message trace, and delivery status.

Export dead-letter messagesExport dead-letter messages
If you cannot process dead-letter messages within the validity period, export the messages in the
Message Queue for Apache RocketMQ console.

The Message Queue for Apache RocketMQ console allows you to export a single dead-letter message
or export dead-letter messages in batches. The exported file is in the CSV format.

The following table describes the fields of an exported message.

Field Definit ion

topic The topic to which the message belongs.

msgId The ID of the message.

bornHost
The URL of the producer that produced the
message.

bornTimestamp The time when the message was produced.

storeT imestamp
The time when the message turned into a dead-
letter message.

reconsumeTimes
The number of t imes that the message failed to be
consumed.

properties The message attributes in the JSON format.

body The Base64-encoded message body.

bodyCRC
The cyclic redundancy check (CRC) of the message
body.

Export a single dead-letter message

In the Message Queue for Apache RocketMQ console, f ind the dead-letter message that you want to
export and click ExportExport in the Act ionsAct ions column.

Export dead-letter messages in batches

In the Message Queue for Apache RocketMQ console, enter the group ID to query the dead-letter
messages, select the dead-letter messages that you want to export, and then click Bat ch ExportBat ch Export .

Resend dead-letter messagesResend dead-letter messages

User Guide··Console guide Alibaba Cloud Message Queue

53 > Document Version: 20220816

If a message enters a dead-letter queue, the message cannot be consumed as expected for specific
reasons. Therefore, you must process the message in a special way. After you troubleshoot the
problems, you can resend the message to the corresponding consumer in the Message Queue for
Apache RocketMQ console.

Not ice Not ice After a dead-letter message is resent to the consumer, the message will st ill be
stored in the dead-letter queue for three days. The system automatically deletes the message
after the three days.

Resend a single dead-letter message

In the Message Queue for Apache RocketMQ console, query one dead-letter message by message ID
or query dead-letter messages by group ID. Find the dead-letter message that you want to resend
and click ResendResend in the Act ionsAct ions column.

Resend dead-letter messages in batches

In the Message Queue for Apache RocketMQ console, query dead-letter messages by group ID, select
the dead-letter messages that you want to resend, and then click Bat ch ResendBat ch Resend.

This topic describes how to use the resource stat ist ics feature to query the stat ist ics of produced
messages and consumed messages.

The resource stat ist ics feature provides the stat ist ics of produced messages and consumed messages.
This feature allows you to query the following data:

St at ist ics of produced messagesSt at ist ics of produced messages

Queries by topic: You can query the total number of messages that are received by a topic or the
average number of messages that are received by a topic per second in a specified period of t ime.

Queries by instance: You can query the total number of messages that are received by the topics in
a specified instance or the average number of messages that are received by the topics in a
specified instance per second in a specified period of t ime.

St at ist ics of consumed messagesSt at ist ics of consumed messages

Queries by group ID: You can query the total number of messages that are sent from a topic to
consumers identified by a group ID or the average number of messages that are sent from a topic
to consumers identified by a group ID per second in a specified period of t ime.

Queries by instance: You can query the total number of messages that are sent to all groups in a
specified instance or the average number of messages that are sent to all groups in a specified
instance per second in a specified period of t ime.

This topic describes how to query the stat ist ics of produced messages. You can query the total number
of messages that are received by a topic or all topics across the brokers in a specified instance in a
specified period of t ime. You can also query the average number of messages that are received by a
topic or all topics across the brokers in a specified instance per second in a specified period of t ime.

5.7. Resource statistics5.7. Resource statistics
5.7.1. Overview5.7.1. Overview

5.7.2. Query the statistics of produced messages5.7.2. Query the statistics of produced messages

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 54

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click Resource St at ist icsResource St at ist ics.

3. On the Resource St at ist icsResource St at ist ics page, click the Message Product ionMessage Product ion tab.

4. From the Resource T ypeResource T ype drop-down list , select a resource type for which you want to query the
stat ist ics of produced messages. Configure the related fields. Then, click SearchSearch.

The following information describes the related fields:

Resource T ypeResource T ype: The value can be Instance or Topic. Select Instance to query the total number
of messages that are received by the topics in a specified instance or the average number of
messages that are received by the topics in a specified instance per second in a specified period
of t ime. Select Topic to query the total number of messages that are received by a specified
topic or the average number of messages that are received by a specified topic per second in a
specified period of t ime.

Current Inst anceCurrent Inst ance: This parameter is displayed if Resource T ypeResource T ype is set to Instance. This
parameter is automatically set to the name and ID of the current instance.

T opicT opic: This parameter is displayed if Resource T ypeResource T ype is set to Topic. Select a topic to query the
stat ist ics of the produced messages that are sent to a specified topic in the current instance.

Collect ion T ypeCollect ion T ype: The value can be Total or TPS. Select Total to query the total number of
messages that are received by the topic in each collect ion cycle. Select TPS to query the average
number of messages that are received by the topic per second in each collect ion cycle.

Collect ion Int ervalCollect ion Int erval: The value can be 1 Minute, 10 Minutes, 30 Minutes, or 1 Hour. This
parameter specifies the interval at which data is collected. A smaller value indicates a higher
data collect ion frequency and more detailed data.

T ime RangeT ime Range: Message Queue for Apache RocketMQ allows you to query messages that are
produced in the last three days.

Query results are displayed in charts.

This topic describes how to query the stat ist ics of consumed messages. You can query the total
number of messages that are sent from a topic to consumers identified by a group ID in a specified
period of t ime. You can also query the average number of messages that are sent from a topic to
consumers identified by a group ID per second in a specified period of t ime.

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console.

2. In the left-side navigation pane, click Resource St at ist icsResource St at ist ics.

3. On the Resource St at ist icsResource St at ist ics page, click the Message Consumpt ionMessage Consumpt ion tab.

4. From the Resource T ypeResource T ype drop-down list , select a resource type for which you want to query the
stat ist ics of consumed messages. Configure the related fields. Then, click SearchSearch.

The following information describes the related fields:

Resource T ypeResource T ype: The value can be Instance or Group ID. Select Instance to query the total
number of messages that are sent to the groups in a specified instance or the average number
of messages that are sent to the groups in a specified instance per second in a specified period

5.7.3. Query the statistics of consumed messages5.7.3. Query the statistics of consumed messages

User Guide··Console guide Alibaba Cloud Message Queue

55 > Document Version: 20220816

of t ime. Select Group ID to query the total number of messages that are sent from a topic to
consumers identified by a group ID or the average number of messages that are sent from a
topic to consumers identified by a group ID per second in a specified period of t ime.

Current Inst anceCurrent Inst ance: This parameter is displayed if Resource T ypeResource T ype is set to Instance. This
parameter is automatically set to the name and ID of the current instance.

Group IDGroup ID: This parameter is displayed if Resource T ypeResource T ype is set to Group ID. You must select the
group ID for which you want to query data.

T opicT opic: This parameter is displayed if Resource T ypeResource T ype is set to Group ID. You must select a topic
from which the messages that you want to query are sent.

Collect ion T ypeCollect ion T ype: The value can be Total or TPS. Select Total to query the total number of
messages that are sent to consumers identified by the group ID in each collect ion cycle. Select
TPS to query the average number of messages that are sent to consumers identified by the
group ID per second in each collect ion cycle.

Collect ion Int ervalCollect ion Int erval: The value can be 1 Minute, 10 Minutes, 30 Minutes, or 1 Hour. This
parameter specifies the interval at which data is collected. A smaller value indicates a higher
data collect ion frequency and more detailed data.

T ime RangeT ime Range: Message Queue for Apache RocketMQ allows you to query messages that are
consumed in the last three days.

Query results are displayed in charts.

Message Queue for Apache RocketMQ allows you to use an Apsara Stack tenant account to grant
permissions to publish and subscribe to a topic to another Apsara Stack tenant account or a Resource
Access Management (RAM) user. An Apsara Stack tenant account is a level-1 department account. A
RAM user is a personal account that is used to access the Apsara Stack resources.

Grant permissions to another Apsara Stack tenant accountGrant permissions to another Apsara Stack tenant account
You can use an Apsara Stack tenant account to grant permissions to another Apsara Stack tenant
account. To grant permissions to publish and subscribe to a topic, perform the following steps:

1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
T opicsT opics.

2. On the T opicsT opics page, find the topic that you want to authorize another account to manage, click

 in the Act ionsAct ions column, and then select Aut horizeAut horize from the drop-down list .

3. In the Aut horizeAut horize dialog box, set Account T ypeAccount T ype to Apsara St ack AccountApsara St ack Account .

4. In the Apsara St ack Account IDApsara St ack Account ID field, enter the ID of the Apsara Stack tenant account to which
you want to grant permissions.

5. From the Aut horizat ion T ypeAut horizat ion T ype drop-down list , select the permissions that you want to grant to
the Apsara Stack tenant account. Then, click OKOK.

Grant permissions to a RAM userGrant permissions to a RAM user

5.8. Account authorization5.8. Account authorization
managementmanagement

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 56

You can use an Apsara Stack tenant account to grant permissions to a RAM user that belongs to the
Apsara Stack tenant account. To grant permissions to publish and subscribe to a topic, perform the
following steps:

1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
T opicsT opics.

2. On the T opicsT opics page, find the topic that you want to authorize a RAM user to manage, click in

the Act ionsAct ions column, and then select Aut horizeAut horize from the drop-down list .

3. In the Aut horizeAut horize dialog box, set Account T ypeAccount T ype to RAM UserRAM User.

4. In the RAM User NameRAM User Name field, enter the name of the RAM user to which you want to grant
permissions.

5. From the Aut horizat ion T ypeAut horizat ion T ype drop-down list , select the permissions that you want to grant to
the RAM user. Then, click OKOK.

Not e Not e The RAM user to which you want to grant permissions must be an account that is used
to access the Apsara Stack resources and is owned by the department to which the Apsara Stack
tenant account belongs.

View authorization informationView authorization information
You can view the authorization records and the details of each topic in the Message Queue for Apache
RocketMQ console. To view authorization information, perform the following steps:

1. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
T opicsT opics.

2. On the T opicsT opics page, find the topic that you want to view, click in the Act ionsAct ions column, and

then select View Aut horizat ionView Aut horizat ion from the drop-down list to view the authorization records and
information of the topic.

Not eNot e

You do not need to authorize your account to manage the topics that you create.

After you log on to the Message Queue for Apache RocketMQ console by using an
authorized account, you can view the topic that the account is authorized to manage.
Then, you must create a group ID. You cannot use the group ID of the Apsara Stack tenant
account that is used to grant permissions to your account.

A topic that an account is authorized to manage belongs to the Apsara Stack tenant
account that is used to grant permissions. Therefore, you cannot use the authorized
account to delete the topic.

If you grant permissions to a RAM user, you cannot use the authorized RAM user to create
topics.

If you grant permissions to another Apsara Stack tenant account, you can use the
authorized Apsara Stack tenant account to create topics. However, the created topics are
not associated to the Apsara Stack tenant account that is used to grant permissions.

5.9. Switch between different access5.9. Switch between different access

User Guide··Console guide Alibaba Cloud Message Queue

57 > Document Version: 20220816

Message Queue for Apache RocketMQ supports instance-specific management. By default , one
instance can be deployed at a t ime. Message Queue for Apache RocketMQ supports advanced access
control by using virtual private clouds (VPC) for each instance.

ContextContext
By default , a Message Queue for Apache RocketMQ instance supports the Any Tunnel access mode.
This means that the Message Queue for Apache RocketMQ instance can be accessed in each VPC
environment. You can switch the access mode in the console at any t ime. If the access mode of a
Message Queue for Apache RocketMQ instance is switched to Single Tunnel, the instance can be
accessed only in a specified VPC environment.

ProcedureProcedure
1. Log on to the RocketMQ console. In the left-side navigation pane, click Clust er ManagementClust er Management .

2. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Clust er ManagementClust er Management .

3. Find the instance whose access mode you want to switch and click Swit ch Access Met hodSwit ch Access Met hod in the
Act ionsAct ions column.

4. Select an access mode. You can select one of the following options:

Single T unnelSingle T unnel: If this option is selected, the instance can be accessed only in a specified VPC
environment. The page displays the vSwit ch IDvSwit ch ID field. You must specify the vSwitch ID of the VPC
that you use.

Any T unnelAny T unnel: If this option is selected, the instance can be accessed in each VPC environment.

5. Select an option for Forced Swit chForced Swit ch to indicate whether to forcibly switch the access mode. The
switching between access modes may cause the transient interruption of services. When forcible
switching is disabled, one access mode can be switched to another access mode only when the
instance traffic is light. This means that the transactions per second (TPS) must be no more than
10. When forcible switching is enabled, one access mode can be switched to another access mode
regardless of the service traffic.

6. Click OKOK.

Message Queue for Apache RocketMQ allows you to bind mult iple virtual private clouds (VPCs) to an
instance. Message Queue for Apache RocketMQ provides an endpoint for each Single Tunnel VPC. You
can assign different endpoints of the same instance to different business services to perform fine-
grained access control. This topic describes how to bind a VPC to an instance and unbind a VPC from an
instance in the Message Queue for Apache RocketMQ console.

ContextContext

5.9. Switch between different access5.9. Switch between different access
modesmodes

5.10. Bind a VPC to a Message Queue5.10. Bind a VPC to a Message Queue
for Apache RocketMQ instancefor Apache RocketMQ instance

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 58

By default , Message Queue for Apache RocketMQ provides an HTTP-based Any Tunnel endpoint and a
TCP-based Any Tunnel endpoint for each instance. You can connect to the Message Queue for Apache
RocketMQ instance by using an Any Tunnel endpoint over a VPC. You can bind mult iple VPCs of the
Single Tunnel type to provide mult iple networks for an instance. After a Single Tunnel VPC is bound to
an instance, the system automatically allocates an endpoint for the VPC. The endpoint can be used to
connect to the Message Queue for Apache RocketMQ instance over only the VPC. You can bind mult iple
Single Tunnel VPCs to your Message Queue for Apache RocketMQ instance. This way, you can assign
isolated networks to your business services to perform fine-grained network access control.

PrerequisitesPrerequisites
Create an instance

A VPC is created.

For more information, see the Create a VPC topic in the VPC User Guide.

A vSwitch is created.

For more information, see the Create a vSwitch topic in the VPC User Guide.

PrecautionsPrecautions
VPC connections are established based on Any Tunnel network connections. VPCs that are bound to
a Message Queue for Apache RocketMQ instance do not affect the exist ing Any Tunnel networks of
the instance. The Any Tunnel networks remain available after VPCs are bound to the instance.

We recommend that you use the credential of the administrator of the Message Queue for Apache
RocketMQ instance to bind VPCs and manage VPCs that are bound to the instance. If you use the
credentials of non-administrator users to bind and manage VPCs for a Message Queue for Apache
RocketMQ instance, your business services may fail to connect to the instance.

Only TCP-based clients can use the endpoint for a VPC to connect to the instance.

After a VPC is bound to a Message Queue for Apache RocketMQ instance, the system ensures only
that Message Queue for Apache RocketMQ brokers can connect to the instance over the VPC. To
connect your client to the Message Queue for Apache RocketMQ instance over the VPC, make sure
that your client is connected to the VPC.

Bind a VPC to an instanceBind a VPC to an instance
1. Log on to the Message Queue for Apache RocketMQ console. For information about how to log on

to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for
Apache RocketMQ console.

2. In the left-side navigation pane, click Inst ancesInst ances.

3. On the Inst ancesInst ances page, click the name of the instance to which you want to bind a VPC. Then, click
the Net work ManagementNet work Management tab.

4. On the Net work ManagementNet work Management tab, click Binding VPCBinding VPC.

5. In the Binding VPCBinding VPC dialog box, configure the parameters and click OKOK.

The following table describes the parameters that you need to configure to bind a VPC.

Parameter Description

User Guide··Console guide Alibaba Cloud Message Queue

59 > Document Version: 20220816

Clust er NameClust er Name

The name of the cluster to which the Message
Queue for Apache RocketMQ instance belongs.

The system automatically obtains the value of
this parameter. You do not need to specify a
value.

Inst anceInst ance

The ID of the Message Queue for Apache
RocketMQ instance.

The system automatically obtains the value of
this parameter. You do not need to specify a
value.

VPC IDVPC ID
Select the VPC that you want to bind to the
Message Queue for Apache RocketMQ instance
from the drop-down list.

Swit ch IDSwit ch ID
Select the vSwitch that you want to connect to
the instance from the drop-down list.

VPC NAMEVPC NAME

Specify a name for the VPC that you want to bind
to the instance. We recommend that you specify
a name that can help you identify the business
service that connects to the instance over the
VPC.

Parameter Description

After the VPC is bound, you can view information about the VPC in the VPC list on the Net workNet work
ManagementManagement tab, including the endpoint that is assigned for the VPC, the ID of the VPC, and the
vSwitch to which the instance is connected. You can also click VPC Inst ancesVPC Inst ances in the Act ionsAct ions
column to view the Message Queue for Apache RocketMQ instances to which the VPC is bound.

Unbind a VPC from an instanceUnbind a VPC from an instance

Not iceNot ice

After a VPC is unbound from an RocketMQ instance, the endpoint for the VPC becomes
invalid and cannot be used to access the instance. Proceed with caution when you unbind a
VPC from an instance.

If a VPC is bound to mult iple instances in a cluster and you want to prevent access requests
that are sent over the VPC, you must unbind the VPC from all instances in the cluster.

1. Log on to the Message Queue for Apache RocketMQ console. For information about how to log on
to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for
Apache RocketMQ console.

2. In the left-side navigation pane, click Inst ancesInst ances.

3. On the Inst ancesInst ances page, click the name of the instance from which you want to unbind a VPC. Then,
click the Net work ManagementNet work Management tab.

4. In the VPC list , f ind the VPC that you want to unbind and click Unbind VPCsUnbind VPCs in the Act ionsAct ions column.

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 60

5. In the UnbindUnbind dialog box, check the information about the VPC and click OKOK.

The message routing feature provided by Message Queue for Apache RocketMQ allows you to
synchronize messages across clusters. This topic describes how to configure a message routing task.

ContextContext
The message routing feature of Message Queue for Apache RocketMQ is used to synchronize messages
across clusters. You can configure routing rules to dynamically plan the synchronization path of
messages so that messages can be synchronized from the source node to the dest ination node based
on filter condit ions. This implements remote message synchronization and allows you to synchronize
messages across clusters within milliseconds. This way, data consistency and integrity across clusters are
ensured.

The following figure shows how the message routing feature works in Message Queue for Apache
RocketMQ. In the figure, one-way synchronization is performed based on topics to synchronize
messages from a specified source topic in the source instance to a specified dest ination topic in the
destination instance.

For more information about the message routing feature, see Message routing.

PrecautionsPrecautions
Only instances that have a namespace support the message routing feature. If you want to enable
the message routing feature for an instance, specify a namespace for the instance when you create
the instance.

The message routing feature does not support chain routing. For example, you cannot route
messages from Cluster A to Cluster B and then from Cluster B to Cluster C. You must create a task to
route messages from Cluster A to Cluster C.

The message type of the source topic must be the same as the message type of dest ination topic.
For example, if the message type of the source topic is normal message, the message type of the
destination message must also be normal message.

A routing task must be created in the production environment in which the dest ination cluster is
deployed. If you want to route messages from Cluster A to Cluster B, you must create a message
routing task in the cloud environment of Cluster B. In the message routing task configuration, specify
Cluster A as the source cluster and Cluster B as the dest ination cluster.

Message routing requires the CPU resources and memory resources of the source cluster and the
destination cluster, and the storage resources of the dest ination cluster. You must evaluate the
amount of resources that are required before you create a message routing task.

PrerequisitesPrerequisites
Create an instance

Create a topic

ProcedureProcedure
You can perform the following steps to create a Message Queue for Apache RocketMQ message
routing task:

5.11. Route messages from a cluster5.11. Route messages from a cluster
to another clusterto another cluster

User Guide··Console guide Alibaba Cloud Message Queue

61 > Document Version: 20220816

St ep 1: Creat e a dest inat ion cloudSt ep 1: Creat e a dest inat ion cloud

Before you create a routing task, you must specify information to create a cloud where your Message
Queue for Apache RocketMQ cluster is deployed. The information includes the endpoint of your
Message Queue for Apache RocketMQ instance and the AccessKey ID and AccessKey secret of the
account to which the cloud belongs. Message Queue for Apache RocketMQ obtains the permissions
that are required to access Message Queue for Apache RocketMQ resources across clouds based on
the cloud information that you specified.

St ep 2: Creat e a rout ing t askSt ep 2: Creat e a rout ing t ask

Specify the message source and the message dest ination, and configure relevant information. For
example, specify filter condit ions and set the start offset of message synchronization.

Step 1: Create a destination cloudStep 1: Create a destination cloud
1. Log on to the Message Queue for Apache RocketMQ console. For information about how to log on

to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for
Apache RocketMQ console.

2. In the left-side navigation pane, click Message Rout eMessage Rout e.

3. On the Message Rout eMessage Rout e page, click the Cloud Inf ormat ionCloud Inf ormat ion tab. In the upper-right corner of the
Cloud Information tab, click Add Message Synchronizat ion CloudAdd Message Synchronizat ion Cloud.

4. In the Creat e Message Synchronizat ion CloudCreat e Message Synchronizat ion Cloud dialog box that appears, configure the
parameters. Then, click OKOK.

The following table describes the parameters.

Parameter Description Example

Cloud NameCloud Name

The name of the cloud to which
you want to route messages.

The cloud name must be
unique. The system identifies
the message routing
destination based on only the
name of t he cloudname of t he cloud and the
endpoint of t he Messageendpoint of t he Message
Queue f or Apache Rocket MQQueue f or Apache Rocket MQ
inst anceinst ance.

Center

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 62

AccessKeyAccessKey

The AccessKey IDAccessKey ID of the
account that is used to log on
to the cloud.

Make sure that the role of the
account is the administrator of
Message Queue for Apache
RocketMQ or a user that is
granted the permissions to
write data to and read data
from instances and topics.

For information about how to
obtain the AccessKey IDAccessKey ID, see
the Obtain an AccessKey pair
topic in the Message Queue for
Apache RocketMQ Developer Gui
de.

j8geROUEAW1k****

SecretSecret

The AccessKey SecretAccessKey Secret of the
account that is used to log on
to the cloud.

For information about how to
obtain the AccessKey SecretAccessKey Secret ,
see Obtain an AccessKey pair
topic in the Message Queue for
Apache RocketMQ Developer Gui
de.

AMx4ainrLWhT8jYUPHkdI4zY7t**
**

RegionRegion

The ID of the region where the
Message Queue for Apache
RocketMQ cluster is deployed.

To obtain the ID of the region,
log on to the Message Queue
for Apache RocketMQ console
and view the ID of the region in
the top navigation bar.

cn-qingdao-env33-d01

Message Queue f or ApacheMessage Queue f or Apache
Rocket MQ Inst ance EndpointRocket MQ Inst ance Endpoint

The endpoint of the Message
Queue for Apache RocketMQ
instance.

For information about how to
obtain the endpoint of the
Message Queue for Apache
RocketMQ instance, see the
References section in this topic.

http://mq.server.xxxx.com:808
0/rocketmq/nsaddr4client-
internal

Parameter Description Example

User Guide··Console guide Alibaba Cloud Message Queue

63 > Document Version: 20220816

MQ APIMQ API

The interface of the Message
Queue for Apache RocketMQ
console in the cloud.

The value of this parameter
must be in the following
format: http:{console.doma
in}/json .

For information about how to
obtain the value of
{console.domain}, see the
References section in this topic.

http:mq.console.xxxx.com/json

Descript ionDescript ion

The description of the cloud.
You can specify a description
that can help you identify the
cloud.

Core node

Parameter Description Example

Step 2: Create a message routing taskStep 2: Create a message routing task
1. Log on to the Message Queue for Apache RocketMQ console. For information about how to log on

to the Message Queue for Apache RocketMQ console, see Log on to the Message Queue for
Apache RocketMQ console.

2. In the left-side navigation pane, click Message Rout eMessage Rout e.

3. On the Message Rout eMessage Rout e page, click the T askT ask tab. Then, click Creat e T askCreat e T ask in the upper-right
corner.

4. In the Creat e T askCreat e T ask dialog box that appears, configure the parameters. Then, click OKOK.

The following table describes the parameters.

Parameter Description

Message SourceMessage Source

Message Synchroniz at ion CloudMessage Synchroniz at ion Cloud: the name
of the source cloud from which you want to
route messages.

Source RegionSource Region: the region where the source
Message Queue for Apache RocketMQ cluster is
deployed. After you configure the MessageMessage
Synchroniz at ion CloudSynchroniz at ion Cloud parameter, the
system automatically obtains the ID of the
region where the source cloud is deployed. You
do not need to specify a value for this
parameter.

Source Inst anceSource Inst ance: the instance to which the
source topic belongs.

Source T opicSource T opic: the name of the topic from
which you want to route messages.

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 64

Message Dest inat ionMessage Dest inat ion

Message Synchroniz at ion CloudMessage Synchroniz at ion Cloud: the name
of the destination cloud to which you want to
route messages.

Dest inat ion RegionDest inat ion Region: the region where the
destination Message Queue for Apache
RocketMQ cluster is deployed. After you
configure the Message Synchroniz at ionMessage Synchroniz at ion
CloudCloud parameter, the system automatically
obtains the ID of the region where the
destination cloud is deployed. You do not need
to specify a value for this parameter.

Dest inat ion Inst anceDest inat ion Inst ance: the instance to which
the destination topic belongs.

Dest inat ion T opicDest inat ion T opic: the name of the topic to
which you want route messages.

Of f set t o St artOf f set t o St art

The consumer offset from which you want to
route messages from the source topic to the
destination topic.

Default value: Maximum Of f setMaximum Of f set . If the value of
this parameter is set to Maximum Offset, the
message routing task routes messages to the
destination topic from the most recent message
after the task is started.

Not ice Not ice If the value of this parameter
is set to Maximum Offset, messages that are
sent to the source topic before the message
routing task is started are not routed to the
destination topic.

Parameter Description

User Guide··Console guide Alibaba Cloud Message Queue

65 > Document Version: 20220816

Filt ering RuleFilt ering Rule

If no filtering rules are specified, the message
routing task routes all messages from the
source topic to the destination topic.

If a filtering rule is specified, the message
routing task routes messages that match the
specified conditions from the source topic to
the destination topic.

You can specify tags as conditions.

If the name of a tag of the messages that you
want to route to the destination topic is
CartService, you can enter CartService in the
Filtering Rule field. If you want to filter messages
based on multiple tags, you can specify multiple
tags and separate the tags with two vertical bars
(||). For example, you can enter CartService||Inventr
oy||Payment. For more information about how
messages are filtered based on tags, see
Message filtering.

Descript ionDescript ion
Enter a description for the message routing task
to help you identify the task.

Parameter Description

Modify a cloudModify a cloud
1. On the Message Rout eMessage Rout e page, click the Cloud Inf ormat ionCloud Inf ormat ion tab.

2. In the cloud list , f ind the dest ination cloud that you want to modify and click Modif yModif y in the
Act ionsAct ions column.

3. In the Modif y Message Synchronizat ion CloudModif y Message Synchronizat ion Cloud dialog box that appears, modify the
configuration of the cloud and click OKOK.

4. In the message that appears, read the message and click OKOK.

Delete a cloudDelete a cloud
1. On the Message Rout eMessage Rout e page, click the Cloud Inf ormat ionCloud Inf ormat ion tab.

2. In the cloud list , f ind the cloud that you want to delete and click Delet eDelet e in the Act ionsAct ions column.

3. In the message that appears, read the message and click OKOK.

Start or stop a message routing taskStart or stop a message routing task
1. On the Message Rout eMessage Rout e page, click the T askT ask tab.

2. In the message routing task list , f ind the message routing task that you want to manage and click

the icon in the Act ionsAct ions column to start the task or click the icon to stop the task.

Modify a message routing taskModify a message routing task

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 66

Not ice Not ice After you modify the f ilt ering rulef ilt ering rule of a task, you must stop the task and then
restart the task to make the modificat ion take effect.

1. On the Message Rout eMessage Rout e page, click the T askT ask tab.

2. In the message routing task list , f ind the task that you want to modify and click the icon in the

Act ionsAct ions column.

3. In the Modif y T askModif y T ask dialog box that appears, modify the configuration of the task and click OKOK.

View details of a message routing taskView details of a message routing task
1. On the Message Rout eMessage Rout e page, click the T askT ask tab.

2. In the message routing task list , f ind the task that you want to view and click the icon in the

Act ionsAct ions column. The details of the task are displayed.

The following table describes the parameters that are included in the details of a message routing
task.

Parameter Description

Task Status

Creat edCreat ed

RunningRunning

SuspendedSuspended

Message Synchronization TPS

Transactions per second (TPS) indicates the
number of messages that are routed from the
source topic to the destination topic per second.
The system collects the average TPS value at an
interval of 1 minute.

Message Delay
The time difference between the consumer offset
of the most recent message that was routed and
the consumer offset of the latest message.

Accumulation Amount
The number of messages that are not routed to
the destination topic.

Latest Synchronization T ime
The point in t ime when the last message was
routed.

Delete a message routing taskDelete a message routing task

Not ice Not ice After a message routing task is deleted, the task stops running.

1. On the Message Rout eMessage Rout e page, click the T askT ask tab.

2. In the message routing task list , f ind the task that you want to delete and click the icon in the

Act ionsAct ions column.

3. In the message that appears, read the message and click OKOK.

User Guide··Console guide Alibaba Cloud Message Queue

67 > Document Version: 20220816

ReferencesReferences
Obt ain inf ormat ion about t he endpoint of a Message Queue f or Apache Rocket MQ inst anceObt ain inf ormat ion about t he endpoint of a Message Queue f or Apache Rocket MQ inst ance
and t he Message Queue f or Apache Rocket MQ APIand t he Message Queue f or Apache Rocket MQ API

When you create a dest ination cloud for message routing, configure the Message Queue f or ApacheMessage Queue f or Apache
Rocket MQ Inst ance EndpointRocket MQ Inst ance Endpoint parameter and the MQ APIMQ API parameter that is used specify the
interface of the RocketMQ service in the dest ination cloud. You can perform the following steps to
obtain the values for the parameters.

1. Log on to the Apsara Infrastructure Management Console.

i. Go to the Apsara Uni-manager Operations Console.

ii. In the top navigation bar, choose Product sProduct s > > Plat f ormsPlat f orms > > Apsara Inf rast ruct ureApsara Inf rast ruct ure
Management FrameworkManagement Framework.

2. In the left-side navigation pane, click Report sReport s.

3. On the All Report sAll Report s page, search for Registrat ion Vars of Services. In the report list that appears,
click the name of the report that you want to view.

4. On the Regist rat ion Vars of ServicesRegist rat ion Vars of Services page, click the icon next to ServiceService. Then, search for m

q.

5. Find the mq-caimq-cai service, right-click the Service Regist rat ionService Regist rat ion column. Then, select Show MoreShow More
from the shortcut menu.

On the Det ailsDet ails page, the value that is displayed for the client .onsAddrclient .onsAddr parameter is the value of
the Message Queue f or Apache Rocket MQ Inst ance EndpointMessage Queue f or Apache Rocket MQ Inst ance Endpoint parameter.

6. Find the mq-consolemq-console service, right-click the Service Regist rat ionService Regist rat ion column. Then, select ShowShow
MoreMore from the shortcut menu.

On the Det ailsDet ails page, the value that is displayed for the console.domainconsole.domain parameter is the value
of {console.domain} in the MQ APIMQ API parameter.

Alibaba Cloud Message Queue User Guide··Console guide

> Document Version: 20220816 68

This topic lists the protocols supported by Message Queue for Apache RocketMQ and the related SDKs
for mult iple programming languages.

SDKs for different protocols and programming languagesSDKs for different protocols and programming languages
The following table lists the protocols and SDKs for mult iple programming languages that are
supported by Message Queue for Apache RocketMQ.

Protocol Programming language SDK download link Sample code

TCP

Java mq-tcp-java-sdk mq-tcp-samples-java

C/C++ mq-tcp-csharp-sdk mq-tcp-samples-csharp

.NET mq-tcp-.net-sdk mq-tcp-samples-.net

HTTP

Java mq-http-java-sdk mq-http-samples-java

PHP mq-http-php-sdk mq-http-samples-php

Go mq-http-go-sdk mq-http-samples-go

Python mq-http-python-sdk
mq-http-samples-
python

Node.js mq-http-nodejs-sdk
mq-http-samples-
node.js

C# mq-http-cpp-sdk mq-http-samples-cpp

C++ mq-http-csharp-sdk
mq-http-samples-
csharp

Usage notesUsage notes
Message Queue for Apache RocketMQ provides TCP client SDKs and HTTP client SDKs for you to send
and consume messages. You cannot specify the same group ID in the code of a TCP client SDK and
the code of an HTTP client SDK at the same t ime. If you want to use a TCP client SDK to send and
consume messages, you must create a group for the TCP protocol. You cannot specify a group that
is created for the HTTP protocol in the code of the TCP client SDK.

A Message Queue for Apache RocketMQ instance provides a TCP endpoint and an HTTP endpoint. An
endpoint for a specific protocol must be used together with an SDK for the same protocol. For
example, if you want to use a TCP client SDK to send and consume messages, you must obtain the
TCP endpoint of your Message Queue for Apache RocketMQ instance. You cannot use the HTTP
endpoint to connect to the instance.

6.SDK user guide6.SDK user guide
6.1. Overview6.1. Overview

6.2. SDK user guide6.2. SDK user guide

User Guide··SDK user guide Alibaba Cloud Message Queue

69 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/
https://code.aliyun.com/aliware_rocketmq/mq-http-java-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/java/src/main/java
https://code.aliyun.com/aliware_rocketmq/mq-http-php-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/php
https://code.aliyun.com/aliware_rocketmq/mq-http-go-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/go
https://code.aliyun.com/aliware_rocketmq/mq-http-python-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/python
https://code.aliyun.com/aliware_rocketmq/mq-http-nodejs-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/nodejs
https://code.aliyun.com/aliware_rocketmq/mq-http-cpp-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/csharp
https://code.aliyun.com/aliware_rocketmq/mq-http-csharp-sdk
https://code.aliyun.com/aliware_rocketmq/mq-http-samples/tree/master/cpp

This topic helps engineers who are new to Message Queue for Apache RocketMQ to build a Message
Queue for Apache RocketMQ test project. The demo project is a Java project. It contains test code for
normal messages, transactional messages, and scheduled messages. The demo project also contains
Spring configurations.

This topic describes how to prepare an environment for a Message Queue for Apache RocketMQ demo
project.

ProcedureProcedure
Install an integrated development environment (IDE).

You can use IntelliJ IDEA or Eclipse as the IDE. IntelliJ IDEA is used in this example.

Download IntelliJ IDEA Ult imate Edit ion from IntelliJ IDEA. Then, follow the installat ion instruct ions to
install IntelliJ IDEA Ult imate Edit ion.

Download a demo project.

Download a demo project from GitHub to your on-premises machine.

Download a demo project

After the downloaded package is decompressed, a folder named mq-demo-master
appears on your on-premises machine.

>

This topic describes how to configure a demo project.

PrerequisitesPrerequisites

6.2.1. Demo projects6.2.1. Demo projects
6.2.1.1. Overview6.2.1.1. Overview

6.2.1.2. Prepare the environment6.2.1.2. Prepare the environment

6.2.1.3. Configure a demo project6.2.1.3. Configure a demo project

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 70

https://www.jetbrains.com/idea/
https://github.com/AliwareMQ/mq-demo

You have prepared the environment for the demo project.

You have installed the JDK on your on-premises machine. For more information, visit Java SE
Downloads. We recommend that you use JDK 8.

ProcedureProcedure
1. Import the demo project to IntelliJ IDEA.

i. On the IntelliJ IDEA page, click Import ProjectImport Project and select the mq-demo-master folder.

Select the mq-demo-master folder

ii. Select Import project from external model.

Select Import project from external model

iii. Click NextNext until the project is imported. The JAR dependency needs to be loaded to the demo
project. Therefore, it takes two to three minutes to import the project.

2. Creates resources.

Create the required resources, such as topics and group IDs in the Message Queue for Apache
RocketMQ console and obtain the AccessKey pair in the Apsara Uni-manager Management Console
for identity authentication.

i. For more information about how to create topics and group IDs, see Create resources.

ii. Perform the following operations to obtain the AccessKey ID and AccessKey secret:

In the Apsara Uni-manager Management Console, move your pointer over the profile picture
and select User Inf ormat ionUser Inf ormat ion. On the page that appears, view the AccessKey ID and AccessKey
secret in the Apsara St ack AccessKey PairApsara St ack AccessKey Pair sect ion.

3. Configure the demo.

Configure the MqConfig class and the common.xml file.

User Guide··SDK user guide Alibaba Cloud Message Queue

71 > Document Version: 20220816

https://www.oracle.com/java/technologies/javase-downloads.html

i. The following sample code provides an example on how to configure the MqConfig class:

public static final String TOPIC = "The topic that you created in the Message Queue
for Apache RocketMQ console."
public static final String GROUP_ID = "The group ID that you created in the Message
Queue for Apache RocketMQ console."
public static final String ACCESS_KEY = "The AccessKey ID that you created in the A
psara Uni-manager Management Console for identity authentication."
public static final String SECRET_KEY = "The AccessKey secret that you created in t
he Apsara Uni-manager Management Console for identity authentication."
public static final String NAMESRV_ADDR = "The TCP endpoint of your Message Queue f
or Apache RocketMQ instance. You can obtain the endpoint in the Message Queue for A
pache RocketMQ console."

Not e Not e You must use the AccessKey ID and AccessKey secret of the account that you
use to create the topic.

ii. Configure the common.xml file.

 <props>
 <prop key="AccessKey">XXX</prop> <!-- Modify the values based on your resources --
>
 <prop key="SecretKey">XXX</prop>
 <prop key="GROUP_ID">XXX</prop>
 <prop key="Topic">XXX</prop>
 <prop key="NAMESRV_ADDR">XXX</prop>
</props>

After you configure the demo project, you can start the corresponding classes to send and receive
messages of different types.

Call the main method to send and receive messagesCall the main method to send and receive messages
1. Run the SimpleMQProducer class to send messages.

2. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Message QueryMessage Query. On the Message Query page, click the By T opicBy T opic tab. On the By Topic tab, select
the topic of the message that you sent. The query result shows that the message is sent to the
topic.

3. Run the SimpleMQConsumer class to receive messages. A log is printed. The log indicates that the
message is received. The class needs to be init ialized. This takes several seconds. Init ializat ion
seldom occurs in the production environment.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Instance Details. On the Instance Details page, select your instance. In the left-side navigation pane,
click GroupsGroups. On the Groups page, find the group ID that you want to view and click Consumer St at usConsumer St at us
in the Act ions column. In the Consumer St at usConsumer St at us panel, the information shows that the started
consumers are online and the subscript ions of the consumers are consistent.

Use Spring to send and receive messagesUse Spring to send and receive messages

6.2.1.4. Run the demo project6.2.1.4. Run the demo project

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 72

1. Run the ProducerClient class to send messages.

2. Run the ConsumerClient class to receive messages.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Instance Details. On the Instance Details page, select your instance. In the left-side navigation pane,
click GroupsGroups. On the Groups page, find the group ID that you want to view and click Consumer St at usConsumer St at us
in the Act ions column. In the Consumer St at usConsumer St at us panel, the information shows that the started
consumers are online and the subscript ions of the consumers are consistent.

Send transactional messagesSend transactional messages
Run the SimpleTransactionProducer class to send messages.

Not eNot e

The LocalTransactionCheckerImpl class is used to check the status of local transactions. This class is
used to check whether a local transaction is committed. For more information, see Send and
subscribe to transactional messages.

Send and receive ordered messagesSend and receive ordered messages
Run the SimpleOrderConsumer class to receive messages.

Run the SimpleOrderProducer class to send messages.

Not e Not e Ordered messages are sent and consumed in first-in-first-out (FIFO) order. For more
information, see Send and receive ordered messages.

Send scheduled or delayed messagesSend scheduled or delayed messages
Run the MQTimerProducer class to send messages. These messages are delivered after a delay of 3
seconds.

Not e Not e You can specify an exact delay, which is up to 40 days. For more information, see Send
and receive scheduled messages.

This topic describes the parameters that are configured for Message Queue for Apache RocketMQ
clients.

Client parametersClient parameters

Parameter Client Default value
Recommende
d value

Description Client version

AccessKey
Producer or
consumer

Configured by
the user

Configured by
the user

The AccessKey
ID that is used
to
authenticate
the user.

>=1.2.7.Final

6.2.2. Client parameters6.2.2. Client parameters

User Guide··SDK user guide Alibaba Cloud Message Queue

73 > Document Version: 20220816

SecretKey
Producer or
consumer

Configured by
the user

Configured by
the user

The AccessKey
secret that is
used to
authenticate
the user.

>=1.2.7.Final

NAMESRV_ADD
R

Producer or
consumer

Generated
after
deployment

Generated
after
deployment

The endpoint
that is used to
connect to
Message
Queue for
Apache
RocketMQ.

>=1.2.7.Final

MsgTraceSwit
ch

Producer or
consumer

true true

Specifies
whether to
enable the
message
tracing feature
of Message
Queue for
Apache
RocketMQ.

>=1.7.0.Final

GROUP_ID
Producer or
consumer

Created in the
console

Created in the
console

The ID of the
group to
which the
producer or
consumer
client belongs.
Group IDs are
compatible
with producer
IDs (PIDs) or
consumer IDs
(CIDs) in earlier
versions.

>=1.7.8.Final

Parameter Client Default value
Recommende
d value

Description Client version

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 74

ProducerId Producer
Created in the
console

Created in the
console

The ID of the
group to
which the
producer
client belongs.
This
parameter
takes effect
only on
transactional
messages. If a
producer
client fails, the
Message
Queue for
Apache
RocketMQ
broker init iates
requests to
check the
status of
transactional
messages on
other
producer
clients in the
same group.

>=1.2.7.Final

SendMsgTime
outMillis

Producer 5000 Default

The timeout
period for
sending a
message. If
the Message
Queue for
Apache
RocketMQ
broker does
not return an
acknowledgm
ent to the
producer
client within
the specified
period of
time, the
producer
client
determines
that the
message
failed to send.

>=1.2.7.Final

Parameter Client Default value
Recommende
d value

Description Client version

User Guide··SDK user guide Alibaba Cloud Message Queue

75 > Document Version: 20220816

ConsumerId Consumer
Created in the
console

Created in the
console

The ID of the
group to
which the
consumer
client belongs.

>=1.2.7.Final

MessageModel Consumer CLUSTERING Default

The
consumption
mode. Valid
values:
CLUSTERING
and
BROADCASTIN
G. CLUSTERING
specifies that
each
subscribed
message is
received only
by one
consumer
client.
BROADCASTIN
G specifies
that each
subscribed
message is
received by all
consumer
clients.

>=1.2.7.Final

ConsumeThrea
dNums

Consumer
Dynamically
adjusted from
20 to 64

Adjusted
based on
business
requirements

The number of
consumer
threads. In
most cases,
this parameter
is set to a
larger value if
a longer t ime
is required to
consume a
single
message.

>=1.2.7.Final

Parameter Client Default value
Recommende
d value

Description Client version

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 76

MaxReconsum
eTimes

Consumer 16 Default

The maximum
number of
delivery retries
that can be
performed
when a
message fails
to be
consumed.

>=1.2.7.Final

ConsumeTime
out

Consumer 15 Default

The timeout
period for
consumption
of each
message. If
the t ime to
consume a
message
exceeds the
specified
timeout
period, the
message fails
to be
consumed and
is redelivered
after a retry
interval.
Configure an
appropriate
value for each
type of
application.
Unit: minute.

>=1.2.7.Final

Parameter Client Default value
Recommende
d value

Description Client version

User Guide··SDK user guide Alibaba Cloud Message Queue

77 > Document Version: 20220816

PostSubscripti
onWhenPull

Consumer false

Adjusted
based on the
consumption
mode

Specifies
whether to
carry the
latest
subscription
together with
each request.
If
MessageModel
is set to
BROADCASTIN
G, this
parameter
must be set to
true to
prevent
messages
from failing to
be received
due to
subscription
inconsistency.
If
MessageModel
is set to
CLUSTERING,
this parameter
must be set to
false because
subscription
consistency is
required for
clustering
consumption.

>=1.2.7.Final

Parameter Client Default value
Recommende
d value

Description Client version

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 78

ConsumeMess
ageBatchMaxSi
ze

Consumer 1

Adjusted
based on
business
requirements

The maximum
number of
messages that
can be
consumed in
each batch.
The actual
number of
messages that
are consumed
in a batch can
be smaller
than the value
of this
parameter.
The value
must be an
integer from 1
to 32. The
default value
is 1.

>=1.6.0.Final

MaxCachedMe
ssageAmount

Consumer 5000

Adjusted
based on the
memory of
consumer
clients

The maximum
number of
messages that
a consumer
client can
cache. A large
value can
cause an out
of memory
(OOM) issue on
the client. The
value must be
an integer
from 100 to
50000. The
default value
is 5000.

>=1.7.0.Final

Parameter Client Default value
Recommende
d value

Description Client version

User Guide··SDK user guide Alibaba Cloud Message Queue

79 > Document Version: 20220816

MaxCachedMe
ssageSizeInMiB

Consumer 512

Adjusted
based on the
memory of
consumer
clients

The maximum
size of
messages that
a consumer
client can
cache. A large
value can
cause an out
of memory
(OOM) issue on
the client. The
value ranges
from 16 to
2048. The
default value
is 512. Unit:
MB.

>=1.7.0.Final

Parameter Client Default value
Recommende
d value

Description Client version

This topic describes error codes related to sending and subscribing to messages and their references.

Error codes related to sending and subscribing to messagesError codes related to sending and subscribing to messages

HTTP status code Status flag Description
Cause and
recommended
solution

Broker version

13 MESSAGE_ILLEGAL

This error is
returned when the
message
verification fails.

Check whether the
message body is
empty.

Check whether the
length of the
message property
exceeds 32,767
bytes.

Check whether the
total size of the
message exceeds
4 MB.

>=4.0.1

6.2.3. Client error codes6.2.3. Client error codes

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 80

17 TOPIC_NOT_EXIST

This error is
returned when the
specified message
topic does not
exist.

1. Create a topic in
the Message
Queue for Apache
RocketMQ
console.

2.Restart your
application.

For more
information, see
the "Nonexistent
topic" section in
the Nonexistent
resources topic.

>=4.0.1

26
SUBSCRIPT ION_GR
OUP_NOT_EXIST

This error is
returned if the
specified group ID
does not exist.

1.Create a group
ID in the Message
Queue for Apache
RocketMQ
console.

2.Restart your
application.

For more
information, see
the "Nonexistent
group ID" section
in the Nonexistent
resources topic.

>=4.0.1

24
SUBSCRIPT ION_NO
T_EXIST

This error is
returned when the
subscription does
not exist.

1.Check whether
the consumers
identified by the
group ID have
been started.

2.Check whether
subscription
inconsistency
occurs between
consumers
identified by the
group ID.

>=4.0.1

HTTP status code Status flag Description
Cause and
recommended
solution

Broker version

User Guide··SDK user guide Alibaba Cloud Message Queue

81 > Document Version: 20220816

23
SUBSCRIPT ION_PAR
SE_FAILED

This error is
returned when the
system failed to
parse the
subscription
expression.

Check the
corresponding
topic subscription
expression and
tag.

>=4.0.1

25
SUBSCRIPT ION_NO
T_LATEST

This error is
returned if
subscription
inconsistency
occurs.

If this status
continues for a
moment, it is
automatically
restored.

For more
information, see
Subscription
inconsistency.

>=4.0.1

14
SERVICE_NOT_AVAI
LABLE

This error is
returned when
messages cannot
be sent.

The requested
Message Queue
for Apache
RocketMQ broker
is discontinued,
the broker is
abnormal and
does not support
write operations,
or the broker is a
standby broker.

For more
information, see
the "The message
failed to be sent."
section in the
Usage-related
exceptions topic.

>=4.0.1

HTTP status code Status flag Description
Cause and
recommended
solution

Broker version

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 82

16
NO_PERMISSION
(message
sending)

This error is
returned when the
request is invalid.

The requested
Message Queue
for Apache
RocketMQ broker
disallows write
operations.

The topic on the
requested
Message Queue
for Apache
RocketMQ broker
disallows write
operations.

The requested
Message Queue
for Apache
RocketMQ broker
disallows
transactional
messages.

>=4.0.1

16
NO_PERMISSION
(message
subscription)

This error is
returned when the
request is invalid.

The requested
Message Queue
for Apache
RocketMQ broker
disallows read
operations.

The current
consumer group
does not have the
read permissions.

The pulled topic
disallows read
operations.

The current
consumer group
disallows
message
broadcasting.

>=4.0.1

HTTP status code Status flag Description
Cause and
recommended
solution

Broker version

User Guide··SDK user guide Alibaba Cloud Message Queue

83 > Document Version: 20220816

1 SYSTEM_ERROR

This error is
returned when a
system exception
occurs.

This is a
temporary
timeout that
results from the
restart of the
Message Queue
for Apache
RocketMQ broker
or heavy load on
the broker.

For more
information, see
the "The message
failed to be sent."
section in the
Usage-related
exceptions topic.

>=4.0.1

1
SYSTEM_ERROR
(permission
verification)

This error is
returned when the
permission
verification fails.

Check whether the
user is granted
the permissions to
publish messages
to and subscribe
messages from
the topic.

>=4.0.1

2 SYSTEM_BUSY

This error is
returned when the
system is busy
and the request is
denied.

This is a
temporary
timeout that
results from the
restart of the
Message Queue
for Apache
RocketMQ broker
or heavy load on
the broker.

For more
information, see
the "The message
failed to be sent."
section in the
Usage-related
exceptions topic.

>=4.0.1

HTTP status code Status flag Description
Cause and
recommended
solution

Broker version

6.2.4. SDK for Java6.2.4. SDK for Java

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 84

Message Queue for Apache RocketMQ provides SDK for Java for you to send and subscribe to messages.
This topic describes the parameters of Java methods and how to call these methods.

Common parametersCommon parameters

Parameter Description

NAMESRV_ADDR
The TCP endpoint. You can obtain the endpoint on the Inst anceInst ance
Det ailsDet ails page in the Message Queue for Apache RocketMQ
console.

AccessKey
The AccessKey ID that you created in the Apsara Uni-manager
Management Console for identity authentication.

SecretKey
The AccessKey secret that you created in the Apsara Uni-manager
Management Console for identity authentication.

OnsChannel The source of the user. Default value: ALIYUN.

Parameters for sending messagesParameters for sending messages

Parameter Description

SendMsgTimeoutMillis
The timeout period for sending messages. Unit:
milliseconds. Default value: 3000.

CheckImmunityT imeInSeconds (for transactional
messages)

The shortest t ime interval before the first back-check
for the status of local transaction. Unit: seconds.

shardingKey (for ordered messages)
The partit ion key that is used to determine the
partit ions to which ordered messages are distributed.

Methods and parameters for using SDK for Java to send messages

Parameters for subscribing to messagesParameters for subscribing to messages

6.2.4.1. Usage notes6.2.4.1. Usage notes

User Guide··SDK user guide Alibaba Cloud Message Queue

85 > Document Version: 20220816

Parameter Description

GROUP_ID
The group ID that you created in the Message Queue for Apache
RocketMQ console.

MessageModel
The mode in which a consumer instance consumes messages.
Valid values: CLUSTERING and BROADCASTING. Default value:
CLUSTERING.

ConsumeThreadNums
The number of consumer threads for a consumer instance.
Default value: 64.

MaxReconsumeTimes
The maximum number of delivery retries for a message that
fails to be consumed. Default value: 16.

ConsumeTimeout

The maximum timeout period for consuming a message. If a
message fails to be consumed within this period, the
consumption fails and the message can be redelivered. A
proper value must be set for each type of business. Unit:
minutes. Default value: 15.

suspendTimeMillis (for ordered
messages)

The interval between delivery retries for an ordered message
that fails to be consumed.

maxCachedMessageAmount
The maximum number of messages cached on the on-premises
client. Default value: 1000.

maxCachedMessageSizeInMiB
The maximum size of messages cached on the on-premises
client. Valid values: 16 MB to 2 GB. Default value: 512 MB.

Methods and parameters for using SDK for Java to subscribe to messages

Sample code for sending and subscribing to messagesSample code for sending and subscribing to messages
Send and subscribe to normal messages

Send and receive ordered messages

Send and receive scheduled messages

Send and receive delayed messages

Send and subscribe to transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 86

Before you run the Java code provided in this topic, prepare the environment based on the following
instruct ions:

ProcedureProcedure
1. Introduce the dependency by using one of the following methods:

Introduce the dependency by using Maven:

<dependency>
 <groupId>com.aliyun.openservices</groupId>
 <artifactId>ons-client</artifactId>
 <version>1.8.4.Final</version>
</dependency>

Download the JAR dependency.

2. Go to the console to create the topics and group IDs involved in the code.

You can customize message tags in your application. For more information about how to create a
message tag, see Create resources.

3. For applications that use the TCP client SDK to access Message Queue for Apache RocketMQ, make
sure that the applications are deployed on Elast ic Compute Service (ECS) instances in the same
region.

Client logs record exceptions that occur when the Message Queue for Apache RocketMQ clients are
running. Client logs help you locate and handle these exceptions in a quick manner. This topic describes
how to print the logs of a Message Queue for Apache RocketMQ client and provides the default and
custom configurations.

Print client logsPrint client logs
TCP client SDK for Java of Message Queue for Apache RocketMQ is programmed by using the Simple
Logging Facade for Java (SLF4J).

Message Queue f or Apache Rocket MQ SDK f or Java 1.7.8.Final or lat erMessage Queue f or Apache Rocket MQ SDK f or Java 1.7.8.Final or lat er

Message Queue for Apache RocketMQ SDK for Java 1.7.8.Final has a built-in framework for logging.
You do not need to add a dependency on the corresponding logging framework for an application
on the client before you print the logs of a Message Queue for Apache RocketMQ client.

For information about the default logging configuration for a Message Queue for Apache RocketMQ
client and how to modify this configuration, see Configure client logs.

Message Queue f or Apache Rocket MQ SDK f or Java versions earlier t han 1.7.8.FinalMessage Queue f or Apache Rocket MQ SDK f or Java versions earlier t han 1.7.8.Final

Message Queue for Apache RocketMQ SDK for Java versions earlier than 1.7.8.Final support only Log4j
and Logback. These versions do not support Log4j2. For these versions, you must add a dependency
on the corresponding logging framework to the pom.xml file or the .lib file before you print the logs
of a Message Queue for Apache RocketMQ client.

The following sample code provides examples on how to add dependencies on Log4j and Logback:

6.2.4.2. Prepare the environment6.2.4.2. Prepare the environment

6.2.4.3. Configure logging6.2.4.3. Configure logging

User Guide··SDK user guide Alibaba Cloud Message Queue

87 > Document Version: 20220816

https://repo1.maven.org/maven2/com/aliyun/openservices/ons-client/1.8.4.Final/ons-client-1.8.4.Final.jar?spm=a2c4g.11186623.2.17.32c5115dXaU1ip&file=ons-client-1.8.4.Final.jar

Met hod 1: Use Log4j as t he logging f rameworkMet hod 1: Use Log4j as t he logging f ramework

<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>jcl-over-slf4j</artifactId>
 <version>1.7.7</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-log4j12</artifactId>
 <version>1.7.7</version>
</dependency>
<dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.17</version>
</dependency>

Met hod 2: Use Logback as t he logging f rameworkMet hod 2: Use Logback as t he logging f ramework

<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-core</artifactId>
 <version>1.1.2</version>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
<version>1.1.2</version>
</dependency>

Not eNot e

If an application uses both Log4j and Logback as logging frameworks, client logs cannot be
properly printed due to logging conflicts. To properly print the logs of a Message Queue for
Apache RocketMQ client, make sure that you add only one dependency on one logging
framework for the application. We recommend that you run the mvn cleanmvn clean
dependency:t ree | grep logdependency:t ree | grep log command to check whether your application uses only one of
the logging frameworks.

Configure logging for a Message Queue for Apache RocketMQ clientConfigure logging for a Message Queue for Apache RocketMQ client
You can customize the following sett ings for a Message Queue for Apache RocketMQ client: t he pat ht he pat h
f or st oring log f iles f or st oring log f iles , log levellog level, and maximum number of hist orical log f iles ret ainedmaximum number of hist orical log f iles ret ained. To
facilitate log transmission and viewing, the maximum size of a single log f ilemaximum size of a single log f ile retains the default
value of 64 MB. This value cannot be changed.

The following table describes these parameters that you can configure.

Parameter Description

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 88

The path to store log files
Make sure that the application has the write
permissions for this path. Otherwise, logs cannot be
printed.

The maximum number of historical log files that are
retained

You can set this parameter to a value between 1
and 100. If you enter a value that is not within this
range or a value that is in an invalid format, the
system retains 10 historical log files by default.

The log level

You can set this parameter to one of the following
values: ERROR, WARN, INFO, and DEBUG. If this
parameter is set to an invalid value, the system uses
the default value INFO.

Parameter Description

Def ault conf igurat ionDef ault conf igurat ion

After you start a Message Queue for Apache RocketMQ client, the client generates log files based on
the following default configuration:

The path to store log files: /{user.home}/logs/ons.log , where {user.home} is the root
directory of the account that runs the current Java process.

The maximum number of historical log files that are retained: 10

Log level: INFO

The maximum size of a single log file: 64 MB

Cust om conf igurat ionCust om conf igurat ion

Not eNot e

To customize the logging configuration of a Message Queue for Apache RocketMQ client,
update the SDK for Java to V1.2.5 or later.

To customize the logging configuration of a Message Queue for Apache RocketMQ client in the SDK
for Java, configure the following system parameters:

ons.client.logRoot: the path to store log files

ons.client.logFileMaxIndex: the maximum number of historical log files that are retained

ons.client.logLevel: the log level

ExamplesExamples

Add the following system parameters to the startup script or integrated development environment
(IDE) virtual machine (VM) options:

LinuxLinux

-Dons.client.logRoot=/home/admin/logs -Dons.client.logLevel=WARN -Dons.client.logFileMa
xIndex=20

User Guide··SDK user guide Alibaba Cloud Message Queue

89 > Document Version: 20220816

WindowsWindows

-Dons.client.logRoot=D:\logs -Dons.client.logLevel=WARN -Dons.client.logFileMaxIndex=20

/home/admin/ and D:\ are only examples. Replace them with your system directories.

This topic describes how to send and subscribe to messages by using Message Queue for Apache
RocketMQ in the Spring framework. This topic includes three parts: the integration of a normal message
producer and Spring, the integration of a transactional message producer and Spring, and the
integration of a message consumer and Spring.

The subscript ions of all consumer instances identified by the same group ID must be consistent. For
more information, see Subscript ion consistency.

The configuration parameters supported in the Spring framework are the same as those used in TCP
client SDK for Java. For more information, see How to use the Java SDK.

This topic describes how to integrate a producer with Spring.

ProcedureProcedure
1. Define information such as the producer bean in producer.xml.

<?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">
 <bean id="producer" class="com.aliyun.openservices.ons.api.bean.ProducerBean" init
-method="start" destroy-method="shutdown">
 <!-- The Spring framework supports all the configuration items that SDK for Java s
upports. -->
 <property name="properties" > <! -- Configurations of the producer -->
 <props>
 <prop key="AccessKey">XXX</prop>
 <prop key="SecretKey">XXX</prop>
 <!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
 <prop key="NAMESRV_ADDR">XXX</prop>
 -->
 </props>
 </property>
 </bean>
 </beans>

2. Produce messages by using the producer that is integrated with Spring.

6.2.4.4. Spring integration6.2.4.4. Spring integration

6.2.4.4.1. Overview6.2.4.4.1. Overview

6.2.4.4.2. Integrate a producer with Spring6.2.4.4.2. Integrate a producer with Spring

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 90

 package demo;
 import com.aliyun.openservices.ons.api.Message;
 import com.aliyun.openservices.ons.api.Producer;
 import com.aliyun.openservices.ons.api.SendResult;
 import com.aliyun.openservices.ons.api.exception.ONSClientException;
 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;
 public class ProduceWithSpring {
 public static void main(String[] args) {
 /**
 * The producer bean is configured in producer.xml. You can call the Applicati
onContext class to obtain the bean or inject the bean to other classes, such as a speci
fic controller.
 */
 ApplicationContext context = new ClassPathXmlApplicationContext("producer.xml"
);
 Producer producer = (Producer) context.getBean("producer");
 // Cyclically send messages.
 for (int i = 0; i < 100; i++) {
 Message msg = new Message(//
 // The topic of the message.
 "TopicTestMQ",
 // The message tag, which is similar to a Gmail tag. The message t
ag is used to sort messages and helps the consumer filter messages on the Message Queue
for Apache RocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format. Message Queue for Apache
RocketMQ does not process the message body.
 // The producer and consumer must agree on the serialization and d
eserialization methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of t
he message and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue
for Apache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not set this par
ameter.
 msg.setKey("ORDERID_100");
 // Send the message. If no error occurs, the message is sent.
 try {
 SendResult sendResult = producer.send(msg);
 assert sendResult != null;
 System.out.println("send success: " + sendResult.getMessageId());
 }catch (ONSClientException e) {
 System.out.println("failed to send the message");
 }
 }
 }
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

91 > Document Version: 20220816

This topic describes how to integrate a producer that produces transactional messages with Spring.

ContextContext
For more information about transactional messages, see Send and subscribe to transactional messages.

ProcedureProcedure
1. Implement the LocalTransactionChecker class. A producer can have only one

LocalTransactionChecker class.

package demo;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionChecker;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
public class DemoLocalTransactionChecker implements LocalTransactionChecker {
 public TransactionStatus check(Message msg) {
 System.out.println("Start to back-check the status of local transaction.");
 return TransactionStatus.CommitTransaction; // Returns different values for Tra
nsactionStatus based on the status check result of the local transaction.
 }
}

2. Define information such as the producer bean in transactionProducer.xml.

6.2.4.4.3. Integrate a transactional message producer6.2.4.4.3. Integrate a transactional message producer

with Springwith Spring

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 92

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">
 <bean id="localTransactionChecker" class="demo.DemoLocalTransactionChecker"></bean
>
 <bean id="transactionProducer" class="com.aliyun.openservices.ons.api.bean.Transac
tionProducerBean" init-method="start" destroy-method="shutdown">
 <property name="properties" > <! -- Configurations of the transactional messag
e producer -->
 <props>
 <prop key="AccessKey">AKDEMO</prop>
 <prop key="SecretKey">SKDEMO</prop>
 <prop key="GROUP_ID">GID_DEMO</prop>
 <!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
 <prop key="NAMESRV_ADDR">XXX</prop>
 -->
 </props>
 </property>
 <property name="localTransactionChecker" ref="localTransactionChecker"></prope
rty>
 </bean>
 </beans>

3. Produce transactional messages by using the producer that is integrated with Spring.

User Guide··SDK user guide Alibaba Cloud Message Queue

93 > Document Version: 20220816

 package demo;
 import com.aliyun.openservices.ons.api.Message;
 import com.aliyun.openservices.ons.api.SendResult;
 import com.aliyun.openservices.ons.api.transaction.LocalTransactionExecuter;
 import com.aliyun.openservices.ons.api.transaction.TransactionProducer;
 import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
 import org.springframework.context.ApplicationContext;
 import org.springframework.context.support.ClassPathXmlApplicationContext;
 public class ProduceTransMsgWithSpring {
 public static void main(String[] args) {
 /**
 * The bean of the transactional message producer is configured in transaction
Producer.xml. You can call the ApplicationContext class to obtain the bean or inject th
e bean to other classes, such as a specific controller.
 * Send transactional messages.
 */
 ApplicationContext context = new ClassPathXmlApplicationContext("transactionPr
oducer.xml");
 TransactionProducer transactionProducer = (TransactionProducer) context.getBea
n("transactionProducer");
 Message msg = new Message("XXX", "TagA", "Hello MQ transaction===".getBytes())
;
 SendResult sendResult = transactionProducer.send(msg, new LocalTransactionExec
uter() {
 @Override
 public TransactionStatus execute(Message msg, Object arg) {
 System.out.println("A local transaction is executed.");
 return TransactionStatus.CommitTransaction; // Returns different value
s for TransactionStatus based on the execution result of the local transaction.
 }
 }, null);
 }
 }

This topic describes how to integrate a consumer with Spring.

ProcedureProcedure
1. Create a message listener. The following sample code provides an example:

6.2.4.4.4. Integrate a consumer with Spring6.2.4.4.4. Integrate a consumer with Spring

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 94

package demo;
import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
public class DemoMessageListener implements MessageListener {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message.getMsgID());
 try {
 //do something..
 return Action.CommitMessage;
 }catch (Exception e) {
 // The message failed to be consumed.
 return Action.ReconsumeLater;
 }
 }
}

2. Define information such as the consumer bean in consumer.xml.

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.spri
ngframework.org/schema/beans/spring-beans.xsd">
 <bean id="msgListener" class="demo.DemoMessageListener"></bean> <!--Configurations
of the message listener-->
 <!-- When multiple consumers identified by the same group ID subscribe to the same top
ic, you can create multiple consumer beans. -->
 <bean id="consumer" class="com.aliyun.openservices.ons.api.bean.ConsumerBean" init
-method="start" destroy-method="shutdown">
 <property name="properties" > <!-- Configurations of the consumer -->
 <props>
 <prop key="GROUP_ID">GID_DEMO</prop> <!-- Replace the value with the g
roup ID that you created in the console. -->
 <prop key="AccessKey">AKDEMO</prop>
 <prop key="SecretKey">SKDEMO</prop>
 <!-- The ons-client version is 1.8.4.Final, which must be configured.
You can obtain the TCP endpoint on the Instance Details page in the Message Queue for A
pache RocketMQ console.
 <prop key="NAMESRV_ADDR">XXX</prop>
 -->
 <!-- Set the number of consumer threads to 50.
 <prop key="ConsumeThreadNums">50</prop>
 -->
 </props>
 </property>
 <property name="subscriptionTable">
 <map>
 <entry value-ref="msgListener">
 <key>
 <bean class="com.aliyun.openservices.ons.api.bean.Subscription
">
 <property name="topic" value="TopicTestMQ"/>
 <property name="expression" value="*"/><!--The expression

User Guide··SDK user guide Alibaba Cloud Message Queue

95 > Document Version: 20220816

 <property name="expression" value="*"/><!--The expression
is the tag. You can set the value to a specific tag or *. For example, a specific tag c
an be taga||tagb||tagc. * indicates that all tags are subscribed to. Wildcards are not
supported. -->
 </bean>
 </key>
 </entry>
 <!-- Add entry nodes to subscribe to more tags. -->
 <entry value-ref="msgListener">
 <key>
 <bean class="com.aliyun.openservices.ons.api.bean.Subscription
">
 <property name="topic" value="TopicTestMQ-Other"/> <!--Sub
scribe to another topic. -->
 <property name="expression" value="taga||tagb"/> <!-- Subs
cribe to multiple tags. -->
 </bean>
 </key>
 </entry>
 </map>
 </property>
 </bean>
 </beans>

3. Run the consumer that is integrated with Spring.

package demo;
import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;
public class ConsumeWithSpring {
 public static void main(String[] args) {
 /**
 * The consumer bean is configured in consumer.xml. You can call the Applicatio
nContext class to obtain the bean or inject the bean to other classes, such as a specif
ic controller.
 */
 ApplicationContext context = new ClassPathXmlApplicationContext("consumer.xml")
;
 System.out.println("Consumer Started");
 }
}

In Message Queue for Apache RocketMQ, messages can be sent in reliable synchronous mode, reliable
asynchronous mode, and one-way mode. This topic describes the principles, scenarios, and differences
of these modes, and provides sample code for your reference.

Not e Not e Ordered messages can be sent only in reliable synchronous mode.

6.2.4.5. Three modes for sending messages6.2.4.5. Three modes for sending messages

6.2.4.5.1. Overview6.2.4.5.1. Overview

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 96

This topic describes the principle and scenarios of the reliable synchronous transmission mode.

How it worksHow it works
Synchronous transmission means that the message producer sends the next message only after it
receives a response to the previous message from the broker.

Synchronous transmission

ScenariosScenarios
This mode is applicable to various scenarios, such as important notificat ion emails, short message
service (SMS) notificat ions for registrat ion results, and SMS marketing systems.

Sample codeSample code

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ProducerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey,"XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

6.2.4.5.2. Reliable synchronous transmission6.2.4.5.2. Reliable synchronous transmission

User Guide··SDK user guide Alibaba Cloud Message Queue

97 > Document Version: 20220816

le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The timeout interval for sending a message, in milliseconds.
 properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 // Cyclically send messages.
 for (int i = 0; i < 10; i++){
 Message msg = new Message(//
 // The topic of the message.
 "TopicTestMQ",
 // The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body.
 // The producer and consumer must agree on the serialization and deserializ
ation methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the messa
ge key.
 msg.setKey("ORDERID_" + i);
 try {
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. If no error occurs, the message is
sent.
 if (sendResult != null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" +
msg.getTopic() + " msgId is: " + sendResult.getMessageId());
 }
 }
 catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fails
to be sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.
getTopic());
 e.printStackTrace();
 }
 }
 // Before you exit the application, shut down the producer object.
 // Note: You can choose not to shut down the producer object.
 producer.shutdown();

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 98

 producer.shutdown();
 }
}

This topic describes the principle and scenarios of the reliable asynchronous transmission mode.

How it worksHow it works
In reliable asynchronous transmission mode, a producer sends the next message without wait ing for a
response to the previous message from the Message Queue for Apache RocketMQ broker. This mode
uses the SendCallback method to fire a callback after a message is sent. An application sends the next
message before it receives a response to the previous message from the Message Queue for Apache
RocketMQ broker. After the SendCallback method is called, the application receives the response to the
previous message from the Message Queue for Apache RocketMQ broker and processes the response.

Asynchronous transmission

ScenariosScenarios
This mode is used for t ime-consuming processes in business scenarios that are sensit ive to the response
time. For example, after you upload a video, a callback is f ired to enable transcoding. After the video is
transcoded, a callback is f ired to push transcoding results.

Sample codeSample code

 import com.aliyun.openservices.ons.api.Message;
 import com.aliyun.openservices.ons.api.OnExceptionContext;
 import com.aliyun.openservices.ons.api.Producer;
 import com.aliyun.openservices.ons.api.SendCallback;
 import com.aliyun.openservices.ons.api.SendResult;

6.2.4.5.3. Reliable asynchronous transmission6.2.4.5.3. Reliable asynchronous transmission

User Guide··SDK user guide Alibaba Cloud Message Queue

99 > Document Version: 20220816

 import com.aliyun.openservices.ons.api.SendResult;
 import com.aliyun.openservices.ons.api.ONSFactory;
 import com.aliyun.openservices.ons.api.PropertyKeyConst;
 import java.util.Properties;
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The timeout interval for sending a message, in milliseconds.
 properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 Message msg = new Message(
 // The topic of the message.
 "TopicTestMQ",
 // The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible. // A unique key helps you query and resen
d a message in the Message Queue for Apache RocketMQ console if the message fails to be rec
eived.
 // Note: Messages can be sent and received even if you do not set this parameter.
 msg.setKey("ORDERID_100");
 // Send the message in asynchronous mode. The result is returned to the producer af
ter the producer calls the callback function.
 producer.sendAsync(msg, new SendCallback() {
 @Override
 public void onSuccess(final SendResult sendResult) {
 // The message is sent to the consumer.
 System.out.println("send message success. topic=" + sendResult.getTopic() +
", msgId=" + sendResult.getMessageId());
 }
 @Override
 public void onException(OnExceptionContext context) {
 // Specify the logic to resend or persist the message if the message fails
to be sent.
 System.out.println("send message failed. topic=" + context.getTopic() + ",

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 100

 System.out.println("send message failed. topic=" + context.getTopic() + ",
msgId=" + context.getMessageId());
 }
 });
 // The message ID can be obtained before the callback function returns the result.
 System.out.println("send message async. topic=" + msg.getTopic() + ", msgId=" + msg
.getMsgID());
 // Before you exit the application, shut down the producer object. Note: You can c
hoose not to shut down the producer object.
 producer.shutdown();
 }

This topic describes the principle and scenarios of the one-way transmission mode, and provides sample
code.

How it worksHow it works
In one-way transmission mode, a producer only sends messages and does not wait for a response from
the Message Queue for Apache RocketMQ broker. In addit ion, no callback function is triggered. In this
mode, a message can be sent within microseconds.

One-way transmission

ScenariosScenarios
This mode is applicable to scenarios where message transmission takes a short t ime and has no
demanding reliability requirements. For example, this mode can be used for log collect ion.

The following table summarizes the features and major differences among the three modes.

6.2.4.5.4. One-way transmission6.2.4.5.4. One-way transmission

User Guide··SDK user guide Alibaba Cloud Message Queue

101 > Document Version: 20220816

Transmission mode
Transactions per
second (TPS)

Response Reliability

Synchronous
transmission

High Supported No message loss

Asynchronous
transmission

High Supported No message loss

One-way transmission Highest None Possible message loss

Sample codeSample code

 import com.aliyun.openservices.ons.api.Message;
 import com.aliyun.openservices.ons.api.Producer;
 import com.aliyun.openservices.ons.api.ONSFactory;
 import com.aliyun.openservices.ons.api.PropertyKeyConst;
 import java.util.Properties;
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The timeout interval for sending a message, in milliseconds.
 properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 // Cyclically send messages.
 for (int i = 0; i < 10; i++){
 Message msg = new Message(
 // The topic of the message.
 "TopicTestMQ",
 // Message Tag,
 // The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.
 "TagA",
 // Message Body
 // The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body. The producer and consumer must agree on the seriali
zation and deserialization methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of the me

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 102

 // The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the messa
ge key.
 msg.setKey("ORDERID_" + i);
 // In one-way transmission mode, the producer does not wait for the response fr
om the Message Queue for Apache RocketMQ broker. Therefore, data loss occurs if messages th
at fail to be delivered are not redelivered. If data loss is not acceptable, we recommend t
hat you use the reliable synchronous or asynchronous transmission mode.
 producer.sendOneway(msg);
 }
 // Before you exit the application, shut down the producer object.
 // Note: You can choose not to shut down the producer object.
 producer.shutdown();
 }

This topic describes how to send messages by using mult iple threads and provides sample code.

The consumer and producer objects of Message Queue for Apache RocketMQ are thread-secure and
can be shared among threads.

You can deploy mult iple producer and consumer instances on one or more cloud servers. A producer or
consumer instance can also run mult iple threads to send or receive messages. This improves the
transactions per second (TPS) for sending or receiving messages. Do not create a producer instance or
consumer instance for every thread.

The following sample code provides an example on how to share a producer among threads:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;
public class SharedProducer {
 public static void main(String[] args) {
 // Initialize the configuration of the producer instance.
 Properties properties = new Properties();
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey,"XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The timeout interval for sending a message, in milliseconds.
 properties.setProperty(PropertyKeyConst.SendMsgTimeoutMillis, "3000");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t

6.2.4.6. Send messages by using multiple threads6.2.4.6. Send messages by using multiple threads

User Guide··SDK user guide Alibaba Cloud Message Queue

103 > Document Version: 20220816

Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 final Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 // The created producer and consumer objects are thread-secure and can be shared am
ong threads. Do not create a producer instance or consumer instance for every thread.
 // Two threads share the producer object and concurrently send messages to Message
Queue for Apache RocketMQ.
 Thread thread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 Message msg = new Message(//
 // The topic of the message.
 "TopicTestMQ",
 // The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body.
 // The producer and consumer must agree on the serialization and deseri
alization methods.
 "Hello MQ".getBytes());
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. If no error occurs, the messag
e is sent.
 if (sendResult != null) {
 System.out.println(new Date() + " Send mq message success. Topic is
:" + MqConfig.TOPIC + " msgId is: " + sendResult.getMessageId());
 }
 } catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fa
ils to be sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" +
MqConfig.TOPIC);
 e.printStackTrace();
 }
 }
 });
 thread.start();
 Thread anotherThread = new Thread(new Runnable() {
 @Override
 public void run() {
 try {
 Message msg = new Message("TopicTestMQ", "TagA", "Hello MQ".getBytes())
;
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. If no error occurs, the messag
e is sent.
 if (sendResult != null) {

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 104

 if (sendResult != null) {
 System.out.println(new Date() + " Send mq message success. Topic is
:" + MqConfig.TOPIC + " msgId is: " + sendResult.getMessageId());
 }
 } catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fa
ils to be sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" +
MqConfig.TOPIC);
 e.printStackTrace();
 }
 }
 });
 anotherThread.start();
 // If the producer instance is no longer used, shut it down to release resources.
 // producer.shutdown();
 }
}

This topic describes how to send and subscribe to ordered messages and provides sample code.

Ordered messages, also known as first-in-first-out (FIFO) messages, are a type of message provided by
Message Queue for Apache RocketMQ. Such messages are published and consumed in a strict order.
This topic provides the sample code for using TCP client SDK for Java to send and subscribe to ordered
messages. For more information, see Ordered messages.

Use SDK for Java 1.2.7 or later to send and subscribe to ordered messages.

The methods of sending and subscribing to globally ordered messages and part it ionally ordered
messages are the same. The following code provides examples on how to send and subscribe to
ordered messages:

Sample code for sending ordered messagesSample code for sending ordered messages

package com.aliyun.openservices.ons.example.order;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.order.OrderProducer;
import java.util.Properties;
public class ProducerClient {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache

6.2.4.7. Send and subscribe to ordered messages6.2.4.7. Send and subscribe to ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

105 > Document Version: 20220816

 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 OrderProducer producer = ONSFactory.createOrderProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 for (int i = 0; i < 10; i++) {
 String orderId = "biz_" + i % 10;
 Message msg = new Message(//
 // The topic of the message.
 "Order_global_topic",
 // The message tag, which is similar to a Gmail tag. The message tag is
used to sort messages and helps the consumer filter messages on the Message Queue for Apach
e RocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format. Message Queue for Apache Rock
etMQ does not process the message body. The producer and consumer must agree on the seriali
zation and deserialization methods.
 "send order global msg".getBytes()
);
 // The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the messa
ge key.
 msg.setKey(orderId);
 // The key field that is used in ordered messages to distinguish among differen
t partitions. A partition key is different from the key of a normal message.
 // This field can be set to a non-empty string for globally ordered messages.
 String shardingKey = String.valueOf(orderId);
 try {
 SendResult sendResult = producer.send(msg, shardingKey);
 // Send the message. If no error occurs, the message is sent.
 if (sendResult != null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" +
msg.getTopic() + " msgId is: " + sendResult.getMessageId());
 }
 }
 catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fails
to be sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.
getTopic());
 e.printStackTrace();
 }
 }
 // Before you exit the application, shut down the producer object.
 // Note: You can choose not to shut down the producer object.
 producer.shutdown();
 }

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 106

}

Sample code for subscribing to ordered messagesSample code for subscribing to ordered messages

package com.aliyun.openservices.ons.example.order;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.order.ConsumeOrderContext;
import com.aliyun.openservices.ons.api.order.MessageOrderListener;
import com.aliyun.openservices.ons.api.order.OrderAction;
import com.aliyun.openservices.ons.api.order.OrderConsumer;
import java.util.Properties;
public class ConsumerClient {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 // The time to wait to redeliver the ordered message when the message fails to be
consumed. Valid values: 10 to 1800. Unit: milliseconds.
 properties.put(PropertyKeyConst.SuspendTimeMillis, "100");
 // The maximum number of delivery retries when the message fails to be consumed.
 properties.put(PropertyKeyConst.MaxReconsumeTimes, "20");
 // Before you use the consumer to subscribe to a message, call the start() method o
nce to start the consumer.
 OrderConsumer consumer = ONSFactory.createOrderedConsumer(properties);
 consumer.subscribe(
 // The topic of the message.
 "Jodie_Order_Topic",
 // Subscribe to messages with specified tags in the specified topic.
 // 1. * indicates that the consumer subscribes to all messages in the speci
fied topic.
 // 2. TagA || TagB || TagC indicates that the consumer subscribes to messag
es with TagA, TagB, or TagC.
 "*",
 new MessageOrderListener() {
 /**
 * 1. OrderAction.Suspend is returned if a message fails to be consumed
or an exception occurs during message processing.

 * 2. OrderAction.Success is returned if a message is processed.
 */
 @Override

User Guide··SDK user guide Alibaba Cloud Message Queue

107 > Document Version: 20220816

 @Override
 public OrderAction consume(Message message, ConsumeOrderContext context
) {
 System.out.println(message);
 return OrderAction.Success;
 }
 });
 consumer.start();
 }
}

This topic describes the interact ion process and the back-check mechanism of transactional messages.
This topic also shows you how to send and subscribe to transactional messages, and provides sample
code.

Interaction processInteraction process
Interact ion process of transactional messages shows the interact ion process of transactional messages
in Message Queue for Apache RocketMQ.

Interact ion process of transactional messages

Send transactional messagesSend transactional messages
Perform the following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides an example:

package com.alibaba.webx.TryHsf.app1;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import com.aliyun.openservices.ons.api.transaction.LocalTransactionExecuter;
import com.aliyun.openservices.ons.api.transaction.TransactionProducer;
import com.aliyun.openservices.ons.api.transaction.TransactionStatus;
import java.util.Properties;
import java.util.concurrent.TimeUnit;
public class TransactionProducerClient {
 private final static Logger log = ClientLogger.getLog(); // Configure logging to facil
itate troubleshooting.
 public static void main(String[] args) throws InterruptedException {
 final BusinessService businessService = new BusinessService(); // Your on-premises
business.

6.2.4.8. Send and subscribe to transactional messages6.2.4.8. Send and subscribe to transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 108

business.
 Properties properties = new Properties();
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
Note: Transactional messages cannot share group IDs with other types of messages.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console
for identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Cons
ole for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apach
e RocketMQ console. In the left-side navigation pane, click Instance Details. On the In
stance Details page, select your instance. On the Instance Information tab, view the en
dpoint in the Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 TransactionProducer producer = ONSFactory.createTransactionProducer(properties,
 new LocalTransactionCheckerImpl());
 producer.start();
 Message msg = new Message("Topic", "TagA", "Hello MQ transaction===".getBytes());
 try {
 SendResult sendResult = producer.send(msg, new LocalTransactionExecuter()
{
 @Override
 public TransactionStatus execute(Message msg, Object arg) {
 // The ID of the message. Two messages may have the same message b
ody but cannot have the same ID. The current message ID cannot be queried in the consol
e.
 String msgId = msg.getMsgID();
 // Calculate the message body by using CRC32 or other algorithms,
such as MD5.
 long crc32Id = HashUtil.crc32Code(msg.getBody());
 // The message ID and CRC32 ID are used to prevent duplicate messa
ges.
 // You do not need to specify the message ID or CRC32 ID if your b
usiness itself achieves idempotence. Otherwise, specify the message ID or CRC32 ID to e
nsure idempotence.
 // To prevent duplicate messages, calculate the message body by us
ing the CRC32 or MD5 algorithm.
 Object businessServiceArgs = new Object();
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {
 boolean isCommit =
 businessService.execbusinessService(businessServiceArgs);
 if (isCommit) {
 // Commit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 log.error("Message Id:{}", msgId, e);
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

109 > Document Version: 20220816

 }
 System.out.println(msg.getMsgID());
 log.warn("Message Id:{}transactionStatus:{}", msgId, transactionSt
atus.name());
 return transactionStatus;
 }
 }, null);
 }
 catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fails
to be sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg
.getTopic());
 e.printStackTrace();
 }
 // Use the demo example to prevent the process from exiting. This is not required
in actual use.
 TimeUnit.MILLISECONDS.sleep(Integer.MAX_VALUE);
 }
}

2. Commit the status of the transactional message.

After the local transaction is executed, the Message Queue for Apache RocketMQ broker must be
notified of the transaction status of the current message no matter whether the execution is
successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

Commit the status after the local transaction is executed.

Wait until the Message Queue for Apache RocketMQ broker sends a request to check the
transaction status of the message.

A transaction can be in one of the following states:

TransactionStatus.CommitTransaction: The transaction is committed. The consumer can
consume the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producer to query the
status of the local transaction that corresponds to the message.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 110

public class LocalTransactionCheckerImpl implements LocalTransactionChecker {
 private final static Logger log = ClientLogger.getLog();
 final BusinessService businessService = new BusinessService();
 @Override
 public TransactionStatus check(Message msg) {
 // The ID of the message. Two messages may have the same message body but cannot
have the same ID. The current message is a half message. Therefore, its message ID cann
ot be queried in the console.
 String msgId = msg.getMsgID();
 // Calculate the message body by using CRC32 or other algorithms, such as MD5.
 long crc32Id = HashUtil.crc32Code(msg.getBody());
 // The message ID and CRC32 ID are used to prevent duplicate messages.
 // You do not need to specify the message ID or CRC32 ID if your business itself
achieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure idempoten
ce.
 // To prevent duplicate messages, calculate the message body by using the CRC32
or MD5 algorithm.
 // The parameter object of your business. Specify the object based on your busin
ess.
 Object businessServiceArgs = new Object();
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {
 boolean isCommit = businessService.checkbusinessService(businessServiceArgs)
;
 if (isCommit) {
 // Commit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 log.error("Message Id:{}", msgId, e);
 }
 log.warn("Message Id:{}transactionStatus:{}", msgId, transactionStatus.name());
 return transactionStatus;
 }
 }

Ut ilit y classUt ilit y class

import java.util.zip.CRC32;
public class HashUtil {
 public static long crc32Code(byte[] bytes) {
 CRC32 crc32 = new CRC32();
 crc32.update(bytes);
 return crc32.getValue();
 }
}

Back-check mechanism f or t ransact ion st at usBack-check mechanism f or t ransact ion st at us

Why must the back-check mechanism for transaction status be implemented when transactional

User Guide··SDK user guide Alibaba Cloud Message Queue

111 > Document Version: 20220816

messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache RocketMQ broker periodically requests the producer to
check and report the status of the half message.

What does the business logic do when the check method is called back?

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache RocketMQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

i. Check the status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache RocketMQ broker.

Subscribe to transactional messagesSubscribe to transactional messages
The method for subscribing to transactional messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

This topic describes how to send and subscribe to delayed messages and provides sample code.

Delayed messages are delivered to a consumer after a specified period of t ime from when they are sent
to the Message Queue for Apache RocketMQ broker. For example, the specified period of t ime can be 3
seconds. Delayed messages are used in scenarios where a t ime window between message production
and consumption is required or tasks need to be triggered after a delay. Delayed messages are used in a
similar way to delay queues.

For more information about the concepts and usage notes of delayed messages, see Scheduled
messages and delayed messages.

Send delayed messagesSend delayed messages
The following sample code provides an example on how to send delayed messages:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.util.Properties;
public class ProducerDelayTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.

6.2.4.9. Send and subscribe to delayed messages6.2.4.9. Send and subscribe to delayed messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 112

le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();
 Message msg = new Message(//
 // The topic that you created in the Message Queue for Apache RocketMQ cons
ole.
 "Topic",
 // The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.
 "tag",
 // The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for Apach
e RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the message k
ey.
 msg.setKey("ORDERID_100");
 try {
 // The specified period of time, in milliseconds. After the specified period of
time elapses, the Message Queue for Apache RocketMQ broker delivers the message to the cons
umer. For example, you can set this parameter to 3 and the Message Queue for Apache RocketM
Q broker delivers the message to the consumer after 3 seconds. The value must be later than
the current time.
 long delayTime = System.currentTimeMillis() + 3000;
 // The time when the Message Queue for Apache RocketMQ broker starts to deliver
the message.
 msg.setStartDeliverTime(delayTime);
 SendResult sendResult = producer.send(msg);
 // Send the message in synchronous mode. If no error occurs, the message is sen
t.
 if (sendResult != null) {
 System.out.println(new Date() + " Send mq message success. Topic is:" + msg.get
Topic() + " msgId is: " + sendResult.getMessageId());
 }
 } catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fails to b
e sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getT
opic());
 e.printStackTrace();
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

113 > Document Version: 20220816

 }
 // Before you exit the application, shut down the producer object.

 // Note: You can choose not to shut down the producer object.
 producer.shutdown();
 }
}

Subscribe to delayed messagesSubscribe to delayed messages
The method for subscribing to delayed messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

This topic describes the scenarios for sending and subscribing to scheduled messages and provides
sample code.

Scheduled messages are consumed after a specified t imestamp. Such messages are used in scenarios
where a t ime window between message production and consumption is required or tasks need to be
triggered at a scheduled t ime.

For more information about the concepts and usage notes of scheduled messages, see Scheduled
messages and delayed messages.

Send scheduled messagesSend scheduled messages
The following sample code provides an example on how to send scheduled messages:

import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.Producer;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import com.aliyun.openservices.ons.api.SendResult;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Properties;
public class ProducerDelayTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 Producer producer = ONSFactory.createProducer(properties);
 // Before you use the producer to send a message, call the start() method once to s
tart the producer.
 producer.start();

6.2.4.10. Send and subscribe to scheduled messages6.2.4.10. Send and subscribe to scheduled messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 114

 Message msg = new Message(//
 // The topic of the message.
 "Topic",
 // The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and helps the consumer filter messages on the Message Queue for Apache R
ocketMQ broker based on specified conditions.
 "tag",
 // The message body in the binary format. Message Queue for Apache RocketMQ
does not process the message body. The producer and consumer must agree on the serializatio
n and deserialization methods.
 "Hello MQ".getBytes());
 // The key of the message. The key is the business-specific attribute of the messag
e and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for Apach
e RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the message k
ey.
 msg.setKey("ORDERID_100");
 try {
 // The time when the Message Queue for Apache RocketMQ broker delivers the mess
age to the consumer, in milliseconds. For example, you can set this parameter to 2016-03-07
16:21:00 and the broker delivers the message at 16:21:00 on March 7, 2016. The value must b
e later than the current time. If the scheduled time is earlier than the current time, the
message is immediately delivered to the consumer.
 long timeStamp = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse("2016-03-07
16:21:00").getTime();
 msg.setStartDeliverTime(timeStamp);
 // Send the message. If no error occurs, the message is sent.
 SendResult sendResult = producer.send(msg);
 System.out.println("Message Id:" + sendResult.getMessageId());
 }
 catch (Exception e) {
 // Specify the logic to resend or persist the message if the message fails to b
e sent.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + msg.getT
opic());
 e.printStackTrace();
 }
 // Before you exit the application, shut down the producer object.
 // Note: You can choose not to shut down the producer object.
 producer.shutdown();
 }
}

Subscribe to scheduled messagesSubscribe to scheduled messages
The method for subscribing to scheduled messages is the same as that for subscribing to normal
messages. For more information, see Subscribe to messages.

This topic describes message subscript ion modes and provides sample code.

6.2.4.11. Subscribe to messages6.2.4.11. Subscribe to messages

User Guide··SDK user guide Alibaba Cloud Message Queue

115 > Document Version: 20220816

Not e Not e The subscript ions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscript ion consistency.

Subscription modesSubscription modes
Message Queue for Apache RocketMQ supports the following message subscript ion modes:

Clust ering subscript ion:Clust ering subscript ion: In this mode, all the consumer instances identified by the same group ID
evenly share messages. Assume that a topic contains nine messages and a group ID identifies three
consumer instances. In clustering consumption mode, each instance consumes three messages.

 // Configure clustering subscription, which is the default mode.
 properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING);

Broadcast ing subscript ion:Broadcast ing subscript ion: In this mode, each consumer instance identified by a group ID
consumes each message once. Assume that a topic contains nine messages and a group ID identifies
three consumer instances. In broadcasting consumption mode, each instance consumes nine
messages.

 // Configure broadcasting subscription.
 properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING);

Sample codeSample code

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 116

import com.aliyun.openservices.ons.api.Action;
import com.aliyun.openservices.ons.api.ConsumeContext;
import com.aliyun.openservices.ons.api.Consumer;
import com.aliyun.openservices.ons.api.Message;
import com.aliyun.openservices.ons.api.MessageListener;
import com.aliyun.openservices.ons.api.ONSFactory;
import com.aliyun.openservices.ons.api.PropertyKeyConst;
import java.util.Properties;
public class ConsumerTest {
 public static void main(String[] args) {
 Properties properties = new Properties();
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 properties.put(PropertyKeyConst.GROUP_ID, "XXX");
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 properties.put(PropertyKeyConst.AccessKey, "XXX");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 properties.put(PropertyKeyConst.SecretKey, "XXX");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 properties.put(PropertyKeyConst.NAMESRV_ADDR,
 "XXX");
 // Clustering subscription, which is the default mode.
 // properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.CLUSTERING);
 // Broadcasting subscription.
 // properties.put(PropertyKeyConst.MessageModel, PropertyValueConst.BROADCASTING)
;
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("TopicTestMQ", "TagA||TagB", new MessageListener() { // Subscrib
e to multiple tags.
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 // Subscribe to another topic.
 consumer.subscribe("TopicTestMQ-Other", "*", new MessageListener() { // Subscribe t
o all tags.
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();
 System.out.println("Consumer Started");
 }
}

User Guide··SDK user guide Alibaba Cloud Message Queue

117 > Document Version: 20220816

Not e Not e In broadcasting consumption mode, you cannot query message accumulation
information in the Message Queue for Apache RocketMQ console. You can create mult iple group IDs
to achieve the effect of broadcasting consumption. For more information, see Clustering
consumption and broadcasting consumption.

Make sure that the following prerequisites are met before you use SDK for C++ to access Message
Queue for Apache RocketMQ:

Not eNot e

You have created the topics and group IDs involved in the code in the Message Queue for
Apache RocketMQ console. You can customize message tags in your application. For more
information about how to create a message tag, see Create resources.

Applications that use Message Queue for Apache RocketMQ are deployed on Elast ic
Compute Service (ECS) instances.

This topic describes the preparations, instruct ions, and usage notes for using SDK for C++ to access
Message Queue for Apache RocketMQ so that you can use SDK for C++ to send and subscribe to
messages.

ProcedureProcedure
1. Download SDK for C++ used in Linux.

2. Decompress the downloaded package.

After the package is decompressed, the following directory structure appears:

demos/

Contains examples on how to send and consume normal messages and ordered messages and
how to send messages in one-way transmission mode. This directory also contains the CMakeList .
txt f ile that is used to compile and manage demos.

include/

Contains header files that are required by your own programs.

lib/

Contains dynamic libraries based on x86_64. The libraries include the libonsclient4cpp.so
interface library and the librocketmq_client_core.so core library.

changelog

Contains bug fixes and new features in the new releases.

6.2.5. SDK for C or C++6.2.5. SDK for C or C++
6.2.5.1. Prepare the SDK for C or C++ environment6.2.5.1. Prepare the SDK for C or C++ environment

6.2.5.1.1. Overview6.2.5.1.1. Overview

6.2.5.1.2. Download SDK for C++6.2.5.1.2. Download SDK for C++

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 118

https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/linux_all_in_one/V2.0.0/aliyun-mq-linux-cpp-sdk.tar.gz?spm=a2c4g.11186623.2.16.24a52bb7BPqMEK&file=aliyun-mq-linux-cpp-sdk.tar.gz

This topic describes how to use SDK for C++ in Linux.

Start ing June 28, 2019, the new SDK version provides only dynamic library solut ions. The library file of
Message Queue for Apache RocketMQ is stored in the lib/ directory. You must link
librocketmq_client_core.so with libonsclient4cpp.so when you generate executable files. demos has
introduced the features of C++ 11 and uses CMake for management. Therefore, you must install CMake
3.0 or later and g++ 4.8 or later in advance.

Dynamic solutionDynamic solution
GCC 5.x or later has introduced Dual ABI. Therefore, you must add the -D_GLIBCXX_USE_CXX11_ABI=0
option when you compile the preceding links.

The following sample code provides an example on how to use demos:

cd aliyun-mq-linux-cpp-sdk // The path to which the downloaded SDK package is decompressed.
cd demos // Go to the demos directory and modify the demos file by entering information suc
h as the topic and key that you created in the Message Queue for Apache RocketMQ console.
cmake . // Check the dependencies and generate a compilation script.
make // Compile the code.
cd bin // Run the program in the directory where the generated executable files are located
.

This topic provides the sample code for sending and subscribing to normal messages.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

Subscribe to normal messagesSubscribe to normal messages
For more information about how to subscribe to normal messages and about relevant sample code, see
Subscribe to messages.

This topic provides the sample code for sending and subscribing to ordered messages.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

#include "ONSFactory.h"
#include "ONSClientException.h"
#include <iostream>
using namespace ons;
int main()
{
 // Set the parameters that are required to create and use a producer.

6.2.5.1.3. Use SDK for C++ in Linux6.2.5.1.3. Use SDK for C++ in Linux

6.2.5.2. Send and subscribe to normal messages6.2.5.2. Send and subscribe to normal messages

6.2.5.3. Send and subscribe to ordered messages6.2.5.3. Send and subscribe to ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

119 > Document Version: 20220816

https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html?spm=a2c4g.11186623.2.16.361e1c71c6f9oA

 // Set the parameters that are required to create and use a producer.
 ONSFactoryProperty factoryInfo;
 .factoryInfo.setFactoryProperty(ONSFactoryProperty::ProducerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "XXX"); // The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance
s. On the Instances page, click the name of your instance. On the Instance Details page, sc
roll to the Basic Information section and view the TCP endpoint on the Endpoints tab.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "XXX");// The message co
ntent.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "XXX");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "XXX");// The AccessKey
secret that you created in the Alibaba Cloud Management Console for identity authentication
.
 // Create a producer.
 OrderProducer *pProducer = ONSFactory::getInstance()->createOrderProducer(factoryInfo);
 //Before you send a message, call the start() method to start the producer. You can cal
l the start() method only once.
 pProducer->start();
 Message msg(
 //Message Topic
 factoryInfo.getPublishTopics(),
 // The message tag, which is similar to a Gmail tag. The message tag is use
d to sort messages and filter messages for the consumer on the
Message Queue for Apache RocketMQ broker based on specified conditions.
 "TagA",
 // The message body in the binary format.
Message Queue for Apache RocketMQ does not process the message body. The producer and the c
onsumer must agree on the serialization and deserialization methods.
 factoryInfo.getMessageContent()
);
 // The key of the message. The key is the business-specific attribute of the message an
d must be globally unique.
 // A unique key helps you query and resend a message in the
Message Queue for Apache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the message key.
 msg.setKey("ORDERID_100");
 // The key field that is used to identify partitions for partitionally ordered messages
.
 // This field can be set to a non-empty string for globally ordered messages.
 std::string shardingKey = "abc";
 // Messages that have the same Sharding Key are sent in order.
 try
 {
 // Send the message. If no exception is thrown, the message is sent.
 SendResultONS sendResult = pProducer->send(msg, shardingKey);
 std::cout << "send success" << std::endl;
 }
 catch(ONSClientException & e)

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 120

 catch(ONSClientException & e)
 {
 // Add the exception handling operation.
 }
 // Before you exit your application, shut down the producer. If you do not shut down th
e producer, issues such as memory leaks may occur.
 pProducer->shutdown();
 return 0;
}

Subscribe to ordered messagesSubscribe to ordered messages
The following sample code provides an example on how to subscribe to ordered messages:

#include "ONSFactory.h"
using namespace std;
using namespace ons;
// Create a consumer instance.
//After pushConsumer pulls the message, pushConsumer calls the consumeMessage function of t
he instance.
class ONSCLIENT_API MyMsgListener : public MessageOrderListener
{
public:
 MyMsgListener()
 {
 }
 virtual ~MyMsgListener()
 {
 }
 virtual OrderAction consume(Message &message, ConsumeOrderContext &context)
 {
 // Consume messages based on business requirements.
 return Success; //CONSUME_SUCCESS;
 }
};
int main(int argc, char* argv[])
{
 // Set the parameters that are required to create and use orderConsumer.
 ONSFactoryProperty factoryInfo;
 factoryInfo.setFactoryProperty(ONSFactoryProperty::ConsumerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "XXX");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "XXX");// The AccessKey
secret that you created in the Alibaba Cloud Management Console for identity authentication
.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::NAMESRV_ADDR, "XXX");// The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance
s. On the Instances page, click the name of your instance. On the Instance Details page, sc
roll to the Basic Information section and view the TCP endpoint on the Endpoints tab.

User Guide··SDK user guide Alibaba Cloud Message Queue

121 > Document Version: 20220816

roll to the Basic Information section and view the TCP endpoint on the Endpoints tab.
 // Create orderConsumer.
 OrderConsumer* orderConsumer = ONSFactory::getInstance()->createOrderConsumer(factoryIn
fo);
 MyMsgListener msglistener;
 // Specify the message topic and tag to which orderConsumer subscribes.
 orderConsumer->subscribe(factoryInfo.getPublishTopics(), "*",&msglistener);
 // Register the instance to listen to messages. After orderConsumer pulls the messages,
orderConsumer calls the consumeMessage function of the message listening class.
 //Start orderConsumer.
 orderConsumer->start();
 for(volatile int i = 0; i < 1000000000; ++i) {
 //wait
 }
 // Shut down orderConsumer. Before you exit the application, shut down orderConsumer. I
f you do not shut down orderConsumer, issues such as memory leaks may occur.
 orderConsumer->shutdown();
 return 0;
}

This topic provides the sample code for sending and subscribing to scheduled messages.

Scheduled messages are consumed by consumers after a specified period of t ime. Such messages are
used in scenarios where a t ime window between message production and consumption is required or
tasks need to be triggered at a scheduled t ime. Scheduled messages are used in a similar way to delay
queues.

Send scheduled messagesSend scheduled messages
The following sample code provides an example on how to send scheduled messages:

#include "ONSFactory.h"
#include "ONSClientException.h"
#include <windows.h>
using namespace ons;
int main()
{
 // Create a producer and set the parameters that are required to send messages.
 ONSFactoryProperty factoryInfo;
 factoryInfo.setFactoryProperty(ONSFactoryProperty::ProducerId, "XXX");// The ID of the
group that you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "XXX"); // The TCP endp
oint of your instance. To obtain the TCP endpoint, log on to the
Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Instance
s. On the Instances page, click the name of your instance. On the Instance Details page, vi
ew the endpoint on the Endpoint Information tab.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::PublishTopics,"XXX");// The topic t
hat you created in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::MsgContent, "xxx");// The content of
the message.

6.2.5.4. Send and subscribe to scheduled messages6.2.5.4. Send and subscribe to scheduled messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 122

the message.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "xxx");// The AccessKey I
D that you created in the Alibaba Cloud Management Console for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "xxx");// The AccessKey
secret that you created in the Alibaba Cloud Management Console for identity authentication
.
 //create producer;
 Producer *pProducer = ONSFactory::getInstance()->createProducer(factoryInfo);
 // Before you send messages, call the start method once to start the producer.
 pProducer->start();
 Message msg(
 //Message Topic
 factoryInfo.getPublishTopics(),
 // The tag of the message, which is similar to a Gmail tag. Message tags are us
ed to sort messages and filter messages for the consumer on the
Message Queue for Apache RocketMQ broker based on specified conditions.
 "TagA",
 // The body of the message. This parameter is required.
Message Queue for Apache RocketMQ does not process the message body. The producer and consu
mer must agree on the methods to serialize and deserialize the message body.
 factoryInfo.getMessageContent()
);
 // The key of the message. The key is the business-specific attribute of the message an
d must be globally unique whenever possible.
 // The key helps you query and resend a message in the
Message Queue for Apache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify message keys.
 msg.setKey("ORDERID_100");
 // The time when the Message Queue for Apache RocketMQ broker delivers the message to t
he consumer. Unit: milliseconds. The message can be consumed only after the specified time.
In this example, the message can be consumed 3 seconds later.
 long deliverTime = GetTickCount64() + 3000;
 msg.setStartDeliverTime(deliverTime);
 // Send the message. If no exception occurs, the message is sent.
 try
 {
 SendResultONS sendResult = pProducer->send(msg);
 }
 catch(ONSClientException & e)
 {
 // Specify the logic to process the exception.
 }
 // Before you exit the application, shut down the producer. Otherwise, issues such as m
emory leaks occur.
 pProducer->shutdown();
 return 0;
}

Subscribe to scheduled messagesSubscribe to scheduled messages
For more information about how to subscribe to scheduled messages and about relevant sample code,
see Subscribe to messages.

User Guide··SDK user guide Alibaba Cloud Message Queue

123 > Document Version: 20220816

This topic describes the interact ion process and the back-check mechanism of transactional messages.
This topic also shows you how to send and subscribe to transactional messages, and provides sample
code.

Interaction processInteraction process
Transactional message interact ion flowchart shows the interact ion process of transactional messages
in Message Queue for Apache RocketMQ.

Interact ion process of transactional messages

Send transactional messagesSend transactional messages
Perform the following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides examples on
how to send and subscribe to transactional messages:

2. Commit the status of the transactional message.

After the local transaction is executed, the Message Queue for Apache RocketMQ broker must be
notified of the transaction status of the current message no matter whether the execution is
successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

Commit the status after the local transaction is executed.

Wait until the Message Queue for Apache RocketMQ broker sends a request to check the
transaction status of the message.

A transaction can be in one of the following states:

TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume the
message.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded and
cannot be consumed.

TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producer to query the status of
the local transaction that corresponds to the message.

6.2.5.5. Send and subscribe to transactional messages6.2.5.5. Send and subscribe to transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 124

 class MyLocalTransactionChecker : LocalTransactionChecker
 {
 MyLocalTransactionChecker()
 {
 }
 ~MyLocalTransactionChecker()
 {
 }
 virtual TransactionStatus check(Message &value)
 {
 // The ID of the message. The current message ID cannot be queried in the console.
Two messages may have the same message body but cannot have the same ID.
 string msgId = value.getMsgID();
 // Calculate the message body by using CRC32 or other algorithms, such as MD5.
 // The message ID and CRC32 ID are used to prevent duplicate messages.
 // You do not need to specify the message ID or CRC32 ID if your business itself a
chieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure idempotence.
 // To prevent duplicate messages, calculate the message body by using the CRC32 or
MD5 algorithm.
 TransactionStatus transactionStatus = Unknow;
 try {
 boolean isCommit = Execution result of the local transaction;
 if (isCommit) {
 // Commit the message if the local transaction succeeds.
 transactionStatus = CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = RollbackTransaction;
 }
 } catch(...) {
 //exception error
 }
 return transactionStatus;
 }
 }

Back-check mechanism f or t ransact ion st at usBack-check mechanism f or t ransact ion st at us

Why must the back-check mechanism for transaction status be implemented when transactional
messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache RocketMQ broker periodically requests the producer to
check and report the status of the half message.

What does the business logic do when the check method is called back?

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache RocketMQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

User Guide··SDK user guide Alibaba Cloud Message Queue

125 > Document Version: 20220816

i. Check the status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache RocketMQ broker.

How do different states of the local transaction affect the half message?

TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume
the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producer to query the status
of the local transaction that corresponds to the message.

For more information about the code, see the implementation of MyLocalTransactionChecker.

Subscribe to transactional messagesSubscribe to transactional messages
For more information about how to subscribe to transactional messages and about relevant sample
code, see Subscribe to messages.

This topic describes how to subscribe to messages by using SDK for C or C++ provided by Message
Queue for Apache RocketMQ.

Not e Not e The subscript ions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscript ion consistency.

Subscription modesSubscription modes
Message Queue for Apache RocketMQ supports the following message subscript ion modes:

Clust ering subscript ion:Clust ering subscript ion:

This mode is used to implement clustering consumption. In clustering consumption mode, all the
consumer instances identified by the same group ID evenly share messages. Assume that a topic
contains nine messages and a group ID identifies three consumer instances. In clustering consumption
mode, each instance consumes three messages.

 // Configure clustering subscription, which is the default mode.
 factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::CL
USTERING);

Broadcast ing subscript ion:Broadcast ing subscript ion:

This mode is used to implement broadcasting consumption. In broadcasting consumption mode, each
consumer instance identified by a group ID consumes a message once. Assume that a topic contains
nine messages and a group ID identifies three consumer instances. In broadcasting consumption
mode, each instance consumes nine messages.

6.2.5.6. Subscribe to messages6.2.5.6. Subscribe to messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 126

 // Configure broadcasting subscription.
 factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProperty::BR
OADCASTING);

Sample codeSample code

#include "ONSFactory.h"
#include <iostream>
#include <thread>
#include <mutex>
using namespace ons;
std::mutex console_mtx;
class ExampleMessageListener : public MessageListener {
public:
 Action consume(Message& message, ConsumeContext& context) {
 // The consumer receives the message and attempts to consume it. After the message
is consumed, CommitMessage is returned.
 // If the consumer fails to consume the message or wants to consume the message aga
in, ReconsumeLater is returned. Then, the message is delivered to the consumer again after
a predefined period of time.
 std::lock_guard<std::mutex> lk(console_mtx);
 std::cout << "Received a message. Topic: " << message.getTopic() << ", MsgId: "
 << message.getMsgID() << std::endl;
 return CommitMessage;
 }
};
int main(int argc, char* argv[]) {
 std::cout << "=======Before consuming messages=======" << std::endl;
 ONSFactoryProperty factoryInfo;
 // Specify the group ID that you created in the
Message Queue for Apache RocketMQ console. Message Queue for Apache RocketMQ instances use
the group ID instead of the producer ID and consumer ID. Specifying this value ensures comp
atibility with earlier versions.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::ConsumerId, "GID_XXX");
 // Specify the AccessKey ID of your Alibaba Cloud account.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::AccessKey, "Your Access Key");
 // Specify the AccessKey secret of your Alibaba Cloud account.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::SecretKey, "Your Secret Key");
 // Specify the TCP endpoint of your Message Queue for Apache RocketMQ instance. You can
view the endpoint in the
Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty::NAMESRV_ADDR,
 "http://xxxxxxxxxxxxxxxx.aliyuncs.com:80");
 PushConsumer *consumer = ONSFactory::getInstance()->createPushConsumer(factoryInfo);
 // Specify a topic that you created in the
Message Queue for Apache RocketMQ console.
 const char* topic_1 = "topic-1";
 // Subscribe to the messages attached with tag-1 in topic-1.
 const char* tag_1 = "tag-1";
 const char* topic_2 = "topic-2";
 // Subscribe to all messages in topic-2.
 const char* tag_2 = "*";
 // Use a custom listener function to process the received messages and return the resul
ts.

User Guide··SDK user guide Alibaba Cloud Message Queue

127 > Document Version: 20220816

ts.
 ExampleMessageListener * message_listener = new ExampleMessageListener();
 consumer->subscribe(topic_1, tag_1, message_listener);
 consumer->subscribe(topic_2, tag_2, message_listener);
 // The preparation is complete. You must invoke the startup function to start the consu
mer.
 consumer->start();
 // Keep the thread running and do not shut down the consumer.
 std::this_thread::sleep_for(std::chrono::milliseconds(60 * 1000));
 consumer->shutdown();
 delete message_listener;
 std::cout << "=======After consuming messages======" << std::endl;
 return 0;
}

Before you use SDK for . NET to access Message Queue for Apache RocketMQ and send and subscribe
to messages, make sure that the following prerequisites are met:

Not eNot e

You have created the topics and group IDs involved in the code in the Message Queue for
Apache RocketMQ console. You can customize message tags in your application. For more
information about how to create a message tag, see Create resources.

Applications that use Message Queue for Apache RocketMQ are deployed on Elast ic
Compute Service (ECS) instances.

Message Queue for Apache RocketMQ SDK for .NET is a managed wrapper based on Apache RocketMQ
Client CPP.Message Queue for Apache RocketMQ SDK for .NET is independent of Windows .NET public
library.Mult ithreading and parallel processing in C++ are used to ensure the efficiency and stability of
Message Queue for Apache RocketMQ SDK for .NET.

ContextContext
If Visual Studio is used to develop .NET applications and class libraries, the default target platform is
Any CPU. This means that x86 or x64 is automatically selected based on the CPU type at runtime. This
capability is provided because the assembly compiled by using .NET is based on the intermediate
language (IL). At runtime, the just in-t ime compiler (JIT) in the common language runtime (CLR) of .NET
converts the IL code into the x86 or x64 machine code. The DLL generated by the C or C++ compiler is
the machine code. Therefore, a target platform is selected during compilat ion. The C or C++ project is
compiled as an x64 64-bit DLL by configuring compilat ion options. Therefore, the 64-bit DLL in release
mode compiled by using Visual Studio 2015 is provided. The 64-bit DLL in release mode is also available
to other Visual Studio versions.

6.2.6. SDK for .NET6.2.6. SDK for .NET
6.2.6.1. .Prepare the SDK for .NET environment6.2.6.1. .Prepare the SDK for .NET environment

6.2.6.1.1. Overview6.2.6.1.1. Overview

6.2.6.1.2. Download SDK for .NET6.2.6.1.2. Download SDK for .NET

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 128

Not e Not e C++ DLL files require the installat ion package of the Virtual C++ 2015 runtime
environment. If the Visual Studio 2015 runtime environment is not installed, run the
vc_redist .x64.exe program provided in the SDK.

ProcedureProcedure
1. Download the SDK package.

We recommend that both new users and exist ing users that are not concerned with upgrade costs
download the latest SDK. Download the latest version of SDK for .NET that are used in Windows

2. Decompress the downloaded package.

After the package is decompressed, the following directory structure appears:

demo/

Contains examples on how to send normal messages, send messages in one-way mode, send
ordered messages, consume normal messages, and consume ordered messages.

lib/

Contains files related to the underlying C++ DLL and the installat ion package of the Virtual C++
2015 runtime environment. If Visual Studio 2015 is not installed, copy and run the
vc_redist .x64.exe program, as shown in the following information:

 64/
 NSClient4CPP.lib
 ONSClient4CPP.dll
 ONSClient4CPP.pdb
 vc_redist.x64.exe

interface/

Encapsulates P/Invoke code. The code must be included in the user project code.

SDK_GUIDE.pdf

Contains the documentation and frequently asked questions (FAQ) about how to prepare the
SDK environment.

changelog

Contains bug fixes and new features in the new releases.

This topic shows you how to use SDK for .NET in Windows.

ProcedureProcedure
Use SDK for .NET in Visual Studio 2015NET SDK

1. Use Visual Studio 2015 to create your project.

.NET SDK-1

6.2.6.1.3. .Configure SDK for .NET6.2.6.1.3. .Configure SDK for .NET

User Guide··SDK user guide Alibaba Cloud Message Queue

129 > Document Version: 20220816

https://ons-client-sdk.oss-cn-hangzhou.aliyuncs.com/dotnet_all_in_one/V1.1.3/aliyun-mq-windows-net-sdk.rar?spm=a2c4g.11186623.2.14.9e15b0c8mYwCB6&file=aliyun-mq-windows-net-sdk.rar

2. Right-click the project and choose AddAdd > Add Exist ing It emAdd Exist ing It em to add all f iles in the int erf aceint erf ace
directory of the downloaded SDK package.

.NET SDK-2

3. Right-click the project and choose Propert iesPropert ies > Conf igurat ion ManagerConf igurat ion Manager. Set Act ive solut ionAct ive solut ion
conf igurat ionconf igurat ion to ReleaseRelease and set Act ive solut ion plat f ormAct ive solut ion plat f orm to x64x64.

4. Write and compile the test program, save the DLL file of the SDK to the directory of the executable
file or to the system directory, and then run the program.

.NET SDK-3

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 130

Not e Not e The SDK provides a preconfigured demo project. You can directly open the project
and compile it . When you run the project, copy the related DLL file to the directory of the
executable file, as shown in the following figure.

.NET SDK-4

Conf igure ASP.NET in Visual St udio 2015 t o use Message Queue f or Apache Rocket MQConf igure ASP.NET in Visual St udio 2015 t o use Message Queue f or Apache Rocket MQ
SDKSDK

5. Create a Web FormsWeb Forms project for ASP.NET by using Visual Studio 2015.

.NET SDK-5

User Guide··SDK user guide Alibaba Cloud Message Queue

131 > Document Version: 20220816

6. Right-click the project and choose Propert iesPropert ies > Conf igurat ion ManagerConf igurat ion Manager. Set Act ive solut ionAct ive solut ion
conf igurat ionconf igurat ion to ReleaseRelease and set Act ive solut ion plat f ormAct ive solut ion plat f orm to x64x64.

.NET SDK-6

7. Right-click the project and choose AddAdd > Add Exist ing It emAdd Exist ing It em to add all f iles in the interface
directory of the downloaded SDK package.

For more information about how to configure a common .NET project, see Step 2.

8. Add the code for start ing and stopping the SDK to the Global.asax.csGlobal.asax.cs file.

Not e Not e We recommend that you encapsulate the SDK code as a singleton class so that the
code cannot be recycled by the garbage collector due to scope problems. The example
directory of the SDK contains the Example.cs file for implementing a simple singleton class. To
use Example.cs, you must include it in your own project.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 132

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Optimization;
using System.Web.Routing;
using System.Web.Security;
using System.Web.SessionState;
using ons; // The namespace where the SDK is located.
using test; // The namespace where the class with the roughly encapsulated SDK is lo
cated. See the Example.cs file in the example directory of the SDK.
namespace WebApplication4
{
 public class Global : HttpApplication
 {
 void Application_Start(object sender, EventArgs e)
 {
 // Code that runs on application startup
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
 try
 {
 // The code for starting the SDK. The following code is the code after
the SDK is roughly encapsulated.
 OnscSharp.CreateProducer();
 OnscSharp.StartProducer();
 }
 catch (Exception ex)
 {
 // Specify the logic for handling errors.
 }
 }
 protected void Application_End(object sender, EventArgs e)
 {
 try
 {
 // The code for stopping the SDK.
 OnscSharp.ShutdownProducer();
 }
 catch (Exception ex)
 {
 // Specify the logic for handling errors.
 }
 }
 }
}

9. Write and compile the test program.

10. Save the DLL file of the SDK to the directory of the executable file or to the system directory and
run the program.

.NET SDK-7

User Guide··SDK user guide Alibaba Cloud Message Queue

133 > Document Version: 20220816

11. Choose T oolsT ools > Opt ionsOpt ions > Project s and Solut ionsProject s and Solut ions > Web Project sWeb Project s. Then, select the Use t heUse t he
64 bit version of IIS Express f or websit es and project s64 bit version of IIS Express f or websit es and project s check box.

.NET SDK-8

.NET SDK-9

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 134

This topic provides the sample code for sending and subscribing to normal messages.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages: Set related
parameters based on the instruct ions.

using System;
using ons;
public class ProducerExampleForEx
{
 public ProducerExampleForEx()
 {
 }
 static void Main(string[] args) {
 // Configure your account based on the resources that you created in the console.
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.ProducerId, "GID_example");
 // The topic that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_n
ame");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache

6.2.6.2. Send and subscribe to normal messages6.2.6.2. Send and subscribe to normal messages

User Guide··SDK user guide Alibaba Cloud Message Queue

135 > Document Version: 20220816

RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
 // Specify the log path.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");
 // Create a producer instance.
 // Note: Producer instances are thread-secure and can be used to send messages of d
ifferent topics. Each of your threads
 // needs only one producer instance.
 Producer producer = ONSFactory.getInstance().createProducer(factoryInfo);
 // Start the producer instance.
 producer.start();
 // Create a message object.
 Message msg = new Message(factoryInfo.getPublishTopics(), "tagA", "Example message
body");
 msg.setKey(Guid.NewGuid().ToString());
 for (int i = 0; i < 32; i++) {
 try
 {
 SendResultONS sendResult = producer.send(msg);
 Console.WriteLine("send success {0}", sendResult.getMessageId());
 }
 catch (Exception ex)
 {
 Console.WriteLine("send failure{0}", ex.ToString());
 }
 }
 // Shut down the producer instance when your thread is about to exit.
 producer.shutdown();
 }
}

Subscribe to normal messagesSubscribe to normal messages
For more information about how to subscribe to normal messages and about relevant sample code, see
Subscribe to messages.

This topic describes how to send and subscribe to ordered messages and provides sample code.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

using System;
using ons;
public class OrderProducerExampleForEx
{
 public OrderProducerExampleForEx()
 {
 }
 static void Main(string[] args) {

6.2.6.3. Send and subscribe to ordered messages6.2.6.3. Send and subscribe to ordered messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 136

 static void Main(string[] args) {
 // Configure your account based on the resources that you created in the Apsara Uni
-manager Management Console.
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.ProducerId, "GID_example");
 // The topic that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_n
ame");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
 // Specify the log path.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");
 // Create a producer instance.
 // Note: Producer instances are thread-safe and can be used to send messages of dif
ferent topics. Each thread
 // requires only one producer instance.
 OrderProducer producer = ONSFactory.getInstance().createOrderProducer(factoryInfo);
 // Start the producer instance.
 producer.start();
 // Create a message.
 Message msg = new Message(factoryInfo.getPublishTopics(), "tagA", "Example message
body");
 string shardingKey = "App-Test";
 for (int i = 0; i < 32; i++) {
 try
 {
 SendResultONS sendResult = producer.send(msg, shardingKey);
 Console.WriteLine("send success {0}", sendResult.getMessageId());
 }
 catch (Exception ex)
 {
 Console.WriteLine("send failure{0}", ex.ToString());
 }
 }
 // Disable the producer instance when your thread is about to exit.
 producer.shutdown();
 }
}

Subscribe to ordered messagesSubscribe to ordered messages
The following sample code provides an example on how to subscribe to ordered messages:

using System;
using System.Text;

User Guide··SDK user guide Alibaba Cloud Message Queue

137 > Document Version: 20220816

using System.Text;
using System.Threading;
using ons;
namespace demo
{
 public class MyMsgOrderListener : MessageOrderListener
 {
 public MyMsgOrderListener()
 {
 }
 ~MyMsgOrderListener()
 {
 }
 public override ons.OrderAction consume(Message value, ConsumeOrderContext context)
 {
 Byte[] text = Encoding.Default.GetBytes(value.getBody());
 Console.WriteLine(Encoding.UTF8.GetString(text));
 return ons.OrderAction.Success;
 }
 }
 class OrderConsumerExampleForEx
 {
 static void Main(string[] args)
 {
 // Configure your account based on the resources that you created in the Apsara
Uni-manager Management Console.
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key")
;
 // The AccessKey secret that you created in the Apsara Uni-manager Management C
onsole for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secre
t");
 // The group ID that you created in the Message Queue for Apache RocketMQ conso
le.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.ConsumerId, "GID_example");
 // The topic that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_top
ic_name");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Ap
ache RocketMQ console. In the left-side navigation pane, click Instance Details. On the Ins
tance Details page, select your instance. On the Instance Information tab, view the endpoin
t in the Obtain Endpoint Information section.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr")
;
 // Specify the log path.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");
 // Create a consumer instance.
 OrderConsumer consumer = ONSFactory.getInstance().createOrderConsumer(factoryIn
fo);
 // Subscribe to topics.
 consumer.subscribe(factoryInfo.getPublishTopics(), "*",new MyMsgOrderListener()
);

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 138

 // Start the consumer instance.
 consumer.start();
 // Put the main thread to sleep for a period of time.
 Thread.Sleep(30000);
 // Disable the consumer instance when the instance is no longer used.
 consumer.shutdown();
 }
 }
}

Scheduled messages are consumed by consumers after a specified period of t ime. Such messages are
used in scenarios where a t ime window between message production and consumption is required or
tasks need to be triggered at a scheduled t ime. Scheduled messages are used in a similar way to delay
queues.

Send scheduled messagesSend scheduled messages
The following sample code provides an example on how to send scheduled messages:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Runtime.InteropServices;
using ons;
namespace ons
{
 class onscsharp
 {
 static void Main(string[] args)
 {
 // Set the parameters that are required to create a producer. These parameters
ensure that you can use the producer.
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 factoryInfo.setFactoryProperty(factoryInfo.ProducerId, "XXX ");// The group ID
that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(factoryInfo.NAMESRV_ADDR, "XXX"); // The TCP end
point. To obtain the endpoint, log on to the Message Queue for Apache RocketMQ console. In
the left-side navigation pane, click Instance Details. On the Instance Details page, select
your instance. On the Instance Information tab, view the endpoint in the Obtain Endpoint In
formation section.
 factoryInfo.setFactoryProperty(factoryInfo.PublishTopics, "XXX");// The topic t
hat you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(factoryInfo.MsgContent, "XXX");// The message co
ntent.
 factoryInfo.setFactoryProperty(factoryInfo.AccessKey, "XXX");// The AccessKey I
D that you created in the Apsara Uni-manager Management Console for identity authentication
.
 factoryInfo.setFactoryProperty(factoryInfo.SecretKey,"XXX");// The AccessKey se
cret that you created in the Apsara Uni-manager Management Console for identity authenticat
ion.

6.2.6.4. Send and subscribe to scheduled messages6.2.6.4. Send and subscribe to scheduled messages

User Guide··SDK user guide Alibaba Cloud Message Queue

139 > Document Version: 20220816

 // Create a producer.
 ONSFactory onsfactory = new ONSFactory();
 Producer pProducer = onsfactory.getInstance().createProducer(factoryInfo);
 // Before you use the producer to send a message, call the start() method once
to start the producer.
 pProducer.start();
 Message msg = new Message(
 //Message Topic
 factoryInfo.getPublishTopics(),
 //Message Tag
 "TagA",
 //Message Body
 factoryInfo.getMessageContent()
);
 // The key of the message. The key is the business-specific attribute of the me
ssage and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for A
pache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the messa
ge key.
 msg.setKey("ORDERID_100");
 // The period of time after which the Message Queue for Apache RocketMQ broker
delivers the message to the consumer. Unit: milliseconds. The message can be consumed only
after the specified period of time. In this example, the message can be consumed 3 seconds
later.
 long deliverTime = Current system time (ms) + 3000;
 msg.setStartDeliverTime(deliverTime);
 // Send the message. If no error occurs, the message is sent.
 try
 {
 SendResultONS sendResult = pProducer.send(msg);
 }
 catch(ONSClientException e)
 {
 // Specify the logic for handling failures.
 }
 // Before you exit the application, shut down the producer object. Otherwise, m
emory leaks may occur.
 pProducer.shutdown();
 }
 }
}

Subscribe to scheduled messagesSubscribe to scheduled messages
For more information about how to subscribe to scheduled messages and about relevant sample code,
see Subscribe to messages.

This topic describes the interact ion process and the back-check mechanism of transactional messages.
This topic also shows you how to send and subscribe to transactional messages, and provides sample
code.

6.2.6.5. Send and subscribe to transactional messages6.2.6.5. Send and subscribe to transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 140

Interaction processInteraction process
Transactional message interact ion shows the interact ion process of transactional messages in Message
Queue for Apache RocketMQ.

Interact ion process of transactional messages

Send transactional messagesSend transactional messages
Perform the following steps to send a transactional message:

1. Send a half message and execute a local transaction. The following code provides examples on
how to send and subscribe to transactional messages:

 using System;
 using System.Collections.Generic;
 using System.Linq;
 using System.Text;
 using System.Runtime.InteropServices;
 using ons;
 namespace ons
 {
 public class MyLocalTransactionExecuter : LocalTransactionExecuter
 {
 public MyLocalTransactionExecuter()
 {
 }
 ~MyLocalTransactionExecuter()
 {
 }
 public override TransactionStatus execute(Message value)
 {
 Console.WriteLine("execute topic: {0}, tag:{1}, key:{2}, msgId:{3},msgbody
:{4}, userProperty:{5}",
 value.getTopic(), value.getTag(), value.getKey(), value.getMsgID(), value.
getBody(), value.getUserProperty("VincentNoUser"));
 // The ID of the message. Two messages may have the same message body but
cannot have the same ID. The current message ID cannot be queried in the console.
 string msgId = value.getMsgID();
 // Calculate the message body by using CRC32 or other algorithms, such as
MD5.
 // The message ID and CRC32 ID are used to prevent duplicate messages.
 // To prevent duplicate messages, calculate the message body by using the
CRC32 or MD5 algorithm.
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {

User Guide··SDK user guide Alibaba Cloud Message Queue

141 > Document Version: 20220816

 try {
 boolean isCommit = Execution result of the local transaction;
 if (isCommit) {
 // Commit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 //exception handle
 }
 return transactionStatus;
 }
 }
 class onscsharp
 {
 static void Main(string[] args)
 {
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 factoryInfo.setFactoryProperty(factoryInfo.NAMESRV_ADDR, "XXX");//The TCP endp
oint. To obtain the endpoint, log on to the Message Queue for Apache RocketMQ console.
In the left-side navigation pane, click Instance Details. On the Instance Details page,
select your instance. On the Instance Information tab, view the endpoint in the Obtain
Endpoint Information section.
 factoryInfo.setFactoryProperty(factoryInfo.ProducerId, "");// The group ID tha
t you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(factoryInfo.PublishTopics, "");// The topic tha
t you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(factoryInfo.MsgContent, "");//message body
 factoryInfo.setFactoryProperty(factoryInfo.AccessKey, "");// The AccessKey ID
that you created in the Apsara Uni-manager Management Console for identity authenticati
on.
 factoryInfo.setFactoryProperty(factoryInfo.SecretKey, "");// The AccessKey sec
ret that you created in the Apsara Uni-manager Management Console for identity authenti
cation.
 //create transaction producer
 ONSFactory onsfactory = new ONSFactory();
 LocalTransactionChecker myChecker = new MyLocalTransactionChecker();
 TransactionProducer pProducer = onsfactory.getInstance().createTransactionProd
ucer(factoryInfo,ref myChecker);
 // Before you use the producer to send a message, call the start() method once
to start the producer. After the producer is started, messages can be concurrently sent
in multiple threads.
 pProducer.start();
 Message msg = new Message(
 //Message Topic
 factoryInfo.getPublishTopics(),
 //Message Tag
 "TagA",
 //Message Body
 factoryInfo.getMessageContent()
);
 // The key of the message. The key is the business-specific attribute of the m
essage and must be globally unique whenever possible.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 142

essage and must be globally unique whenever possible.
 // A unique key helps you query and resend a message in the Message Queue for
Apache RocketMQ console if the message fails to be received.
 // Note: Messages can be sent and received even if you do not specify the mess
age key.
 msg.setKey("ORDERID_100");
 // Send the message. If no error occurs, the message is sent.
 try
 {
 LocalTransactionExecuter myExecuter = new MyLocalTransactionExecuter();
 SendResultONS sendResult = pProducer.send(msg, ref myExecuter);
 }
 catch(ONSClientException e)
 {
 Console.WriteLine("\nexception of sendmsg:{0}",e.what());
 }
 // Before you exit the application, shut down the producer object. Otherwise,
memory leaks may occur.
 // The producer cannot be started again after the producer object is shut down
.
 pProducer.shutdown();
 }
 }
 }

2. Commit the status of the transactional message.

After the local transaction is executed, the Message Queue for Apache RocketMQ broker must be
notified of the transaction status of the current message no matter whether the execution is
successful or fails. The Message Queue for Apache RocketMQ broker can be notified in one of the
following ways:

Commit the status after the local transaction is executed.

Wait until the Message Queue for Apache RocketMQ broker sends a request to check the
transaction status of the message.

A transaction can be in one of the following states:

TransactionStatus.CommitTransaction: The transaction is committed. The consumer can
consume the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producer to query the
status of the local transaction that corresponds to the message.

User Guide··SDK user guide Alibaba Cloud Message Queue

143 > Document Version: 20220816

 public class MyLocalTransactionChecker : LocalTransactionChecker
 {
 public MyLocalTransactionChecker()
 {
 }
 ~MyLocalTransactionChecker()
 {
 }
 public override TransactionStatus check(Message value)
 {
 Console.WriteLine("check topic: {0}, tag:{1}, key:{2}, msgId:{3},msgbod
y:{4}, userProperty:{5}",
 value.getTopic(), value.getTag(), value.getKey(), value.getMsgID(), val
ue.getBody(), value.getUserProperty("VincentNoUser"));
 // The ID of the message. Two messages may have the same message body b
ut cannot have the same ID. The current message ID cannot be queried in the console.
 string msgId = value.getMsgID();
 // Calculate the message body by using CRC32 or other algorithms, such
as MD5.
 // The message ID and CRC32 ID are used to prevent duplicate messages.
 // You do not need to specify the message ID or CRC32 ID if your busine
ss itself achieves idempotence. Otherwise, specify the message ID or CRC32 ID to ensure
idempotence.
 // To prevent duplicate messages, calculate the message body by using t
he CRC32 or MD5 algorithm.
 TransactionStatus transactionStatus = TransactionStatus.Unknow;
 try {
 boolean isCommit = Execution result of the local transaction;
 if (isCommit) {
 // Commit the message if the local transaction succeeds.
 transactionStatus = TransactionStatus.CommitTransaction;
 } else {
 // Roll back the message if the local transaction fails.
 transactionStatus = TransactionStatus.RollbackTransaction;
 }
 } catch (Exception e) {
 //exception handle
 }
 return transactionStatus;
 }
 }

Back-check mechanism f or t ransact ion st at usBack-check mechanism f or t ransact ion st at us

Why must the back-check mechanism for transaction status be implemented when transactional
messages are sent?

If the half message is sent in Step 1 but TransactionStatus.Unknow is returned for the local
transaction, or no status is committed for the local transaction because the application exits, the
status of the half message is unknown to the Message Queue for Apache RocketMQ broker.
Therefore, the Message Queue for Apache RocketMQ broker periodically requests the producer to
check and report the status of the half message.

What does the business logic do when the check method is called back?

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 144

The check method for transactional messages in Message Queue for Apache RocketMQ must contain
the logic of transaction consistency check. After a transactional message is sent, Message Queue for
Apache RocketMQ must call the LocalTransactionChecker method to respond to the request of the
Message Queue for Apache RocketMQ broker for the status of the local transaction. Therefore, the
check method for transactional messages must contain the following check items:

i. Check the status of the local transaction that corresponds to the half message. The status is
committed or rollback.

ii. Commit the status of the local transaction that corresponds to the half message to the Message
Queue for Apache RocketMQ broker.

How do different states of the local transaction affect the half message?

TransactionStatus.CommitTransaction: The transaction is committed. The consumer can consume
the message.

TransactionStatus.RollbackTransaction: The transaction is rolled back. The message is discarded
and cannot be consumed.

TransactionStatus.Unknow: The status of the transaction is unknown. The Message Queue for
Apache RocketMQ broker is expected to send a request again to the producer to query the status
of the local transaction that corresponds to the message.

For more information about the code, see the implementation of MyLocalTransactionChecker.

Subscribe to transactional messagesSubscribe to transactional messages
For more information about how to subscribe to transactional messages and about relevant sample
code, see Subscribe to messages.

This topic describes how to use Message Queue for Apache RocketMQ SDK for .NET to subscribe to
messages.

Not eNot e

The subscript ions of all consumer instances identified by the same group ID must be
consistent. For more information, see Subscript ion consistency.

Subscription modesSubscription modes
Message Queue for Apache RocketMQ supports the following message subscript ion modes:

Clust ering subscript ionClust ering subscript ion: In this mode, all the consumer instances identified by the same group ID
evenly share messages. Assume that a topic contains nine messages and a group ID identifies three
consumer instances. In clustering consumption mode, each instance consumes three messages.

 // Configure clustering subscription, which is the default mode.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.MessageModel, ONSFactoryProperty.CLUST
ERING);

Broadcast ing subscript ion:Broadcast ing subscript ion: In this mode, each consumer instance identified by a group ID
consumes a message once. Assume that a topic contains nine messages and a group ID identifies
three consumer instances. In broadcasting consumption mode, each instance consumes nine
messages.

6.2.6.6. Subscribe to messages6.2.6.6. Subscribe to messages

User Guide··SDK user guide Alibaba Cloud Message Queue

145 > Document Version: 20220816

 // Configure broadcasting subscription.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.MessageModel, ONSFactoryProperty.BROAD
CASTING);

Sample codeSample code

using System;
using System.Threading;
using System.Text;
using ons;
// The callback function to be executed when a message is pulled from the Message Queue for
Apache RocketMQ broker.
public class MyMsgListener : MessageListener
{
 public MyMsgListener()
 {
 }
 ~MyMsgListener()
 {
 }
 public override ons.Action consume(Message value, ConsumeContext context)
 {
 Byte[] text = Encoding.Default.GetBytes(value.getBody());
 Console.WriteLine(Encoding.UTF8.GetString(text));
 return ons.Action.CommitMessage;
 }
}
public class ConsumerExampleForEx
{
 public ConsumerExampleForEx()
 {
 }
 static void Main(string[] args) {
 // Configure your account based on the resources that you created in the console.
 ONSFactoryProperty factoryInfo = new ONSFactoryProperty();
 // The AccessKey ID that you created in the Apsara Uni-manager Management Console f
or identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.AccessKey, "Your access key");
 // The AccessKey secret that you created in the Apsara Uni-manager Management Conso
le for identity authentication.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.SecretKey, "Your access secret");
 // The group ID that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.ConsumerId, "GID_example");
 // The topic that you created in the Message Queue for Apache RocketMQ console.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.PublishTopics, "T_example_topic_n
ame");
 // The TCP endpoint. To obtain the endpoint, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Instance Details. On the Instance
Details page, select your instance. On the Instance Information tab, view the endpoint in t
he Obtain Endpoint Information section.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.NAMESRV_ADDR, "NameSrv_Addr");
 // Specify the log path.
 factoryInfo.setFactoryProperty(ONSFactoryProperty.LogPath, "C://log");
 // The clustering consumption mode.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 146

 // The clustering consumption mode.
 // factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProp
erty.CLUSTERING);
 // The broadcasting consumption mode.
 // factoryInfo.setFactoryProperty(ONSFactoryProperty:: MessageModel, ONSFactoryProp
erty.BROADCASTING);
 // Create a consumer instance.
 PushConsumer consumer = ONSFactory.getInstance().createPushConsumer(factoryInfo);
 // Subscribe to topics.
 consumer.subscribe(factoryInfo.getPublishTopics(), "*", new MyMsgListener());
 // Start the consumer instance.
 consumer.start();
 // This value is an example in the demo. In your production environment, you must s
et a proper value to make sure that the process does not unexpectedly exit.
 Thread.Sleep(300000);
 // Shut down the consumer instance when the process is about to exit.
 consumer.shutdown();
 }
}

This topic describes the common request parameters in an HTTP request header and the common
response parameters in an HTTP response header for Message Queue for Apache RocketMQ.

Common request headerCommon request header

Parameter Required Description

Authorization Yes

The authorization string. Specify
the value in the following
format: MQ <AccessKey ID>:
<Signature> . For more
information, see Sign signatures.

Content-Length Yes
The length of the HTTP request
body.

Content-Type Yes

The Multipurpose Internet Mail
Extensions (MIME) type of the
request body. Set the value to
text/xml; charset=utf-8. This
value sets the MIME type to XML
and the character encoding
method to UTF-8.

6.3. HTTP client SDK reference6.3. HTTP client SDK reference
6.3.1. Protocol description6.3.1. Protocol description

6.3.1.1. Common parameters6.3.1.1. Common parameters

User Guide··SDK user guide Alibaba Cloud Message Queue

147 > Document Version: 20220816

Date Yes

The time when the request is
constructed. The time must be in
UTC. If the interval between the
time when the request is
constructed and the time when
the request is received exceeds
15 minutes, the Message Queue
for Apache RocketMQ broker
determines that the request is
invalid.

Host Yes
The HTTP endpoint that you
obtain on the Inst ancesInst ances page of
the console.

x-mq-version Yes
The version of the Message
Queue for Apache RocketMQ API.
Set the value to 2015-06-06.

Content-MD5 No

The MD5 hash value of the
message body. For more
information, see Content-MD5
Header Field.

Parameter Required Description

Common response headerCommon response header

Parameter Description

Content-Length The length of the HTTP response body.

Connection The status of the HTTP connection.

Date
The time when the response was returned. The time
is displayed in UTC.

x-mq-request-id The ID of the request.

x-mq-version
The version of the Message Queue for Apache
RocketMQ API. The value is 2015-06-06.

Message Queue for Apache RocketMQ verifies each HTTP access request. Each HTTP request that is sent
to Message Queue for Apache RocketMQ contains the Authorization parameter in the request header,
and the Authorization parameter contains a signature. This topic describes how to generate a
signature.

Background informationBackground information

6.3.1.2. Request signatures6.3.1.2. Request signatures

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 148

https://datatracker.ietf.org/doc/html/rfc1864?spm=a2c4g.11186623.2.5.64a45d3eC2BZZb

Apsara Stack issues an AccessKey pair that consists of an AccessKey ID and an AccessKey secret to each
user. The user can apply for and manage AccessKey pairs in the Apsara Uni-manager Management
Console.

The AccessKey ID is used to verify the identity of the user.

The AccessKey secret is used to encrypt and verify the signature string. You must keep your
AccessKey secret strict ly confidential.

The HTTP service provided by Message Queue for Apache RocketMQ uses an AccessKey pair to perform
symmetric encryption to verify the identity of a request sender. If the calculated verificat ion code is the
same as that provided in the request, the HTTP service determines that the request is valid. Otherwise,
the HTTP service rejects the request and returns HTTP 403.

You must add the Authorization parameter to the header of each HTTP request to provide the
signature of the request. This way, the HTTP service can determine the validity of the request.

How to sign a requestHow to sign a request
The Authorization parameter is specified in the following format:

 MQ <AccessKey ID>:<Signature>

The following code shows the parameters that are used to generate a signature:

Signature = base64(hmac-sha1(HTTP_METHOD + "\n"
 + "\n"+ CONTENT-TYPE + "\n"
 + DATE + "\n"
 + "x-mq-version:" + MQVersion + "\n"
 + CanonicalizedResource))

HTTP_METHOD: specifies an HTTP method in uppercase, such as PUT, GET, POST, or DELETE.

CONTENT-TYPE: specifies the type of the request body. Set the value to text/xml; charset=utf-8.

DATE: specifies the t ime when you want to perform the operation. This parameter cannot be left
empty and must be specified in UTC. For example, you can set this parameter to Thu, 07 Mar 2012
18:49:58 GMT.

MQVersion: specifies the version of the Message Queue for Apache RocketMQ API. Set the value to
2015-06-06.

CanonicalizedResource: specifies the Uniform Resource Identifier (URI) of the resource requested by
the HTTP request. For example, set the URI of a consumption request to /topics/abc/messages?
consumer=GID_abc.

Not eNot e

The string-to-sign must be in the UTF-8 format.

The HMAC-SHA1 method defined in RFC 2104 is used to calculate the signature. In this
method, the AccessKey secret is used as an encryption key.

You can call this operation to send messages from a producer to a Message Queue for Apache
RocketMQ broker.

6.3.1.3. Operation for sending messages6.3.1.3. Operation for sending messages

User Guide··SDK user guide Alibaba Cloud Message Queue

149 > Document Version: 20220816

https://www.ietf.org/rfc/rfc2104.txt

Request structureRequest structure
Request line

 POST /topics/TopicName/messages?ns=INSTANCE_ID HTTP/1.1

The following table describes the parameters in the request line.

Parameter Required Description

TopicName Yes
The name of the destination
topic to which you want to send
messages.

ns No

The ID of the instance. This
parameter is required for new
instances that have
namespaces. You can check
whether your instance has a
namespace on the Inst ancesInst ances
page in the Message Queue for
Apache RocketMQ console.
Instances are classified into
default instances and new
instances based on whether
they have namespaces.

Default instance: A default
instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unique.

New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unique
within the instance.

For more information about
namespaces for Message Queue
for Apache RocketMQ instances,
see Use instances.

Request body (XML format)

The following table describes the parameters in the request body.

Parameter Required Description

MessageTag No The tag of the message.

MessageBody Yes The content of the message.

Properties No The properties of the message.

The following information describes the key-value pairs in the serialized propert ies of the message:

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 150

Specify the key-value pairs in the following format: key1:value1|key2:value2|key3:value3 .

The following table describes the parameters that are used to specify the key-value pairs.

Parameter Type Description

KEYS String The key of the message.

__STARTDELIVERTIME Long

The absolute scheduled time of
a scheduled message. Set this
parameter to a UNIX timestamp
that represents the number of
milliseconds.

__TransCheckT Long

The relative t ime when you
want to perform the first
status check for a transactional
message. Unit: seconds. Valid
values: 10 to 300.

Response structureResponse structure
Status line

 HTTP/1.1 201

Response body

The following table describes the parameters in the response body.

Parameter Type Description

MessageId String The ID of the message.

MessageBodyMD5 String
The MD5 hash value of the
message body.

ExamplesExamples
Sample requests

<?xml version="1.0" encoding="UTF-8"?>
<Message xmlns="http://mq.aliyuncs.com/doc/v1/">
 <MessageBody>a</MessageBody>
<MessageTag>Tag</MessageTag>
<Properties>KEYS:MessageKey|__STARTDELIVERTIME:1571388173000</Properties>
</Message>

Sample responses

<Message xmlns="http://mq.aliyuncs.com/doc/v1/">
<MessageId>1E057D566EAD42A579935B5CD874****</MessageId>
<MessageBodyMD5>0CC175B9C0F1B6A831C399E26977****</MessageBodyMD5>
</Message>

6.3.1.4. Operation for consuming messages6.3.1.4. Operation for consuming messages

User Guide··SDK user guide Alibaba Cloud Message Queue

151 > Document Version: 20220816

You can call this operation to consume messages from a Message Queue for Apache RocketMQ broker.

Request structureRequest structure
Request line

 GET /topics/TopicName/messages?ns=INSTANCE_ID&consumer=GID&tag=taga&numOfMessages=3&waitse
conds=3 HTTP/1.1

The following table describes the parameters in the request line.

Parameter Required Description

TopicName Yes
The name of the topic from
which you want to consume
messages.

ns No

The ID of the instance. This
parameter is required for new
instances that have
namespaces.

You can check whether your
instance has a namespace on
the Inst ancesInst ances page in the
Message Queue for Apache
RocketMQ console. Instances are
classified into default instances
and new instances based on
whether they have namespaces.

Default instance: A default
instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unique.

New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unique
within the instance.

For more information, see Use
instances.

consumer Yes The ID of the consumer group.

tag No

The tag of the message. If you
do not specify a tag, all
messages are pulled. If you
want to specify multiple tags,
separate them with double
vertical bars (||). For example,
you can set this parameter to
TagA||TagB.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 152

numOfMessages Yes

The maximum number of
messages that can be
consumed at a t ime. Valid
values: 1 to 16.

waitseconds No

The long polling period. If you
do not specify this parameter,
short polling is used. Valid
values: 1 to 30. Unit: seconds.

Parameter Required Description

Request body (XML format)

None

Response structureResponse structure
A message is available for consumption.

Status line

 HTTP/1.1 200

Response body

The following table describes the parameters in the response body.

Parameter Type Description

MessageId String The ID of the message.

MessageBodyMD5 String
The MD5 hash value of the
message body.

MessageBody String The content of the message.

ReceiptHandle String

The receipt handle that is used
to acknowledge that a
message is consumed. The
receipt handle can be used only
once and must be used before
the period of t ime specified by
the NextConsumeTime
parameter elapses. The receipt
handles that are obtained each
time the same message is
retried and consumed are
different.

PublishT ime String
The timestamp that indicates
the time when the message
was sent. Unit: milliseconds.

User Guide··SDK user guide Alibaba Cloud Message Queue

153 > Document Version: 20220816

FirstConsumeTime String

The timestamp that indicates
the time when the message
was consumed for the first
t ime. Unit: milliseconds.

NextConsumeTime String

The timestamp that indicates
the absolute t ime when the
message was retried. Unit:
milliseconds.

Not e Not e If a message
that is sent over HTTP fails
to be consumed, Message
Queue for Apache
RocketMQ retries to send
the message based on the
following mechanism:
Unordered messages are
retried every 5 minutes,
and ordered messages are
retried every 1 minute. A
maximum of 288 retries are
allowed for both ordered
and unordered messages.

ConsumedTimes String
The number of retries after the
message failed to be
consumed.

MessageTag String The tag of the message.

Properties String The properties of the message.

Parameter Type Description

The following information describes the key-value pairs in the serialized propert ies of the
message:

The key-value pairs are displayed in the following format: key1:value1|key2:value2|key3:valu
e3 .

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 154

The following table describes the parameters that are used to indicate the key-value pairs.

Parameter Type Description

KEYS String The key of the message.

__STARTDELIVERTIME Long

The absolute scheduled time
of a scheduled message. This
value is a UNIX timestamp that
represents the number of
milliseconds.

__TransCheckT Long

The relative t ime that indicates
the time when the first status
check for a transactional
message is performed. Unit:
seconds. Valid values: 10 to
300.

No message is available for consumption.

Status line

 HTTP/1.1 404

Response body

The following table describes the parameters in the response body.

Parameter Type Description

Code String

The error code. MessageNotE
xist indicates that no
message is available for
consumption. If this error code
is returned, the response is a
normal response.

Message String The error message returned.

RequestId String The ID of the request.

HostId String The host that sent the request.

Sample responsesSample responses
A message is available for consumption.

User Guide··SDK user guide Alibaba Cloud Message Queue

155 > Document Version: 20220816

<?xml version="1.0" ?>
<Messages xmlns="http://mq.aliyuncs.com/doc/v1">
<Message>
 <MessageId>1E057D5E6EAD42A579937046FE17****</MessageId>
 <MessageBodyMD5>0CC175B9C0F1B6A831C399E26977****</MessageBodyMD5>
 <MessageBody>a</MessageBody>
 <ReceiptHandle>1E057D5E6EAD42A579937046FE17****-MTI5N****</ReceiptHandle>
 <PublishTime>1571742900759</PublishTime>
 <FirstConsumeTime>1571742902463</FirstConsumeTime>
 <NextConsumeTime>1571742922463</NextConsumeTime>
 <ConsumedTimes>1</ConsumedTimes>
 <MessageTag>Tag</MessageTag>
 <Properties>KEYS:MessageKey|__BORNHOST:30.5.**.**|</Properties>
</Message>
<Message>
 <MessageId>1E057D5E6EAD42A579937046FE17****</MessageId>
 <MessageBodyMD5>0CC175B9C0F1B6A831C399E26977****</MessageBodyMD5>
 <MessageBody>a</MessageBody>
 <ReceiptHandle>1E057D5E6EAD42A579937046FE17****-MTI5N****</ReceiptHandle>
 <PublishTime>1571742900759</PublishTime>
 <FirstConsumeTime>1571742902463</FirstConsumeTime>
 <NextConsumeTime>1571742922463</NextConsumeTime>
 <ConsumedTimes>1</ConsumedTimes>
 <MessageTag>Tag</MessageTag>
 <Properties>KEYS:MessageKey|__BORNHOST:30.5.**.**|</Properties>
</Message>
</Messages>

No message is available for consumption.

<?xml version="1.0" ?>
<Error xmlns="http://mq.aliyuncs.com/doc/v1">
 <Code>MessageNotExist</Code>
 <Message>Message not exist.</Message>
 <RequestId>5DAEE3FF463541AD6E0322EB</RequestId>
 <HostId>http://123.mqrest.cn-hangzhou.aliyuncs.com</HostId>
</Error>

You can call this operation to acknowledge the consumption status of messages.

Request structureRequest structure
Request line

 DELETE /topics/TopicName/messages?ns=INSTANCE_ID&consumer=GID HTTP/1.1

The following table describes the parameters in the request line.

Parameter Required Description

6.3.1.5. Operation for acknowledging messages6.3.1.5. Operation for acknowledging messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 156

TopicName Yes
The name of the topic that
contains the messages you want
to acknowledge.

ns No

The ID of the instance. This
parameter is required for new
instances that have
namespaces. You can check
whether your instance has a
namespace on the Inst ancesInst ances
page in the Message Queue for
Apache RocketMQ console.
Instances are classified into
default instances and new
instances based on whether
they have namespaces.

Default instance: A default
instance does not have a
namespace. The names of all
resources in a default
instance must be globally
unique.

New instance: A new instance
has a namespace. The names
of all resources in a new
instance must be unique
within the instance.

For more information about
namespaces for Message Queue
for Apache RocketMQ instances,
see Use instances.

consumer Yes The ID of the consumer group.

Parameter Required Description

Request body (XML format)

The following table describes the parameters in the request body.

Parameter Required Description

User Guide··SDK user guide Alibaba Cloud Message Queue

157 > Document Version: 20220816

ReceiptHandle Yes

The receipt handle that is used
to acknowledge that a message
is consumed. You can call the
message consumption
operation to obtain the receipt
handle. For more information,
see Operation for consuming
messages. The receipt handle
can be used only once and must
be used before the period of
time specified by the
NextConsumeTime parameter
elapses. The receipt handles
that are obtained each time the
same message is retried and
consumed are different.

Parameter Required Description

Response structureResponse structure
The request is successful.

Status line

 HTTP/1.1 204

Response body

None

The request failed.

Status line

 HTTP/1.1 404

Response body

For more information, see Sample responses.

ExamplesExamples
Sample requests

<?xml version="1.0" encoding="UTF-8"?>
<ReceiptHandles xmlns="http://mq.aliyuncs.com/doc/v1/">
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTI5NT****</ReceiptHandle>
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTI5NT****</ReceiptHandle>
<ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTI5NT****</ReceiptHandle>
</ReceiptHandles>

Sample responses

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 158

The request body does not contain a handle.

 <?xml version="1.0" ?>
 <Error xmlns="http://mq.aliyuncs.com/doc/v1">
<Code>MissingReceiptHandle</Code>
<Message>ReceiptHandle is required.</Message>
<RequestId>5DAEF2B9463541AD6E04490F</RequestId>
<HostId>http://123.mqrest.cn-hangzhou.aliyuncs.com</HostId>
 </Error>

The handle of the request is incorrect. The handle is adfadfadf .

 <?xml version="1.0" ?>
 <Errors xmlns="http://mq.aliyuncs.com/doc/v1">
<Error>
 <ErrorCode>ReceiptHandleError</ErrorCode>
 <ErrorMessage>The receipt handle you provide is not valid.</ErrorMessage>
 <ReceiptHandle>adfadfadf</ReceiptHandle>
</Error>
 </Errors>

The handle of the request has expired. This indicates that the handle is not used before the period
of t ime specified by NextConsumeTime elapses.

 <?xml version="1.0" ?>
 <Errors xmlns="http://mq.aliyuncs.com/doc/v1">
<Error>
 <ErrorCode>MessageNotExist</ErrorCode>
 <ErrorMessage>The receipt handle you provided has expired.</ErrorMessage>
 <ReceiptHandle>1E057D5E6EAD42A57993704EC383****-MTI5NT****</ReceiptHandle>
</Error>
 </Errors>

This topic describes how to prepare the environment before you use the HTTP client SDK for Java to
send and consume messages.

Environment requirementsEnvironment requirements
Java Development Kit (JDK) 1.6 or later is installed. For more information, see Java Downloads.

Maven is installed. For more information, see Downloading Apache Maven 3.8.6.

Install the SDK for JavaInstall the SDK for Java
Use Maven to import dependencies and add the following dependency to the pom.xml file:

6.3.2. Java SDK6.3.2. Java SDK

6.3.2.1. Prepare the environment6.3.2.1. Prepare the environment

User Guide··SDK user guide Alibaba Cloud Message Queue

159 > Document Version: 20220816

https://www.oracle.com/java/technologies/javase-downloads.html?spm=a2c4g.11186623.2.4.26e8598ax6300E
https://maven.apache.org/download.cgi?spm=a2c4g.11186623.2.5.26e8598ax6300E&file=download.cgi

<dependency>
 <groupId>com.aliyun.mq</groupId>
 <artifactId>mq-http-sdk</artifactId>
 <! -- Specify the version number of the SDK for Java. -->
 <version>X.X.X</version>
 <classifier>jar-with-dependencies</classifier>
</dependency>

Not e Not e For more information about the versions of the SDK for Java, see Overview.

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for Java to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQProducer;
import com.aliyun.mq.http.model.TopicMessage;
import java.util.Date;
public class Producer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.

6.3.2.2. Send and consume normal messages6.3.2.2. Send and consume normal messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 160

 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 // Obtain the producer that sends messages to the topic.
 MQProducer producer;
 if (instanceId != null && instanceId != "") {
 producer = mqClient.getProducer(instanceId, topic);
 } else {
 producer = mqClient.getProducer(topic);
 } try {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++) {
 TopicMessage pubMsg; // The normal message.
 pubMsg = new TopicMessage(
 // The content of the message.
 "hello mq!".getBytes(),
 // The tag of the message.
 "A"
);
 // The custom property of the message.
 pubMsg.getProperties().put("a", String.valueOf(i));
 // The key of the message.
 pubMsg.setMessageKey("MessageKey");
 // Send the message in synchronous mode. If no exception is thrown, the message
is sent.
 TopicMessage pubResultMsg = producer.publishMessage(pubMsg);
 // Send the message in synchronous mode. If no exception is thrown, the message
is sent.
 System.out.println(new Date() + " Send mq message success. Topic is:" + topic +
", msgId is: " + pubResultMsg.getMessageId()
 + ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5());
 }
 } catch (Throwable e) {
 // Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + topic);
 e.printStackTrace();
 }
 mqClient.close();
 }
}

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

import com.aliyun.mq.http.MQClient;

User Guide··SDK user guide Alibaba Cloud Message Queue

161 > Document Version: 20220816

import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 final String groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 final MQConsumer consumer;
 if (instanceId != null && instanceId != "") {
 consumer = mqClient.getConsumer(instanceId, topic, groupId, null);
 } else {
 consumer = mqClient.getConsumer(topic, groupId);
 }
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 do {
 List<Message> messages = null;
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 messages = consumer.consumeMessage(
 3,// The maximum number of messages that can be consumed at a time.
In this example, the value is set to 3. The maximum value that you can specify is 16.
 3// The length of a long polling period. Unit: seconds. In this exa

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 162

 3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (Throwable e) {
 e.printStackTrace();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }
 }
 // No messages in the topic are available for consumption.
 if (messages == null || messages.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + ": no new message, co
ntinue!");
 continue;
 }
 // Specify the message consumption logic.
 for (Message message : messages) {
 System.out.println("Receive message: " + message);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 {
 List<String> handles = new ArrayList<String>();
 for (Message message : messages) {
 handles.add(message.getReceiptHandle());
 }
 try {
 consumer.ackMessage(handles);
 } catch (Throwable e) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(err
orHandle).getErrorMessage());
 }
 }
 continue;
 }
 e.printStackTrace();
 }
 }
 } while (true);
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

163 > Document Version: 20220816

 }
}

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Java to send and consume
ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQProducer;
import com.aliyun.mq.http.model.TopicMessage;
import java.util.Date;
public class OrderProducer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"

6.3.2.3. Send and consume ordered messages6.3.2.3. Send and consume ordered messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 164

 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 // Obtain the producer that sends messages to the topic.
 MQProducer producer;
 if (instanceId != null && instanceId != "") {
 producer = mqClient.getProducer(instanceId, topic);
 } else {
 producer = mqClient.getProducer(topic);
 }
 try {
 // Cyclically send eight messages.
 for (int i = 0; i < 8; i++) {
 TopicMessage pubMsg = new TopicMessage(
 // The content of the message.
 "hello mq!".getBytes(),
 // The tag of the message.
 "A"
);
 // The shard key that is used to distribute ordered messages to a specific
partition. Shard keys can be used to identify different partitions. A shard key is differen
t from a message key.
 pubMsg.setShardingKey(String.valueOf(i % 2));
 pubMsg.getProperties().put("a", String.valueOf(i));
 // Send the message in synchronous mode. If no exception is thrown, the mes
sage is sent.
 TopicMessage pubResultMsg = producer.publishMessage(pubMsg);
 // Send the message in synchronous mode. If no exception is thrown, the mes
sage is sent.
 System.out.println(new Date() + " Send mq message success. Topic is:" + top
ic + ", msgId is: " + pubResultMsg.getMessageId()
 + ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5());
 }
 } catch (Throwable e) {
 // Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + topic);
 e.printStackTrace();
 }
 mqClient.close();
 }
}

User Guide··SDK user guide Alibaba Cloud Message Queue

165 > Document Version: 20220816

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class OrderConsumer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 final String groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 final MQConsumer consumer;
 if (instanceId != null && instanceId != "") {
 consumer = mqClient.getConsumer(instanceId, topic, groupId, null);
 } else {
 consumer = mqClient.getConsumer(topic, groupId);
 }
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 do {
 List<Message> messages = null;
 try {
 // Consume messages in long polling mode. The consumer may pull partitional
ly ordered messages from multiple partitions. The consumer consumes messages from the same
partition in the order in which the messages are sent.
 // A consumer pulls partitionally ordered messages from a partition. If the

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 166

 // A consumer pulls partitionally ordered messages from a partition. If the
broker does not receive an acknowledgment (ACK) for a message after the message is consumed
, the consumer consumes the message again.
 // The consumer can consume the next batch of messages from a partition onl
y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 messages = consumer.consumeMessageOrderly(
 3, // The maximum number of messages that can be consumed at a tim
e. In this example, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this
example, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (Throwable e) {
 e.printStackTrace();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }
 }
 // No messages in the topic are available for consumption.
 if (messages == null || messages.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + ": no new message, co
ntinue!");
 continue;
 }
 // Specify the message consumption logic.
 System.out.println("Receive " + messages.size() + " messages:");
 for (Message message : messages) {
 System.out.println(message);
 System.out.println("ShardingKey: " + message.getShardingKey() + ", a:" + me
ssage.getProperties().get("a"));
 }
 // If the broker does not receive an ACK for a message from the consumer before
the timeout period for a message retry elapses, the broker delivers the message for consump
tion again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 {
 List<String> handles = new ArrayList<String>();
 for (Message message : messages) {
 handles.add(message.getReceiptHandle());
 }
 try {
 consumer.ackMessage(handles);
 } catch (Throwable e) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Ack message fail, requestId is:" + errors.getRe

User Guide··SDK user guide Alibaba Cloud Message Queue

167 > Document Version: 20220816

 System.out.println("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(err
orHandle).getErrorMessage());
 }
 }
 continue;
 }
 e.printStackTrace();
 }
 }
 } while (true);
 }
}

This topic provides sample code to show how to use the HTTP client SDK for Java to send and consume
scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

6.3.2.4. Send and consume scheduled messages and6.3.2.4. Send and consume scheduled messages and

delayed messagesdelayed messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 168

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages
The following sample code provides an example on how to send scheduled messages or delayed
messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQProducer;
import com.aliyun.mq.http.model.TopicMessage;
import java.util.Date;
public class Producer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 // Obtain the producer that sends messages to the topic.
 MQProducer producer;
 if (instanceId != null && instanceId != "") {
 producer = mqClient.getProducer(instanceId, topic);
 } else {
 producer = mqClient.getProducer(topic);
 }
 try {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++) {
 TopicMessage pubMsg;
 pubMsg = new TopicMessage(
 // The content of the message.
 "hello mq!".getBytes(),
 // The tag of the message.
 "A"
);
 // The custom property of the message.
 pubMsg.getProperties().put("a", String.valueOf(i));

User Guide··SDK user guide Alibaba Cloud Message Queue

169 > Document Version: 20220816

 pubMsg.getProperties().put("a", String.valueOf(i));
 // The key of the message.
 pubMsg.setMessageKey("MessageKey");
 // The period of time after which the broker delivers the message. In this
example, when the broker receives a message, the broker waits for 10 seconds before it deli
vers the message to the consumer. Set this parameter to a timestamp in milliseconds.
 // If the producer sends a scheduled message, set the parameter to the tim
e interval between the scheduled point in time and the current point in time.
 pubMsg.setStartDeliverTime(System.currentTimeMillis() + 10 * 1000);

 // Send the message in synchronous mode. If no exception is thrown, the messag
e is sent.
 TopicMessage pubResultMsg = producer.publishMessage(pubMsg);
 // Send the message in synchronous mode. If no exception is thrown, the messag
e is sent.
 System.out.println(new Date() + " Send mq message success. Topic is:" + topic
+ ", msgId is: " + pubResultMsg.getMessageId()
 + ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5());
 }
 } catch (Throwable e) {
 // Specify the logic that you want to use to resend or persist the message if t
he message fails to be sent and needs to be sent again.
 System.out.println(new Date() + " Send mq message failed. Topic is:" + topic);
 e.printStackTrace();
 }
 mqClient.close();
 }
}

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 170

);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 final String groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 final MQConsumer consumer;
 if (instanceId != null && instanceId != "") {
 consumer = mqClient.getConsumer(instanceId, topic, groupId, null);
 } else {
 consumer = mqClient.getConsumer(topic, groupId);
 }
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 do {
 List<Message> messages = null;
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 messages = consumer.consumeMessage(
 3,// The maximum number of messages that can be consumed at a time.
In this example, the value is set to 3. The maximum value that you can specify is 16.
 3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (Throwable e) {
 e.printStackTrace();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }
 }
 // No messages in the topic are available for consumption.
 if (messages == null || messages.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + ": no new message, co
ntinue!");
 continue;
 }
 // Specify the message consumption logic.
 for (Message message : messages) {
 System.out.println("Receive message: " + message);

User Guide··SDK user guide Alibaba Cloud Message Queue

171 > Document Version: 20220816

 System.out.println("Receive message: " + message);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 {
 List<String> handles = new ArrayList<String>();
 for (Message message : messages) {
 handles.add(message.getReceiptHandle());
 }
 try {
 consumer.ackMessage(handles);
 } catch (Throwable e) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(err
orHandle).getErrorMessage());
 }
 }
 continue;
 }
 e.printStackTrace();
 }
 }
 } while (true);
 }
}

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
Java to send and consume transactional messages.

Background informationBackground information

6.3.2.5. Send and consume transactional messages6.3.2.5. Send and consume transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 172

The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Java. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQTransProducer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import com.aliyun.mq.http.model.TopicMessage;
import java.util.List;
public class TransProducer {
 static void processCommitRollError(Throwable e) {
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Commit/Roll transaction error, requestId is:" + errors.getR
equestId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:" + errors.ge
tErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(errorHandle).ge
tErrorMessage());
 }
 }
 }
 }
 public static void main(String[] args) throws Throwable {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p

User Guide··SDK user guide Alibaba Cloud Message Queue

173 > Document Version: 20220816

int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 final String groupId = "${GROUP_ID}";
 final MQTransProducer mqTransProducer = mqClient.getTransProducer(instanceId, topic
, groupId);
 for (int i = 0; i < 4; i++) {
 TopicMessage topicMessage = new TopicMessage();
 topicMessage.setMessageBody("trans_msg");
 topicMessage.setMessageTag("a");
 topicMessage.setMessageKey(String.valueOf(System.currentTimeMillis()));
 // The time interval between the time when the transactional message is sent an
d the start time of the first transaction status check. Unit: seconds. Valid values: 10 to
300.
 // If the message is not committed or rolled back after the first transaction s
tatus check is performed, the broker initiates a request to check the status of the local t
ransaction at an interval of 10 seconds within the next 24 hours.
 topicMessage.setTransCheckImmunityTime(10);
 topicMessage.getProperties().put("a", String.valueOf(i));
 TopicMessage pubResultMsg = null;
 pubResultMsg = mqTransProducer.publishMessage(topicMessage);
 System.out.println("Send---->msgId is: " + pubResultMsg.getMessageId()
 + ", bodyMD5 is: " + pubResultMsg.getMessageBodyMD5()
 + ", Handle: " + pubResultMsg.getReceiptHandle()
);
 if (pubResultMsg != null && pubResultMsg.getReceiptHandle() != null) {
 if (i == 0) {
 // After the producer sends the transactional message, the broker obtai
ns the handle of the half message that corresponds to the transactional message and commits
or rolls back the transactional message based on the status of the handle.
 try {
 mqTransProducer.commit(pubResultMsg.getReceiptHandle());
 System.out.println(String.format("MessageId:%s, commit", pubResultM

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 174

 System.out.println(String.format("MessageId:%s, commit", pubResultM
sg.getMessageId()));
 } catch (Throwable e) {
 // If the transactional message is not committed or rolled back bef
ore the period of time specified by the TransCheckImmunityTime parameter for the handle of
the transactional message elapses, the commit or rollback operation fails.
 if (e instanceof AckMessageException) {
 processCommitRollError(e);
 continue;
 }
 }
 }
 }
 }
 // The client needs a thread or a process to process unacknowledged transactional m
essages.
 // Start a thread to process unacknowledged transactional messages.
 Thread t = new Thread(new Runnable() {
 public void run() {
 int count = 0;
 while(true) {
 try {
 if (count == 3) {
 break;
 }
 List<Message> messages = mqTransProducer.consumeHalfMessage(3, 3);
 if (messages == null) {
 System.out.println("No Half message!");
 continue;
 }
 System.out.println(String.format("Half---->MessageId:%s,Properties:
%s,Body:%s,Latency:%d",
 messages.get(0).getMessageId(),
 messages.get(0).getProperties(),
 messages.get(0).getMessageBodyString(),
 System.currentTimeMillis() - messages.get(0).getPublishTime
()));
 for (Message message : messages) {
 try {
 if (Integer.valueOf(message.getProperties().get("a")) == 1)
{
 // Confirm to commit the transactional message.
 mqTransProducer.commit(message.getReceiptHandle());
 count++;
 System.out.println(String.format("MessageId:%s, commit"
, message.getMessageId()));
 } else if (Integer.valueOf(message.getProperties().get("a")
) == 2
 && message.getConsumedTimes() > 1) {
 // Confirm to commit the transactional message.
 mqTransProducer.commit(message.getReceiptHandle());
 count++;
 System.out.println(String.format("MessageId:%s, commit"
, message.getMessageId()));
 } else if (Integer.valueOf(message.getProperties().get("a")

User Guide··SDK user guide Alibaba Cloud Message Queue

175 > Document Version: 20220816

) == 3) {
 // Confirm to roll back the transactional message.
 mqTransProducer.rollback(message.getReceiptHandle());
 count++;
 System.out.println(String.format("MessageId:%s, rollbac
k", message.getMessageId()));
 } else {
 // Do not perform operations. Check the status next tim
e.
 System.out.println(String.format("MessageId:%s, unknown
", message.getMessageId()));
 }
 } catch (Throwable e) {
 // If the transactional message is not committed or rolled
back before the timeout period specified by the TransCheckImmunityTime parameter for the ha
ndle of the transactional message elapses or before the timeout period specified for the ha
ndle of consumeHalfMessage elapses, the commit or rollback operation fails. In this example
, the timeout period for the handle of consumeHalfMessage is 10 seconds.
 processCommitRollError(e);
 }
 }
 } catch (Throwable e) {
 System.out.println(e.getMessage());
 }
 }
 }
 });
 t.start();
 t.join();
 mqClient.close();
 }
}

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

import com.aliyun.mq.http.MQClient;
import com.aliyun.mq.http.MQConsumer;
import com.aliyun.mq.http.common.AckMessageException;
import com.aliyun.mq.http.model.Message;
import java.util.ArrayList;
import java.util.List;
public class Consumer {
 public static void main(String[] args) {
 MQClient mqClient = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpo
int, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation p
ane, click Instances. On the Instances page, select the name of your instance. Then, view t
he HTTP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain
the AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 176

 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obt
ain the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For exam
ple, a topic that is used to send and consume normal messages cannot be used to send and co
nsume messages of other types.
 final String topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 final String groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 final String instanceId = "${INSTANCE_ID}";
 final MQConsumer consumer;
 if (instanceId != null && instanceId != "") {
 consumer = mqClient.getConsumer(instanceId, topic, groupId, null);
 } else {
 consumer = mqClient.getConsumer(topic, groupId);
 }
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 do {
 List<Message> messages = null;
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 messages = consumer.consumeMessage(
 3,// The maximum number of messages that can be consumed at a time.
In this example, the value is set to 3. The maximum value that you can specify is 16.
 3// The length of a long polling period. Unit: seconds. In this exa
mple, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (Throwable e) {
 e.printStackTrace();
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e1) {
 e1.printStackTrace();
 }
 }
 // No messages in the topic are available for consumption.
 if (messages == null || messages.isEmpty()) {
 System.out.println(Thread.currentThread().getName() + ": no new message, co
ntinue!");
 continue;

User Guide··SDK user guide Alibaba Cloud Message Queue

177 > Document Version: 20220816

 }
 // Specify the message consumption logic.
 for (Message message : messages) {
 System.out.println("Receive message: " + message);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the delivery retry interval elapses, the broker delivers the message for
consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 {
 List<String> handles = new ArrayList<String>();
 for (Message message : messages) {
 handles.add(message.getReceiptHandle());
 }
 try {
 consumer.ackMessage(handles);
 } catch (Throwable e) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 if (e instanceof AckMessageException) {
 AckMessageException errors = (AckMessageException) e;
 System.out.println("Ack message fail, requestId is:" + errors.getRe
questId() + ", fail handles:");
 if (errors.getErrorMessages() != null) {
 for (String errorHandle :errors.getErrorMessages().keySet()) {
 System.out.println("Handle:" + errorHandle + ", ErrorCode:"
+ errors.getErrorMessages().get(errorHandle).getErrorCode()
 + ", ErrorMsg:" + errors.getErrorMessages().get(err
orHandle).getErrorMessage());
 }
 }
 continue;
 }
 e.printStackTrace();
 }
 }
 } while (true);
 }
}

This topic describes how to prepare the environment before you use the HTTP client SDK for Go to send
and consume messages.

Environment requirementsEnvironment requirements
Go is installed. For more information, see Installing Go from source.

6.3.3. Go SDK6.3.3. Go SDK

6.3.3.1. Prepare the environment6.3.3.1. Prepare the environment

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 178

https://golang.org/doc/install/source?spm=a2c4g.11186623.2.4.509c3c4eTDXQo2

After Go is installed, you can run the go version command to check the version of Go that you
installed.

Install the SDK for GoInstall the SDK for Go
1. Run the following command to enable Go Modules: For more information about Go Modules, see

Go Modules Reference.

go env -w GO111MODULE=on

2. Run the following command to configure a Go Modules proxy:

go env -w GOPROXY=https://goproxy.cn,direct

3. Run the following command to init ialize Go Modules and generate the go.mod file:

go mod init

4. Run the following command to install the SDK for Go:

go get github.com/aliyunmq/mq-http-go-sdk

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for Go to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

6.3.3.2. Send and consume normal messages6.3.3.2. Send and consume normal messages

User Guide··SDK user guide Alibaba Cloud Message Queue

179 > Document Version: 20220816

https://go.dev/ref/mod

package main
import (
 "fmt"
 "time"
 "strconv"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the console. In the left-side navigation pane, click Instances. On the Instances page,
select the name of your instance. Then, view the HTTP endpoint on the Network Management ta
b.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqProducer := client.GetProducer(instanceId, topic)
 // Cyclically send four messages.
 for i := 0; i < 4; i++ {
 var msg mq_http_sdk.PublishMessageRequest
 msg = mq_http_sdk.PublishMessageRequest{
 MessageBody: "hello mq!", // The content of the message.
 MessageTag: "", // The tag of the message.
 Properties: map[string]string{}, // The properties of the message.
 }
 // The key of the message.
 msg.MessageKey = "MessageKey"
 // The custom property of the message.
 msg.Properties["a"] = strconv.Itoa(i)
 ret, err := mqProducer.PublishMessage(msg)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 fmt.Printf("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.MessageId, ret.
MessageBodyMD5)
 }
 time.Sleep(time.Duration(100) * time.Millisecond)
 }
}

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 180

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

package main
import (
 "fmt"
 "github.com/gogap/errors"
 "strings"
 "time"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 groupId := "${GROUP_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqConsumer := client.GetConsumer(instanceId, topic, groupId, "")
 for {
 endChan := make(chan int)
 respChan := make(chan mq_http_sdk.ConsumeMessageResponse)
 errChan := make(chan error)
 go func() {
 select {
 case resp := <-respChan:
 {
 // Specify the message consumption logic.
 var handles []string
 fmt.Printf("Consume %d messages---->\n", len(resp.Messages))
 for _, v := range resp.Messages {
 handles = append(handles, v.ReceiptHandle)
 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+

User Guide··SDK user guide Alibaba Cloud Message Queue

181 > Document Version: 20220816

 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+
 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n"+
 "\tBody: %s\n"+
 "\tProps: %s\n",
 v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
 v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 ackerr := mqConsumer.AckMessage(handles)
 if ackerr != nil {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 fmt.Println(ackerr)
 if errAckItems, ok := ackerr.(errors.ErrCode).Context()["Detail"].(
[]mq_http_sdk.ErrAckItem); ok {
 for _, errAckItem := range errAckItems {
 fmt.Printf("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
 errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsg)
 }
 } else {
 fmt.Println("ack err =", ackerr)
 }
 time.Sleep(time.Duration(3) * time.Second)
 } else {
 fmt.Printf("Ack ---->\n\t%s\n", handles)
 }
 endChan <- 1
 }
 case err := <-errChan:
 {
 // No messages in the topic are available for consumption.
 if strings.Contains(err.(errors.ErrCode).Error(), "MessageNotExist") {
 fmt.Println("\nNo new message, continue!")
 } else {
 fmt.Println(err)
 time.Sleep(time.Duration(3) * time.Second)
 }
 endChan <- 1
 }
 case <-time.After(35 * time.Second):
 {
 fmt.Println("Timeout of consumer message ??")
 endChan <- 1
 }
 }
 }()
 // In long polling mode, the default network timeout period is 35 seconds.
 // In long polling mode, if no message in the topic is available for consumption, t

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 182

 // In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.
 mqConsumer.ConsumeMessage(respChan, errChan,
 3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
 <-endChan
 }
}

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Go to send and consume
ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

package main
import (
 "fmt"
 "time"
 "strconv"
 "github.com/aliyunmq/mq-http-go-sdk"
)

6.3.3.3. Send and consume ordered messages6.3.3.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

183 > Document Version: 20220816

func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqProducer := client.GetProducer(instanceId, topic)
 // Cyclically send eight messages.
 for i := 0; i < 8; i++ {
 msg := mq_http_sdk.PublishMessageRequest{
 MessageBody: "hello mq!", // The content of the message.
 MessageTag: "", // The tag of the message.
 Properties: map[string]string{}, // The properties of the message.
 }
 // The key of the message.
 msg.MessageKey = "MessageKey"
 // The custom property of the message.
 msg.Properties["a"] = strconv.Itoa(i)
 // The shard key that is used to distribute ordered messages to a specific partitio
n. Shard keys can be used to identify different partitions. A shard key is different from a
message key.
 msg.ShardingKey = strconv.Itoa(i % 2)
 ret, err := mqProducer.PublishMessage(msg)
 if err != nil {
 fmt.Println(err)
 return
 } else {
 fmt.Printf("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.MessageId, ret.
MessageBodyMD5)
 }
 time.Sleep(time.Duration(100) * time.Millisecond)
 }
}

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 184

package main
import (
 "fmt"
 "github.com/gogap/errors"
 "strings"
 "time"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 groupId := "${GROUP_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqConsumer := client.GetConsumer(instanceId, topic, groupId, "")
 for {
 endChan := make(chan int)
 respChan := make(chan mq_http_sdk.ConsumeMessageResponse)
 errChan := make(chan error)
 go func() {
 select {
 case resp := <-respChan:
 {
 // Specify the message consumption logic.
 var handles []string
 fmt.Printf("Consume %d messages---->\n", len(resp.Messages))
 for _, v := range resp.Messages {
 handles = append(handles, v.ReceiptHandle)
 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+
 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n"+
 "\tBody: %s\n"+
 "\tProps: %s\n"+
 "\tShardingKey: %s\n",
 v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,

User Guide··SDK user guide Alibaba Cloud Message Queue

185 > Document Version: 20220816

 v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies, v.ShardingKey)
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 ackerr := mqConsumer.AckMessage(handles)
 if ackerr != nil {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 fmt.Println(ackerr)
 if errAckItems, ok := ackerr.(errors.ErrCode).Context()["Detail"].(
[]mq_http_sdk.ErrAckItem); ok {
 for _, errAckItem := range errAckItems {
 fmt.Printf("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
 errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.E
rrorMsg)
 }
 } else {
 fmt.Println("ack err =", ackerr)
 }
 time.Sleep(time.Duration(3) * time.Second)
 } else {
 fmt.Printf("Ack ---->\n\t%s\n", handles)
 }
 endChan <- 1
 }
 case err := <-errChan:
 {
 // No messages in the topic are available for consumption.
 if strings.Contains(err.(errors.ErrCode).Error(), "MessageNotExist") {
 fmt.Println("\nNo new message, continue!")
 } else {
 fmt.Println(err)
 time.Sleep(time.Duration(3) * time.Second)
 }
 endChan <- 1
 }
 case <-time.After(35 * time.Second):
 {
 fmt.Println("Timeout of consumer message ??")
 endChan <- 1
 }
 }
 }()
 // The consumer may pull partitionally ordered messages from multiple parti
tions. The consumer consumes the messages in each partition in the order in which the messa
ges are sent.
 // A consumer pulls partitionally ordered messages from a partition. If the
broker does not receive an ACK for a message after the message is consumed, the consumer co
nsumes the message again.
 // The consumer can consume the next batch of messages from a partition onl
y after all messages that are pulled from the partition in the previous batch are acknowled

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 186

y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.
 // In long polling mode, the default network timeout period is 35 seconds.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 mqConsumer.ConsumeMessageOrderly(respChan, errChan,
 3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
 <-endChan
 }
}

This topic provides sample code to show how to use the HTTP client SDK for Go to send and consume
scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Go. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages

6.3.3.4. Send and consume scheduled messages and6.3.3.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

187 > Document Version: 20220816

The following sample code provides an example on how to send scheduled messages or delayed
messages:

package main
import (
 "fmt"
 "time"
 "strconv"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqProducer := client.GetProducer(instanceId, topic)
 // Cyclically send four messages.
 for i := 0; i < 4; i++ {
 var msg mq_http_sdk.PublishMessageRequest
 msg = mq_http_sdk.PublishMessageRequest{
 MessageBody: "hello mq!", // The content of the message.
 MessageTag: "", // The tag of the message.
 Properties: map[string]string{}, // The properties of the message.
 }
 // The key of the message.
 msg.MessageKey = "MessageKey"
 // The custom property of the message.
 msg.Properties["a"] = strconv.Itoa(i)
 // The period of time after which the broker delivers the message. In this exam
ple, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.
 // If the producer sends a scheduled message, set the parameter to the time int
erval between the scheduled point in time and the current point in time.
 msg.StartDeliverTime = time.Now().UTC().Unix() * 1000 + 10 * 1000
 ret, err := mqProducer.PublishMessage(msg)
 if err != nil {
 fmt.Println(err)
 return

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 188

 return
 } else {
 fmt.Printf("Publish ---->\n\tMessageId:%s, BodyMD5:%s, \n", ret.MessageId, ret.
MessageBodyMD5)
 }
 time.Sleep(time.Duration(100) * time.Millisecond)
 }
}

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

package main
import (
 "fmt"
 "github.com/gogap/errors"
 "strings"
 "time"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 groupId := "${GROUP_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqConsumer := client.GetConsumer(instanceId, topic, groupId, "")
 for {
 endChan := make(chan int)
 respChan := make(chan mq_http_sdk.ConsumeMessageResponse)

User Guide··SDK user guide Alibaba Cloud Message Queue

189 > Document Version: 20220816

 errChan := make(chan error)
 go func() {
 select {
 case resp := <-respChan:
 {
 // Specify the message consumption logic.
 var handles []string
 fmt.Printf("Consume %d messages---->\n", len(resp.Messages))
 for _, v := range resp.Messages {
 handles = append(handles, v.ReceiptHandle)
 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+
 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n"+
 "\tBody: %s\n"+
 "\tProps: %s\n",
 v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
 v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 ackerr := mqConsumer.AckMessage(handles)
 if ackerr != nil {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 fmt.Println(ackerr)
 if errAckItems, ok := ackerr.(errors.ErrCode).Context()["Detail"].(
[]mq_http_sdk.ErrAckItem); ok {
 for _, errAckItem := range errAckItems {
 fmt.Printf("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
 errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsg)
 }
 } else {
 fmt.Println("ack err =", ackerr)
 }
 time.Sleep(time.Duration(3) * time.Second)
 } else {
 fmt.Printf("Ack ---->\n\t%s\n", handles)
 }
 endChan <- 1
 }
 case err := <-errChan:
 {
 // No messages in the topic are available for consumption.
 if strings.Contains(err.(errors.ErrCode).Error(), "MessageNotExist") {
 fmt.Println("\nNo new message, continue!")
 } else {
 fmt.Println(err)
 time.Sleep(time.Duration(3) * time.Second)
 }
 endChan <- 1

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 190

 endChan <- 1
 }
 case <-time.After(35 * time.Second):
 {
 fmt.Println("Timeout of consumer message ??")
 endChan <- 1
 }
 }
 }()
 // In long polling mode, the default network timeout period is 35 seconds.
 // In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.
 mqConsumer.ConsumeMessage(respChan, errChan,
 3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
 <-endChan
 }
}

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
Go to send and consume transactional messages.

Background informationBackground information
The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Go. For more information about the message routing feature, see Prepare the

6.3.3.5. Send and consume transactional messages6.3.3.5. Send and consume transactional messages

User Guide··SDK user guide Alibaba Cloud Message Queue

191 > Document Version: 20220816

environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

package main
import (
 "fmt"
 "github.com/gogap/errors"
 "strconv"
 "strings"
 "time"
 "github.com/aliyunmq/mq-http-go-sdk"
)
var loopCount = 0
func ProcessError(err error) {
 // If a transactional message is not committed or rolled back before the timeout period
specified by the TransCheckImmunityTime parameter for the handle of the transactional messa
ge elapses or before the timeout period specified for the handle of consumeHalfMessage elap
ses, the commit or rollback operation fails. In this example, the timeout period for the ha
ndle of consumeHalfMessage is 10 seconds.
 if err == nil {
 return
 }
 fmt.Println(err)
 for _, errAckItem := range err.(errors.ErrCode).Context()["Detail"].([]mq_http_sdk.ErrA
ckItem) {
 fmt.Printf("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
 errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.ErrorMsg)
 }
}
func ConsumeHalfMsg(mqTransProducer *mq_http_sdk.MQTransProducer) {
 for {
 if loopCount >= 10 {
 return
 }
 loopCount++
 endChan := make(chan int)
 respChan := make(chan mq_http_sdk.ConsumeMessageResponse)
 errChan := make(chan error)
 go func() {
 select {
 case resp := <-respChan:
 {
 // Specify the business processing logic.
 var handles []string
 fmt.Printf("Consume %d messages---->\n", len(resp.Messages))
 for _, v := range resp.Messages {
 handles = append(handles, v.ReceiptHandle)
 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+
 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 192

 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n\tBody: %s\n"+
 "\tProperties:%s, Key:%s, Timer:%d, Trans:%d\n",
 v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
 v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody,
 v.Properties, v.MessageKey, v.StartDeliverTime, v.TransCheckImm
unityTime)
 a, _ := strconv.Atoi(v.Properties["a"])
 var comRollErr error
 if a == 1 {
 // Confirm to commit the transactional message.
 comRollErr = (*mqTransProducer).Commit(v.ReceiptHandle)
 fmt.Println("Commit---------->")
 } else if a == 2 && v.ConsumedTimes > 1 {
 // Confirm to commit the transactional message.
 comRollErr = (*mqTransProducer).Commit(v.ReceiptHandle)
 fmt.Println("Commit---------->")
 } else if a == 3 {
 // Confirm to roll back the transactional message.
 comRollErr = (*mqTransProducer).Rollback(v.ReceiptHandle)
 fmt.Println("Rollback---------->")
 } else {
 // Do not perform operations. Check the status next time.
 fmt.Println("Unknown---------->")
 }
 ProcessError(comRollErr)
 }
 endChan <- 1
 }
 case err := <-errChan:
 {
 // No messages in the topic are available for consumption.
 if strings.Contains(err.(errors.ErrCode).Error(), "MessageNotExist") {
 fmt.Println("\nNo new message, continue!")
 } else {
 fmt.Println(err)
 time.Sleep(time.Duration(3) * time.Second)
 }
 endChan <- 1
 }
 case <-time.After(35 * time.Second):
 {
 fmt.Println("Timeout of consumer message ??")
 return
 }
 }
 }()
 // Check the status of half messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.
 (*mqTransProducer).ConsumeHalfMessage(respChan, errChan,
 3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.

User Guide··SDK user guide Alibaba Cloud Message Queue

193 > Document Version: 20220816

ample, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
 <-endChan
 }
}
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 groupId := "${GROUP_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqTransProducer := client.GetTransProducer(instanceId, topic, groupId)
 // The client needs a thread or a process to process unacknowledged transactional messa
ges.
 // Start a goroutine to process unacknowledged transactional messages.
 go ConsumeHalfMsg(&mqTransProducer)
 // Send four transactional messages. Commit one message after the message is sent. Chec
k the status of the half messages that correspond to the other three transactional messages
after the three messages are sent.
 for i := 0; i < 4; i++ {
 msg := mq_http_sdk.PublishMessageRequest{
 MessageBody:"I am transaction msg!",
 Properties: map[string]string{"a":strconv.Itoa(i)},
 }
 // The time interval between the time when the transactional message is sent and th
e start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.

 // If the message is not committed or rolled back after the first transaction statu
s check is performed, the broker initiates a request to check the status of the local trans
action at an interval of 10 seconds within the next 24 hours.
 msg.TransCheckImmunityTime = 10

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 194

 msg.TransCheckImmunityTime = 10
 resp, pubErr := mqTransProducer.PublishMessage(msg)
 if pubErr != nil {
 fmt.Println(pubErr)
 return
 }
 fmt.Printf("Publish ---->\n\tMessageId:%s, BodyMD5:%s, Handle:%s\n",
 resp.MessageId, resp.MessageBodyMD5, resp.ReceiptHandle)
 if i == 0 {
 // After the producer sends the transactional message, the broker obtains the h
andle of the half message that corresponds to the transactional message and commits or roll
s back the transactional message based on the status of the handle.
 ackErr := mqTransProducer.Commit(resp.ReceiptHandle)
 fmt.Println("Commit---------->")
 ProcessError(ackErr)
 }
 }
 for ; loopCount < 10 ; {
 time.Sleep(time.Duration(1) * time.Second)
 }
}

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

package main
import (
 "fmt"
 "github.com/gogap/errors"
 "strings"
 "time"
 "github.com/aliyunmq/mq-http-go-sdk"
)
func main() {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on
to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click I
nstances. On the Instances page, select the name of your instance. Then, view the HTTP endp
oint on the Network Management tab.
 endpoint := "${HTTP_ENDPOINT}"
 // The AccessKey ID that is used for identity verification. You can obtain the AccessKe
y ID in the Apsara Uni-manager Operations Console.
 accessKey := "${ACCESS_KEY}"
 // The AccessKey secret that is used for identity verification. You can obtain the Acce
ssKey secret in the Apsara Uni-manager Operations Console.
 secretKey := "${SECRET_KEY}"
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 // Each topic can be used to send and consume messages of a specific type. For example,
a topic that is used to send and consume normal messages cannot be used to send and consume
messages of other types.
 topic := "${TOPIC}"
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe

User Guide··SDK user guide Alibaba Cloud Message Queue

195 > Document Version: 20220816

 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 instanceId := "${INSTANCE_ID}"
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 groupId := "${GROUP_ID}"
 client := mq_http_sdk.NewAliyunMQClient(endpoint, accessKey, secretKey, "")
 mqConsumer := client.GetConsumer(instanceId, topic, groupId, "")
 for {
 endChan := make(chan int)
 respChan := make(chan mq_http_sdk.ConsumeMessageResponse)
 errChan := make(chan error)
 go func() {
 select {
 case resp := <-respChan:
 {
 // Specify the message consumption logic.
 var handles []string
 fmt.Printf("Consume %d messages---->\n", len(resp.Messages))
 for _, v := range resp.Messages {
 handles = append(handles, v.ReceiptHandle)
 fmt.Printf("\tMessageID: %s, PublishTime: %d, MessageTag: %s\n"+
 "\tConsumedTimes: %d, FirstConsumeTime: %d, NextConsumeTime: %d
\n"+
 "\tBody: %s\n"+
 "\tProps: %s\n",
 v.MessageId, v.PublishTime, v.MessageTag, v.ConsumedTimes,
 v.FirstConsumeTime, v.NextConsumeTime, v.MessageBody, v.Propert
ies)
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by the NextConsumeTime parameter elap
ses, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 ackerr := mqConsumer.AckMessage(handles)
 if ackerr != nil {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 fmt.Println(ackerr)
 if errAckItems, ok := ackerr.(errors.ErrCode).Context()["Detail"].(
[]mq_http_sdk.ErrAckItem); ok {
 for _, errAckItem := range errAckItems {
 fmt.Printf("\tErrorHandle:%s, ErrorCode:%s, ErrorMsg:%s\n",
 errAckItem.ErrorHandle, errAckItem.ErrorCode, errAckItem.Err
orMsg)
 }
 } else {
 fmt.Println("ack err =", ackerr)
 }
 time.Sleep(time.Duration(3) * time.Second)
 } else {
 fmt.Printf("Ack ---->\n\t%s\n", handles)
 }

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 196

 }
 endChan <- 1
 }
 case err := <-errChan:
 {
 // No messages in the topic are available for consumption.
 if strings.Contains(err.(errors.ErrCode).Error(), "MessageNotExist") {
 fmt.Println("\nNo new message, continue!")
 } else {
 fmt.Println(err)
 time.Sleep(time.Duration(3) * time.Second)
 }
 endChan <- 1
 }
 case <-time.After(35 * time.Second):
 {
 fmt.Println("Timeout of consumer message ??")
 endChan <- 1
 }
 }
 }()
 // In long polling mode, the default network timeout period is 35 seconds.
 // In long polling mode, if no message in the topic is available for consumption, t
he request is suspended on the broker for a specified period of time. If a message becomes
available for consumption within this period, the broker immediately sends a response to th
e consumer. In this example, the period is set to 3 seconds.
 mqConsumer.ConsumeMessage(respChan, errChan,
 3, // The maximum number of messages that can be consumed at a time. In this ex
ample, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this example, the
value is set to 3. The maximum value that you can specify is 30.
)
 <-endChan
 }
}

This topic describes how to prepare the environment before you use the HTTP client SDK for Python to
send and consume messages.

Environment requirementsEnvironment requirements
Install Python. For more information, visit the official website of Python. You must install an
appropriate version of Python based on the following instruct ions:

If the version of your SDK is V1.0.0, make sure that the version of Python you installed is 2.5 or is
later than 2.5 but earlier than 3.0.

If the version of your SDK is later than V1.0.0, make sure that the version of Python you installed is
2.5 or later.

6.3.4. Python SDK6.3.4. Python SDK

6.3.4.1. Prepare the environment6.3.4.1. Prepare the environment

User Guide··SDK user guide Alibaba Cloud Message Queue

197 > Document Version: 20220816

https://www.python.org/downloads/?spm=a2c4g.11186623.2.4.332a78c8iTQUSv

The pip tool is installed. For more information, see Install pip.

Not e Not e The pip tool is provided in Python 3.4 or later by default . If the version of Python you
installed is 3.4 or later, you do not need to install the pip tool.

After Python is installed, you can run the python -V command to view the version of Python that
you installed.

Install the SDK for PythonInstall the SDK for Python
Run the following command to install the SDK for Python:

pip install mq_http_sdk

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for Python to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

6.3.4.2. Send and consume normal messages6.3.4.2. Send and consume normal messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 198

https://pip.pypa.io/en/stable/installing/

import sys
from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_producer import *
from mq_http_sdk.mq_client import *
import time
Initialize a producer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
producer = mq_client.get_producer(instance_id, topic_name)
Cyclically send four messages.
msg_count = 4
print("%sPublish Message To %s\nTopicName:%s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic_name, msg_count))
try:
 for i in range(msg_count):
 msg = TopicMessage(
 # The content of the message.
 "I am test message %s.hello" % i,
 # The tag of the message.
 "tag %s" % i
)
 # The custom property of the message.
 msg.put_property("a", "i")
 # The key of the message.
 msg.set_message_key("MessageKey")
 re_msg = producer.publish_message(msg)
 print("Publish Message Succeed. MessageID:%s, BodyMD5:%s" % (re_msg.message_id,
re_msg.message_body_md5))
except MQExceptionBase as e:
 if e.type == "TopicNotExist":
 print("Topic not exist, please create it.")
 sys.exit(1)
 print("Publish Message Fail. Exception:%s" % e)

User Guide··SDK user guide Alibaba Cloud Message Queue

199 > Document Version: 20220816

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_consumer import *
from mq_http_sdk.mq_client import *
Initialize a consumer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
consumer = mq_client.get_consumer(instance_id, topic_name, group_id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
. In this example, the period is set to 3 seconds.
The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.
wait_seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print(("%sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:%s\nWaitSeconds:%s\
n" \
 % (10 * "=", 10 * "=", topic_name, group_id, wait_seconds)))
while True:
 try:
 # Consume messages in long polling mode.
 recv_msgs = consumer.consume_message(batch, wait_seconds)
 for msg in recv_msgs:
 print(("Receive, MessageId: %s\nMessageBodyMD5: %s \
 \nMessageTag: %s\nConsumedTimes: %s \
 \nPublishTime: %s\nBody: %s \
 \nNextConsumeTime: %s \

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 200

 \nNextConsumeTime: %s \
 \nReceiptHandle: %s \
 \nProperties: %s\n" % \
 (msg.message_id, msg.message_body_md5,
 msg.message_tag, msg.consumed_times,
 msg.publish_time, msg.message_body,
 msg.next_consume_time, msg.receipt_handle, msg.properties)))
 print(msg.get_property(""))
 except MQExceptionBase as e:
 # No messages in the topic are available for consumption.
 if e.type == "MessageNotExist":
 print(("No new message! RequestId: %s" % e.req_id))
 continue
 print(("Consume Message Fail! Exception:%s\n" % e))
 time.sleep(2)
 continue
 # If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next_consume_time parameter elapses, the b
roker delivers the message for consumption again.
 # A unique timestamp is specified for the handle of a message each time the message is
consumed.
 try:
 receipt_handle_list = [msg.receipt_handle for msg in recv_msgs]
 consumer.ack_message(receipt_handle_list)
 print(("Ak %s Message Succeed.\n\n" % len(receipt_handle_list)))
 except MQExceptionBase as e:
 print(("\nAk Message Fail! Exception:%s" % e))
 # If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
 if e.sub_errors:
 for sub_error in e.sub_errors:
 print(("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
 (sub_error["ReceiptHandle"], sub_error["ErrorCode"], sub_error["Error
Message"])))

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Python to send and
consume ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

6.3.4.3. Send and consume ordered messages6.3.4.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

201 > Document Version: 20220816

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

import sys
from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_producer import *
from mq_http_sdk.mq_client import *
Initialize a producer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
producer = mq_client.get_producer(instance_id, topic_name)
Cyclically send eight messages.
msg_count = 8
print("%sPublish Message To %s\nTopicName:%s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic_name, msg_count))
try:
 for i in range(msg_count):
 msg = TopicMessage(
 # The content of the message.
 "I am test message %s.hello" % i,
 # The tag of the message.
 "tag %s" % i

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 202

)
 # The custom property of the message.
 msg.put_property("a", str(i))
 # The shard key that is used to distribute ordered messages to a specific partition
. Shard keys can be used to identify different partitions. A shard key is different from a
message key.
 msg.set_sharding_key(str(i % 3))
 re_msg = producer.publish_message(msg)
 print("Publish Message Succeed. MessageID:%s, BodyMD5:%s" % (re_msg.message_id, re_
msg.message_body_md5))
except MQExceptionBase as e:
 if e.type == "TopicNotExist":
 print("Topic not exist, please create it.")
 sys.exit(1)
 print("Publish Message Fail. Exception:%s" % e)

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_consumer import *
from mq_http_sdk.mq_client import *
Initialize a consumer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
consumer = mq_client.get_consumer(instance_id, topic_name, group_id)
Consume messages in long polling mode. The consumer may pull partitionally ordered messag
es from multiple partitions. The consumer consumes the messages in the same partition in th
e order in which the messages are sent.
A consumer pulls partitionally ordered messages from a partition. If the broker does not

User Guide··SDK user guide Alibaba Cloud Message Queue

203 > Document Version: 20220816

receive an acknowledgment (ACK) for a message after the message is consumed, the consumer c
onsumes the message again.
The consumer can consume the next batch of messages from a partition only after all the m
essages that are pulled from the partition in the previous batch are acknowledged to be con
sumed.
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
. In this example, the period is set to 3 seconds.
wait_seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print(("%sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:%s\nWaitSeconds:%s\
n" \
 % (10 * "=", 10 * "=", topic_name, group_id, wait_seconds)))
while True:
 try:
 recv_msgs = consumer.consume_message_orderly(batch, wait_seconds)
 print("=======>Receive %d messages:" % len(recv_msgs))
 for msg in recv_msgs:
 print("\tMessageId: %s, MessageBodyMD5: %s,NextConsumeTime: %s,ConsumedTimes: %
s,PublishTime: %s\n\tBody: %s \
 \n\tReceiptHandle: %s \
 \n\tProperties: %s,ShardingKey: %s\n" % \
 (msg.message_id, msg.message_body_md5,
 msg.next_consume_time, msg.consumed_times,
 msg.publish_time, msg.message_body,
 msg.receipt_handle, msg.properties, msg.get_sharding_key()))
 except MQExceptionBase as e:
 if e.type == "MessageNotExist":
 print(("No new message! RequestId: %s" % e.req_id))
 continue
 print(("Consume Message Fail! Exception:%s\n" % e))
 time.sleep(2)
 continue
 # If the broker does not receive an ACK for a message from the consumer before the peri
od of time specified by the msg.next_consume_time parameter elapses, the broker delivers th
e message for consumption again.
 # A unique timestamp is specified for the handle of a message each time the message is
consumed.
 try:
 receipt_handle_list = [msg.receipt_handle for msg in recv_msgs]
 consumer.ack_message(receipt_handle_list)
 print(("========>Ak %s Message Succeed.\n\n" % len(receipt_handle_list)))
 except MQExceptionBase as e:
 print(("\nAk Message Fail! Exception:%s" % e))
 # If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
 if e.sub_errors:
 for sub_error in e.sub_errors:
 print(("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
 (sub_error["ReceiptHandle"], sub_error["ErrorCode"], sub_error["Error
Message"])))

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 204

This topic provides sample code to show how to use the HTTP client SDK for Python to send and
consume scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages
The following sample code provides an example on how to send scheduled messages or delayed
messages:

import sys
from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_producer import *
from mq_http_sdk.mq_client import *
import time
Initialize a producer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.

6.3.4.4. Send and consume scheduled messages and6.3.4.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

205 > Document Version: 20220816

ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
producer = mq_client.get_producer(instance_id, topic_name)
Cyclically send four messages.
msg_count = 4
print("%sPublish Message To %s\nTopicName:%s\nMessageCount:%s\n" % (10 * "=", 10 * "=", top
ic_name, msg_count))
try:
 for i in range(msg_count):
 msg = TopicMessage(
 # The content of the message.
 "I am test message %s.hello" % i,
 # The tag of the message.
 "tag1"
)
 # The property of the message.
 msg.put_property("a", "i")
 # The key of the message.
 msg.set_message_key("MessageKey")
 # The period of time after which the broker delivers the message. In this examp
le, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.
 # If the producer sends a scheduled message, set the parameter to the time inte
rval between the scheduled point in time and the current point in time.
 msg.set_start_deliver_time(int(round(time.time() * 1000)) + 10 * 1000)
 re_msg = producer.publish_message(msg)
 print("Publish Timer Message Succeed. MessageID:%s, BodyMD5:%s" % (re_msg.messa
ge_id, re_msg.message_body_md5))
except MQExceptionBase as e:
 if e.type == "TopicNotExist":
 print("Topic not exist, please create it.")
 sys.exit(1)
 print("Publish Message Fail. Exception:%s" % e)

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_consumer import *
from mq_http_sdk.mq_client import *

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 206

from mq_http_sdk.mq_client import *
Initialize a consumer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
consumer = mq_client.get_consumer(instance_id, topic_name, group_id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
. In this example, the period is set to 3 seconds.
The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.
wait_seconds = 3
The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print(("%sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:%s\nWaitSeconds:%s\
n" \
 % (10 * "=", 10 * "=", topic_name, group_id, wait_seconds)))
while True:
 try:
 # Consume messages in long polling mode.
 recv_msgs = consumer.consume_message(batch, wait_seconds)
 for msg in recv_msgs:
 print(("Receive, MessageId: %s\nMessageBodyMD5: %s \
 \nMessageTag: %s\nConsumedTimes: %s \
 \nPublishTime: %s\nBody: %s \
 \nNextConsumeTime: %s \
 \nReceiptHandle: %s \
 \nProperties: %s\n" % \
 (msg.message_id, msg.message_body_md5,
 msg.message_tag, msg.consumed_times,
 msg.publish_time, msg.message_body,
 msg.next_consume_time, msg.receipt_handle, msg.properties)))

User Guide··SDK user guide Alibaba Cloud Message Queue

207 > Document Version: 20220816

 msg.next_consume_time, msg.receipt_handle, msg.properties)))
 print(msg.get_property(""))
 except MQExceptionBase as e:
 # No messages in the topic are available for consumption.
 if e.type == "MessageNotExist":
 print(("No new message! RequestId: %s" % e.req_id))
 continue
 print(("Consume Message Fail! Exception:%s\n" % e))
 time.sleep(2)
 continue
 # If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next_consume_time parameter elapses, the b
roker delivers the message for consumption again.
 # A unique timestamp is specified for the handle of a message each time the message is
consumed.
 try:
 receipt_handle_list = [msg.receipt_handle for msg in recv_msgs]
 consumer.ack_message(receipt_handle_list)
 print(("Ak %s Message Succeed.\n\n" % len(receipt_handle_list)))
 except MQExceptionBase as e:
 print(("\nAk Message Fail! Exception:%s" % e))
 # If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
 if e.sub_errors:
 for sub_error in e.sub_errors:
 print(("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
 (sub_error["ReceiptHandle"], sub_error["ErrorCode"], sub_error["Error
Message"])))

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
Python to send and consume transactional messages.

Background informationBackground information
The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

6.3.4.5. Send and consume transactional messages6.3.4.5. Send and consume transactional messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 208

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for Python. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

#!/usr/bin/env python
coding=utf8
import sys
from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_producer import *
from mq_http_sdk.mq_client import *
import time
import threading
Initialize a producer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that you created in the Resource Access Management (RAM) console. Th
e AccessKey ID is used for identity verification.
 "${ACCESS_KEY}",
 # The AccessKey secret that you created in the RAM console. The AccessKey secret is use
d for identity verification.
 "${SECRET_KEY}"
)
The topic to which you want to send messages. The topic is created in the Message Queue f
or Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the
Message Queue for Apache RocketMQ console.
instance_id = "${INSTANCE_ID}"
Cyclically send four transactional messages.
msg_count = 4
print("%sPublish Transaction Message To %s\nTopicName:%s\nMessageCount:%s\n" \
 % (10 * "=", 10 * "=", topic_name, msg_count))
def process_trans_error(exp):
 print("\nCommit/Roll Transaction Message Fail! Exception:%s" % exp)
 # If a transactional message is not committed or rolled back before the timeout period

User Guide··SDK user guide Alibaba Cloud Message Queue

209 > Document Version: 20220816

 # If a transactional message is not committed or rolled back before the timeout period
specified by the TransCheckImmunityTime parameter for the handle of the transactional messa
ge elapses or before the timeout period specified for the handle of consumeHalfMessage elap
ses, the commit or rollback operation fails. In this example, the timeout period for the ha
ndle of consumeHalfMessage is 10 seconds.
 if exp.sub_errors:
 for sub_error in exp.sub_errors:
 print("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
 (sub_error["ReceiptHandle"], sub_error["ErrorCode"], sub_error["ErrorMess
age"]))
The client requires a thread or a process to process unacknowledged transactional message
s.
Start a thread to process unacknowledged transactional messages.
class ConsumeHalfMessageThread(threading.Thread):
 def __init__(self):
 threading.Thread.__init__(self)
 self.count = 0
 # Create another client.
 self.mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoi
nt, log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pa
ne, click Instances. On the Instances page, select the name of your instance. Then, view th
e endpoint in the HTTP Endpoint section on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain t
he AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obta
in the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
 self.trans_producer = self.mq_client.get_trans_producer(instance_id, topic_name, gr
oup_id)
 def run(self):
 while 1:
 if self.count == 3:
 break;
 try:
 half_msgs = self.trans_producer.consume_half_message(1, 3)
 for half_msg in half_msgs:
 print("Receive Half Message, MessageId: %s\nMessageBodyMD5: %s \
 \nMessageTag: %s\nConsumedTimes: %s \
 \nPublishTime: %s\nBody: %s \
 \nNextConsumeTime: %s \
 \nReceiptHandle: %s \
 \nProperties: %s" % \
 (half_msg.message_id, half_msg.message_body_md5,
 half_msg.message_tag, half_msg.consumed_times,
 half_msg.publish_time, half_msg.message_body,
 half_msg.next_consume_time, half_msg.receipt_handle, half_msg.pr
operties))
 a = int(half_msg.get_property("a"))
 try:
 if a == 1:
 # Confirm to commit the transactional message.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 210

 self.trans_producer.commit(half_msg.receipt_handle)
 self.count += 1
 print("------>commit")
 elif a == 2 and half_msg.consumed_times > 1:
 # Confirm to commit the transactional message.
 self.trans_producer.commit(half_msg.receipt_handle)
 self.count += 1
 print("------>commit")
 elif a == 3:
 # Confirm to roll back the transactional message.
 self.trans_producer.rollback(half_msg.receipt_handle)
 self.count += 1
 print("------>rollback")
 else:
 # Do not perform operations. Check the status next time.
 print("------>unknown")
 except MQExceptionBase as rec_commit_roll_e:
 process_trans_error(rec_commit_roll_e)
 except MQExceptionBase as half_e:
 if half_e.type == "MessageNotExist":
 print("No half message! RequestId: %s" % half_e.req_id)
 continue
 print("Consume half message Fail! Exception:%s\n" % half_e)
 break
consume_half_thread = ConsumeHalfMessageThread()
consume_half_thread.setDaemon(True)
consume_half_thread.start()
try:
 trans_producer = mq_client.get_trans_producer(instance_id, topic_name, group_id)
 for i in range(msg_count):
 msg = TopicMessage(
 # The content of the message.
 "I am test message %s." % i,
 # The tag of the message.
 "tagA"
)
 # The custom property of the message.
 msg.put_property("xy", i)
 # The key of the message.
 msg.set_message_key("MessageKey")
 # The time interval between the time when the transactional message is sent and the
start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.
 # If the message is not committed or rolled back after the first transaction status
check is performed, the broker initiates a request to check the status of the local transac
tion at an interval of 10 seconds within the next 24 hours.
 msg.set_trans_check_immunity_time(10)
 re_msg = trans_producer.publish_message(msg)
 print("Publish Transaction Message Succeed. MessageID:%s, BodyMD5:%s, Handle:%s" \
 % (re_msg.message_id, re_msg.message_body_md5, re_msg.receipt_handle))
 time.sleep(1)
 if i == 0:
 # After the producer sends the transactional message, the broker obtains the ha
ndle of the half message that corresponds to the transactional message and commits or rolls
back the transactional message based on the status of the handle.
 try:

User Guide··SDK user guide Alibaba Cloud Message Queue

211 > Document Version: 20220816

 try:
 trans_producer.commit(re_msg.receipt_handle)
 except MQExceptionBase as pub_commit_roll_e:
 process_trans_error(pub_commit_roll_e)
except MQExceptionBase as pub_e:
 if pub_e.type == "TopicNotExist":
 print("Topic not exist, please create it.")
 sys.exit(1)
 print("Publish Message Fail. Exception:%s" % pub_e)
while 1:
 if not consume_half_thread.is_alive():
 break
 time.sleep(1)

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

from mq_http_sdk.mq_exception import MQExceptionBase
from mq_http_sdk.mq_consumer import *
from mq_http_sdk.mq_client import *
Initialize a consumer client.
mq_client = MQClient(
 # The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on t
o the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click In
stances. On the Instances page, select the name of your instance. Then, view the HTTP endpo
int on the Network Management tab.
 "${HTTP_ENDPOINT}",
 # The AccessKey ID that is used for identity verification. You can obtain the AccessKey
ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 # The AccessKey secret that is used for identity verification. You can obtain the Acces
sKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
)
The topic from which you want to consume messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
topic_name = "${TOPIC}"
The ID of the group that you created in the Message Queue for Apache RocketMQ console.
group_id = "${GROUP_ID}"
The ID of the instance to which the topic belongs. The instance is created in the Message
Queue for Apache RocketMQ console.
If the instance has a namespace, specify the ID of the instance. If the instance does not
have a namespace, set the instance ID to null or an empty string. You can check whether you
r instance has a namespace on the Instances page in the RocketMQ console.
instance_id = "${INSTANCE_ID}"
consumer = mq_client.get_consumer(instance_id, topic_name, group_id)
In long polling mode, if no message in the topic is available for consumption, the reques
t is suspended on the broker for a specified period of time. If a message becomes available
for consumption within this period, the broker immediately sends a response to the consumer
. In this example, the period is set to 3 seconds.
The length of a long polling period. Unit: seconds. In this example, the value is set to
3. The maximum value that you can specify is 30.
wait_seconds = 3

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 212

The maximum number of messages that can be consumed at a time. In this example, the value
is set to 3. The maximum value that you can specify is 16.
batch = 3
print(("%sConsume And Ak Message From Topic%s\nTopicName:%s\nMQConsumer:%s\nWaitSeconds:%s\
n" \
 % (10 * "=", 10 * "=", topic_name, group_id, wait_seconds)))
while True:
 try:
 # Consume messages in long polling mode.
 recv_msgs = consumer.consume_message(batch, wait_seconds)
 for msg in recv_msgs:
 print(("Receive, MessageId: %s\nMessageBodyMD5: %s \
 \nMessageTag: %s\nConsumedTimes: %s \
 \nPublishTime: %s\nBody: %s \
 \nNextConsumeTime: %s \
 \nReceiptHandle: %s \
 \nProperties: %s\n" % \
 (msg.message_id, msg.message_body_md5,
 msg.message_tag, msg.consumed_times,
 msg.publish_time, msg.message_body,
 msg.next_consume_time, msg.receipt_handle, msg.properties)))
 print(msg.get_property(""))
 except MQExceptionBase as e:
 # No messages in the topic are available for consumption.
 if e.type == "MessageNotExist":
 print(("No new message! RequestId: %s" % e.req_id))
 continue
 print(("Consume Message Fail! Exception:%s\n" % e))
 time.sleep(2)
 continue
 # If the broker does not receive an acknowledgment (ACK) for a message from the consume
r before the period of time specified by the msg.next_consume_time parameter elapses, the b
roker delivers the message for consumption again.
 # A unique timestamp is specified for the handle of a message each time the message is
consumed.
 try:
 receipt_handle_list = [msg.receipt_handle for msg in recv_msgs]
 consumer.ack_message(receipt_handle_list)
 print(("Ak %s Message Succeed.\n\n" % len(receipt_handle_list)))
 except MQExceptionBase as e:
 print(("\nAk Message Fail! Exception:%s" % e))
 # If the handle of a message times out, the broker cannot receive an ACK for the me
ssage from the consumer.
 if e.sub_errors:
 for sub_error in e.sub_errors:
 print(("\tErrorHandle:%s,ErrorCode:%s,ErrorMsg:%s" % \
 (sub_error["ReceiptHandle"], sub_error["ErrorCode"], sub_error["Error
Message"])))

6.3.5. Node.js SDK6.3.5. Node.js SDK

User Guide··SDK user guide Alibaba Cloud Message Queue

213 > Document Version: 20220816

This topic describes how to prepare the environment before you use the HTTP client SDK for Node.js to
send and consume messages.

Environment requirementsEnvironment requirements
Node.js 7.6.0 or later is installed. For more information, see Install Node.js.

After Node.js is installed, you can run the node -V command to view the version of Node.js that you
installed.

Install the SDK for Node.jsInstall the SDK for Node.js
Run the following command to install the SDK for Node.js:

npm i @aliyunmq/mq-http-sdk

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for Node.js to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

6.3.5.1. Prepare the environment6.3.5.1. Prepare the environment

6.3.5.2. Send and consume normal messages6.3.5.2. Send and consume normal messages

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 214

https://nodejs.org/en/

const {
 MQClient,
 MessageProperties
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that you created in the Resource Access Management (RAM) console for id
entity verification. The AccessKey ID is used for identity verification.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that you created in the RAM console for identity verification. The
AccessKey secret is used for identity verification.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const producer = client.getProducer(instanceId, topic);
(async function(){
 try {
 // Cyclically send four messages.
 for(var i = 0; i < 4; i++) {
 let res;
 msgProps = new MessageProperties();
 // The custom property of the message.
 msgProps.putProperty("a", i);
 // The key of the message.
 msgProps.messageKey("MessageKey");
 res = await producer.publishMessage("hello mq.", "", msgProps);
 console.log("Publish message: MessageID:%s,BodyMD5:%s", res.body.MessageId, res.body.
MessageBodyMD5);
 }
 } catch(e) {
 // Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.
 console.log(e)
 }
})();

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

const {
 MQClient
} = require('@aliyunmq/mq-http-sdk');

User Guide··SDK user guide Alibaba Cloud Message Queue

215 > Document Version: 20220816

} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const consumer = client.getConsumer(instanceId, topic, groupId);
(async function(){
 // Cyclically consume messages.
 while(true) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.
 res = await consumer.consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
);
 if (res.code == 200) {
 // Specify the message consumption logic.
 console.log("Consume Messages, requestId:%s", res.requestId);
 const handles = res.body.map((message) => {
 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume
Time:%d,ConsumedTimes:%d,Body:%s" +
 ",Props:%j,MessageKey:%s,Prop-A:%s",
 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
 message.MessageBody,message.Properties,message.MessageKey,message.Properties.
a);
 return message.ReceiptHandle;
 });
 // If the broker does not receive an acknowledgment (ACK) for a message from the co
nsumer before the period of time specified by the message.NextConsumeTime parameter elapses

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 216

nsumer before the period of time specified by the message.NextConsumeTime parameter elapses
, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the messag
e is consumed.
 res = await consumer.ackMessage(handles);
 if (res.code != 204) {
 // If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
 console.log("Ack Message Fail:");
 const failHandles = res.body.map((error)=>{
 console.log("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
 return error.ReceiptHandle;
 });
 handles.forEach((handle)=>{
 if (failHandles.indexOf(handle) < 0) {
 console.log("\tSucHandle:%s\n", handle);
 }
 });
 } else {
 // Obtain an ACK from the consumer.
 console.log("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',')
);
 }
 }
 } catch(e) {
 if (e.Code.indexOf("MessageNotExist") > -1) {
 // If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
 console.log("Consume Message: no new message, RequestId:%s, Code:%s", e.RequestId,
e.Code);
 } else {
 console.log(e);
 }
 }
 }
})();

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for Node.js to send and
consume ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A

6.3.5.3. Send and consume ordered messages6.3.5.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

217 > Document Version: 20220816

Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 218

const {
 MQClient,
 MessageProperties
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const producer = client.getProducer(instanceId, topic);
(async function(){
 try {
 // Cyclically send eight messages.
 for(var i = 0; i < 8; i++) {
 msgProps = new MessageProperties();
 // The custom property of the message.
 msgProps.putProperty("a", i);
 // The shard key that is used to distribute ordered messages to a specific partition.
Shard keys can be used to identify different partitions. A shard key is different from a me
ssage key.
 msgProps.shardingKey(i % 2);
 res = await producer.publishMessage("hello mq.", "", msgProps);
 console.log("Publish message: MessageID:%s,BodyMD5:%s", res.body.MessageId, res.body.
MessageBodyMD5);
 }
 } catch(e) {
 // Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.
 console.log(e)
 }
})();

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

const {
 MQClient,

User Guide··SDK user guide Alibaba Cloud Message Queue

219 > Document Version: 20220816

 MQClient,
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "GID_http";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const consumer = client.getConsumer(instanceId, topic, groupId);
(async function(){
 // Cyclically consume messages.
 while(true) {
 try {
 // Consume messages in long polling mode. The consumer may pull partitionally ordered
messages from multiple partitions. The consumer consumes messages from the same partition i
n the order in which the messages are sent.
 // A consumer pulls partitionally ordered messages from a partition. If the broker do
es not receive an acknowledgment (ACK) for a message after the message is consumed, the con
sumer consumes the message again.
 // The consumer can consume the next batch of messages from a partition only after al
l messages that are pulled from the partition in the previous batch are acknowledged to be
consumed.
 // In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.
 res = await consumer.consumeMessageOrderly(
 3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
);
 if (res.code == 200) {
 // Specify the message consumption logic.
 console.log("Consume Messages, requestId:%s", res.requestId);
 const handles = res.body.map((message) => {
 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume
Time:%d,ConsumedTimes:%d,Body:%s" +

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 220

Time:%d,ConsumedTimes:%d,Body:%s" +
 ",Props:%j,ShardingKey:%s,Prop-A:%s,Tag:%s",
 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
 message.MessageBody,message.Properties,message.ShardingKey,message.Properties
.a,message.MessageTag);
 return message.ReceiptHandle;
 });
 // If the broker does not receive an ACK for a message from the consumer before the
period of time specified by the message.NextConsumeTime parameter elapses, the broker deliv
ers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the messag
e is consumed.
 res = await consumer.ackMessage(handles);
 if (res.code != 204) {
 // If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
 console.log("Ack Message Fail:");
 const failHandles = res.body.map((error)=>{
 console.log("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
 return error.ReceiptHandle;
 });
 handles.forEach((handle)=>{
 if (failHandles.indexOf(handle) < 0) {
 console.log("\tSucHandle:%s\n", handle);
 }
 });
 } else {
 // Obtain an ACK from the consumer.
 console.log("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',')
);
 }
 }
 } catch(e) {
 if (e.Code.indexOf("MessageNotExist") > -1) {
 // If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
 console.log("Consume Message: no new message, RequestId:%s, Code:%s", e.RequestId,
e.Code);
 } else {
 console.log(e);
 }
 }
 }
})();

6.3.5.4. Send and consume scheduled messages and6.3.5.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

221 > Document Version: 20220816

This topic provides sample code to show how to use the HTTP client SDK for Node.js to send and
consume scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages
The following sample code provides an example on how to send scheduled messages or delayed
messages:

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 222

const {
 MQClient,
 MessageProperties
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const producer = client.getProducer(instanceId, topic);
(async function(){
 try {
 // Cyclically send four messages.
 for(var i = 0; i < 4; i++) {
 let res;
 msgProps = new MessageProperties();
 // The custom property of the message.
 msgProps.putProperty("a", i);
 // The key of the message.
 msgProps.messageKey("MessageKey");
 // The period of time after which the broker delivers the message. In this example, w
hen the broker receives a message, the broker waits for 10 seconds before it delivers the m
essage to the consumer. Set this parameter to a timestamp in milliseconds.
 // If the producer sends a scheduled message, set the parameter to the time interval
between the scheduled point in time and the current point in time.
 msgProps.startDeliverTime(Date.now() + 10 * 1000);
 res = await producer.publishMessage("hello mq. timer msg!", "TagA", msgProps);
 console.log("Publish message: MessageID:%s,BodyMD5:%s", res.body.MessageId, res.body.
MessageBodyMD5);
 }
 } catch(e) {
 // Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.
 console.log(e)
 }
})();

User Guide··SDK user guide Alibaba Cloud Message Queue

223 > Document Version: 20220816

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

const {
 MQClient
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const consumer = client.getConsumer(instanceId, topic, groupId);
(async function(){
 // Cyclically consume messages.
 while(true) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.
 res = await consumer.consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
);
 if (res.code == 200) {
 // Specify the message consumption logic.
 console.log("Consume Messages, requestId:%s", res.requestId);
 const handles = res.body.map((message) => {
 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume
Time:%d,ConsumedTimes:%d,Body:%s" +
 ",Props:%j,MessageKey:%s,Prop-A:%s",
 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 224

 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
 message.MessageBody,message.Properties,message.MessageKey,message.Properties.
a);
 return message.ReceiptHandle;
 });
 // If the broker does not receive an acknowledgment (ACK) for a message from the co
nsumer before the period of time specified by the message.NextConsumeTime parameter elapses
, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the messag
e is consumed.
 res = await consumer.ackMessage(handles);
 if (res.code != 204) {
 // If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
 console.log("Ack Message Fail:");
 const failHandles = res.body.map((error)=>{
 console.log("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
 return error.ReceiptHandle;
 });
 handles.forEach((handle)=>{
 if (failHandles.indexOf(handle) < 0) {
 console.log("\tSucHandle:%s\n", handle);
 }
 });
 } else {
 // Obtain an ACK from the consumer.
 console.log("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',')
);
 }
 }
 } catch(e) {
 if (e.Code.indexOf("MessageNotExist") > -1) {
 // If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
 console.log("Consume Message: no new message, RequestId:%s, Code:%s", e.RequestId,
e.Code);
 } else {
 console.log(e);
 }
 }
 }
})();

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
Node.js to send and consume transactional messages.

Background informationBackground information

6.3.5.5. Send and consume transactional messages6.3.5.5. Send and consume transactional messages

User Guide··SDK user guide Alibaba Cloud Message Queue

225 > Document Version: 20220816

Background informationBackground information
The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

SDK for Node.js is installed. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

const {
 MQClient,
 MessageProperties
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic to which you want to send messages. The topic is created in the Message Queue
for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 226

our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const mqTransProducer = client.getTransProducer(instanceId, topic, groupId);
async function processTransResult(res, msgId) {
 if (!res) {
 return;
 }
 if (res.code != 204) {
 // If a transactional message is not committed or rolled back before the timeout peri
od specified by the TransCheckImmunityTime parameter for the handle of the transactional me
ssage elapses or before the timeout period specified for the handle of consumeHalfMessage e
lapses, the commit or rollback operation fails. In this example, the timeout period for the
handle of consumeHalfMessage is 10 seconds.
 console.log("Commit/Rollback Message Fail:");
 const failHandles = res.body.map((error) => {
 console.log("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, error.Er
rorCode, error.ErrorMessage);
 return error.ReceiptHandle;
 });
 } else {
 console.log("Commit/Rollback Message suc!!! %s", msgId);
 }
}
var halfMessageCount = 0;
var halfMessageConsumeCount = 0;
(async function(){
 try {
 // Cyclically send four transactional messages.
 for(var i = 0; i < 4; i++) {
 let res;
 msgProps = new MessageProperties();
 // The custom property of the message.
 msgProps.putProperty("a", i);
 // The key of the message.
 msgProps.messageKey("MessageKey");
 // The time interval between the time when the transactional message is sent and the
start time of the first transaction status check. Unit: seconds. Valid values: 10 to 300.
 // If the message is not committed or rolled back after the first transaction status
check is performed, the broker initiates a request to check the status of the local transac
tion at an interval of 10 seconds within the next 24 hours.
 msgProps.transCheckImmunityTime(10);
 res = await mqTransProducer.publishMessage("hello mq.", "tagA", msgProps);
 console.log("Publish message: MessageID:%s,BodyMD5:%s,Handle:%s", res.body.MessageId,
res.body.MessageBodyMD5, res.body.ReceiptHandle);
 if (res && i == 0) {
 // After the producer sends the transactional message, the broker obtains the hand
le of the half message that corresponds to the transactional message and commits or rolls b
ack the transactional message based on the status of the handle.
 const msgId = res.body.MessageId;
 res = await mqTransProducer.commit(res.body.ReceiptHandle);
 console.log("Commit msg when publish, %s", msgId);
 // If the transactional message is not committed or rolled back before the timeou
t period specified by the TransCheckImmunityTime parameter elapses, the commit or rollback
operation fails.
 processTransResult(res, msgId);

User Guide··SDK user guide Alibaba Cloud Message Queue

227 > Document Version: 20220816

 processTransResult(res, msgId);
 }
 }
 } catch(e) {
 // Specify the logic that you want to use to resend or persist the message if the messa
ge fails to be sent and needs to be sent again.
 console.log(e)
 }
})();
// The client needs a thread or a process to process unacknowledged transactional messages.

// Process unacknowledged transactional messages.
(async function() {
 // Cyclically check the status of half messages. This process is similar to consuming nor
mal messages.
 while(halfMessageCount < 3 && halfMessageConsumeCount < 15) {
 try {
 halfMessageConsumeCount++;
 res = await mqTransProducer.consumeHalfMessage(3, 3);
 if (res.code == 200) {
 // Specify the message consumption logic.
 console.log("Consume Messages, requestId:%s", res.requestId);
 res.body.forEach(async (message) => {
 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume
Time:%d,ConsumedTimes:%d,Body:%s" +
 ",Props:%j,MessageKey:%s,Prop-A:%s",
 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
 message.MessageBody,message.Properties,message.MessageKey,message.Properties.
a);
 var propA = message.Properties && message.Properties.a ? parseInt(message.Propert
ies.a) : 0;
 var opResp;
 if (propA == 1 || (propA == 2 && message.ConsumedTimes > 1)) {
 opResp = await mqTransProducer.commit(message.ReceiptHandle);
 console.log("Commit msg when check half, %s", message.MessageId);
 halfMessageCount++;
 } else if (propA == 3) {
 opResp = await mqTransProducer.rollback(message.ReceiptHandle);
 console.log("Rollback msg when check half, %s", message.MessageId);
 halfMessageCount++;
 }
 processTransResult(opResp, message.MessageId);
 });
 }
 } catch(e) {
 if (e.Code && e.Code.indexOf("MessageNotExist") > -1) {
 // If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
 console.log("Consume Transaction Half msg: no new message, RequestId:%s, Code:%s",
e.RequestId, e.Code);
 } else {
 console.log(e);
 }
 }

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 228

 }
 }
})();

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

const {
 MQClient
} = require('@aliyunmq/mq-http-sdk');
// The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log on to t
he Message Queue for Apache RocketMQ console. In the left-side navigation pane, click Insta
nces. On the Instances page, select the name of your instance. Then, view the HTTP endpoint
on the Network Management tab.
const endpoint = "${HTTP_ENDPOINT}";
// The AccessKey ID that is used for identity verification. You can obtain the AccessKey ID
in the Apsara Uni-manager Operations Console.
const accessKeyId = "${ACCESS_KEY}";
// The AccessKey secret that is used for identity verification. You can obtain the AccessKe
y secret in the Apsara Uni-manager Operations Console.
const accessKeySecret = "${SECRET_KEY}";
var client = new MQClient(endpoint, accessKeyId, accessKeySecret);
// The topic from which you want to consume messages. The topic is created in the Message Q
ueue for Apache RocketMQ console.
const topic = "${TOPIC}";
// The ID of the group that you created in the Message Queue for Apache RocketMQ console.
const groupId = "${GROUP_ID}";
// The ID of the instance to which the topic belongs. The instance is created in the Messag
e Queue for Apache RocketMQ console.
// If the instance has a namespace, specify the ID of the instance. If the instance does no
t have a namespace, set the instance ID to null or an empty string. You can check whether y
our instance has a namespace on the Instances page in the RocketMQ console.
const instanceId = "${INSTANCE_ID}";
const consumer = client.getConsumer(instanceId, topic, groupId);
(async function(){
 // Cyclically consume messages.
 while(true) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumption, the
request is suspended on the broker for a specified period of time. If a message becomes ava
ilable for consumption within this period, the broker immediately sends a response to the c
onsumer. In this example, the period is set to 3 seconds.
 res = await consumer.consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In this exam
ple, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this example, the val
ue is set to 3. The maximum value that you can specify is 30.
);
 if (res.code == 200) {
 // Specify the message consumption logic.
 console.log("Consume Messages, requestId:%s", res.requestId);
 const handles = res.body.map((message) => {
 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume

User Guide··SDK user guide Alibaba Cloud Message Queue

229 > Document Version: 20220816

 console.log("\tMessageId:%s,Tag:%s,PublishTime:%d,NextConsumeTime:%d,FirstConsume
Time:%d,ConsumedTimes:%d,Body:%s" +
 ",Props:%j,MessageKey:%s,Prop-A:%s",
 message.MessageId, message.MessageTag, message.PublishTime, message.NextConsu
meTime, message.FirstConsumeTime, message.ConsumedTimes,
 message.MessageBody,message.Properties,message.MessageKey,message.Properties.
a);
 return message.ReceiptHandle;
 });
 // If the broker does not receive an acknowledgment (ACK) for a message from the co
nsumer before the period of time specified by the message.NextConsumeTime parameter elapses
, the broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the messag
e is consumed.
 res = await consumer.ackMessage(handles);
 if (res.code != 204) {
 // If the handle of a message times out, the broker cannot receive an ACK for the
message from the consumer.
 console.log("Ack Message Fail:");
 const failHandles = res.body.map((error)=>{
 console.log("\tErrorHandle:%s, Code:%s, Reason:%s\n", error.ReceiptHandle, erro
r.ErrorCode, error.ErrorMessage);
 return error.ReceiptHandle;
 });
 handles.forEach((handle)=>{
 if (failHandles.indexOf(handle) < 0) {
 console.log("\tSucHandle:%s\n", handle);
 }
 });
 } else {
 // Obtain an ACK from the consumer.
 console.log("Ack Message suc, RequestId:%s\n\t", res.requestId, handles.join(',')
);
 }
 }
 } catch(e) {
 if (e.Code.indexOf("MessageNotExist") > -1) {
 // If no message in the topic is available for consumption, the long polling mode c
ontinues to take effect.
 console.log("Consume Message: no new message, RequestId:%s, Code:%s", e.RequestId,
e.Code);
 } else {
 console.log(e);
 }
 }
 }
})();

6.3.6. PHP SDK6.3.6. PHP SDK

6.3.6.1. Prepare the environment6.3.6.1. Prepare the environment

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 230

This topic describes how to prepare the environment before you use the HTTP client SDK for PHP to
send and consume messages.

Environment requirementsEnvironment requirements
PHP 5.5.0 or later is installed. For more information, see Install PHP.

Composer is installed. For more information, see Install Composer.

After PHP is installed, you can run the php -v command to view the version of PHP that you
installed.

Install the SDK for PHPInstall the SDK for PHP
To install the SDK for PHP, perform the following steps:

1. Add the following dependency to the composer.json file in your PHP installat ion directory:

{
 "require": {
 "aliyunmq/mq-http-sdk": ">=1.0.3"
 }
}

2. Run the following command to use Composer to install the SDK for PHP:

composer install

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for PHP to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
 private $client;
 private $producer;

6.3.6.2. Send and consume normal messages6.3.6.2. Send and consume normal messages

User Guide··SDK user guide Alibaba Cloud Message Queue

231 > Document Version: 20220816

https://windows.php.net/download/?spm=a2c4g.11186623.2.4.623f68b1vzOYhf
https://getcomposer.org/download/?spm=a2c4g.11186623.2.5.623f68b1vzOYhf

 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->producer = $this->client->getProducer($instanceId, $topic);
 }
 public function run()
 {
 try
 {
 for ($i=1; $i<=4; $i++)
 {
 $publishMessage = new TopicMessage(
 // The content of the message.
 "hello mq!"
);
 // The custom property of the message.
 $publishMessage->putProperty("a", $i);
 // The key of the message.
 $publishMessage->setMessageKey("MessageKey");
 $result = $this->producer->publishMessage($publishMessage);
 print "Send mq message success. msgId is:" . $result->getMessageId() . ", b
odyMD5 is:" . $result->getMessageBodyMD5() . "\n";
 }
 } catch (\Exception $e) {
 print_r($e->getMessage() . "\n");
 }
 }
}
$instance = new ProducerTest();
$instance->run();
?>

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 232

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 $groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->consumer = $this->client->getConsumer($instanceId, $topic, $groupId);
 }
 public function run()
 {
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 while (True) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 $messages = $this->consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.

User Guide··SDK user guide Alibaba Cloud Message Queue

233 > Document Version: 20220816

this example, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\MessageNotExistException) {
 // If no message in the topic is available for consumption, the long po
lling mode continues to take effect.
 printf("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
 continue;
 }
 print_r($e->getMessage() . "\n");
 sleep(3);
 continue;
 }
 print "consume finish, messages:\n";
 // Specify the message consumption logic.
 $receiptHandles = array();
 foreach ($messages as $message) {
 $receiptHandles[] = $message->getReceiptHandle();
 printf("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
 $message->getMessageId(), $message->getMessageTag(), $message->getMessa
geBody(),
 $message->getPublishTime(), $message->getFirstConsumeTime(), $message->
getConsumedTimes(), $message->getNextConsumeTime(),
 $message->getMessageKey());
 print_r($message->getProperties());
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by $message->getNextConsumeTime() elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 print_r($receiptHandles);
 try {
 $this->consumer->ackMessage($receiptHandles);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\AckMessageException) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 printf("Ack Error, RequestId:%s\n", $e->getRequestId());
 foreach ($e->getAckMessageErrorItems() as $errorItem) {
 printf("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", $errorIte
m->getReceiptHandle(), $errorItem->getErrorCode(), $errorItem->getErrorCode());
 }
 }
 }
 print "ack finish\n";
 }
 }
}
$instance = new ConsumerTest();
$instance->run();

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 234

$instance->run();
?>

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for PHP to send and consume
ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.

6.3.6.3. Send and consume ordered messages6.3.6.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

235 > Document Version: 20220816

 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->producer = $this->client->getProducer($instanceId, $topic);
 }
 public function run()
 {
 try
 {
 for ($i=1; $i<=4; $i++)
 {
 $publishMessage = new TopicMessage(
 "hello mq!"// The content of the message.
);
 // The custom property of the message.
 $publishMessage->putProperty("a", $i);
 // The shard key that is used to distribute ordered messages to a specific
partition. Shard keys can be used to identify different partitions. A shard key is differen
t from a message key.
 $publishMessage->setShardingKey($i % 2);
 $result = $this->producer->publishMessage($publishMessage);
 print "Send mq message success. msgId is:" . $result->getMessageId() . ", b
odyMD5 is:" . $result->getMessageBodyMD5() . "\n";
 }
 } catch (\Exception $e) {
 print_r($e->getMessage() . "\n");
 }
 }
}
$instance = new ProducerTest();
$instance->run();
?>

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 236

class ConsumerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 $groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->consumer = $this->client->getConsumer($instanceId, $topic, $groupId);
 }
 public function run()
 {
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 while (True) {
 try {
 // Consume messages in long polling mode. The consumer may pull partitional
ly ordered messages from multiple partitions. The consumer consumes messages from the same
partition in the order in which the messages are sent.
 // A consumer pulls partitionally ordered messages from a partition. If the
broker does not receive an acknowledgment (ACK) for a message after the message is consumed
, the consumer consumes the message again.
 // The consumer can consume the next batch of messages from a partition onl
y after all messages that are pulled from the partition in the previous batch are acknowled
ged to be consumed.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 $messages = $this->consumer->consumeMessageOrderly(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.

User Guide··SDK user guide Alibaba Cloud Message Queue

237 > Document Version: 20220816

 3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\MessageNotExistException) {
 // If no message in the topic is available for consumption, the long po
lling mode continues to take effect.
 printf("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
 continue;
 }
 print_r($e->getMessage() . "\n");
 sleep(3);
 continue;
 }
 print "======>consume finish, messages:\n";
 // Specify the message consumption logic.
 $receiptHandles = array();
 foreach ($messages as $message) {
 $receiptHandles[] = $message->getReceiptHandle();
 printf("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,ShardingKey:%s\n",
 $message->getMessageId(), $message->getMessageTag(), $message->getMessa
geBody(),
 $message->getPublishTime(), $message->getFirstConsumeTime(), $message->
getConsumedTimes(), $message->getNextConsumeTime(),
 $message->getShardingKey());
 print_r($message->getProperties());
 }
 // If the broker does not receive an ACK for a message from the consumer before
the period of time specified by $message->getNextConsumeTime() elapses, the broker delivers
the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 print_r($receiptHandles);
 try {
 $this->consumer->ackMessage($receiptHandles);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\AckMessageException) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 printf("Ack Error, RequestId:%s\n", $e->getRequestId());
 foreach ($e->getAckMessageErrorItems() as $errorItem) {
 printf("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", $errorIte
m->getReceiptHandle(), $errorItem->getErrorCode(), $errorItem->getErrorCode());
 }
 }
 }
 print "=======>ack finish\n";
 }
 }
}
$instance = new ConsumerTest();
$instance->run();
?>

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 238

?>

This topic provides sample code to show how to use the HTTP client SDK for PHP to send and consume
scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages
The following sample code provides an example on how to send scheduled messages or delayed
messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,

6.3.6.4. Send and consume scheduled messages and6.3.6.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

239 > Document Version: 20220816

click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->producer = $this->client->getProducer($instanceId, $topic);
 }
 public function run()
 {
 try
 {
 for ($i=1; $i<=4; $i++)
 {
 $publishMessage = new TopicMessage(
 "hello mq!"// The content of the message.
);
 // The custom property of the message.
 $publishMessage->putProperty("a", $i);
 // The key of the message.
 $publishMessage->setMessageKey("MessageKey");
 // The period of time after which the broker delivers the message. In this
example, when the broker receives a message, the broker waits for 10 seconds before it deli
vers the message to the consumer. Set this parameter to a timestamp in milliseconds.
 // If the producer sends a scheduled message, set the parameter to the time
interval between the scheduled point in time and the current point in time.
 $publishMessage->setStartDeliverTime(time() * 1000 + 10 * 1000);
 $result = $this->producer->publishMessage($publishMessage);
 print "Send mq message success. msgId is:" . $result->getMessageId() . ", b
odyMD5 is:" . $result->getMessageBodyMD5() . "\n";
 }
 } catch (\Exception $e) {
 print_r($e->getMessage() . "\n");
 }
 }
}
$instance = new ProducerTest();
$instance->run();
?>

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 240

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 $groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->consumer = $this->client->getConsumer($instanceId, $topic, $groupId);
 }
 public function run()
 {
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 while (True) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 $messages = $this->consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In

User Guide··SDK user guide Alibaba Cloud Message Queue

241 > Document Version: 20220816

 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\MessageNotExistException) {
 // If no message in the topic is available for consumption, the long po
lling mode continues to take effect.
 printf("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
 continue;
 }
 print_r($e->getMessage() . "\n");
 sleep(3);
 continue;
 }
 print "consume finish, messages:\n";
 // Specify the message consumption logic.
 $receiptHandles = array();
 foreach ($messages as $message) {
 $receiptHandles[] = $message->getReceiptHandle();
 printf("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
 $message->getMessageId(), $message->getMessageTag(), $message->getMessa
geBody(),
 $message->getPublishTime(), $message->getFirstConsumeTime(), $message->
getConsumedTimes(), $message->getNextConsumeTime(),
 $message->getMessageKey());
 print_r($message->getProperties());
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by $message->getNextConsumeTime() elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 print_r($receiptHandles);
 try {
 $this->consumer->ackMessage($receiptHandles);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\AckMessageException) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 printf("Ack Error, RequestId:%s\n", $e->getRequestId());
 foreach ($e->getAckMessageErrorItems() as $errorItem) {
 printf("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", $errorIte
m->getReceiptHandle(), $errorItem->getErrorCode(), $errorItem->getErrorCode());
 }
 }
 }
 print "ack finish\n";
 }
 }
}
$instance = new ConsumerTest();

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 242

$instance = new ConsumerTest();
$instance->run();
?>

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
PHP to send and consume transactional messages.

Background informationBackground information
The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for PHP. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ProducerTest
{
 private $client;
 private $transProducer;
 private $count;
 private $popMsgCount;
 public function __construct()
 {

6.3.6.5. Send and consume transactional messages6.3.6.5. Send and consume transactional messages

User Guide··SDK user guide Alibaba Cloud Message Queue

243 > Document Version: 20220816

 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 $groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->transProducer = $this->client->getTransProducer($instanceId,$topic, $groupId
);
 $this->count = 0;
 $this->popMsgCount = 0;
 }
 function processAckError($e) {
 if ($e instanceof MQ\Exception\AckMessageException) {
 // If a transactional message is not committed or rolled back within the timeou
t period specified by the TransCheckImmunityTime parameter or the NextConsumeTime parameter
, the commit or rollback operation fails. The TransCheckImmunityTime parameter specifies a
timeout period for the handle of transactional messages. The NextConsumeTime parameter spec
ifies a timeout period for the handle of consumeHalfMessage.
 printf("Commit/Rollback Error, RequestId:%s\n", $e->getRequestId());
 foreach ($e->getAckMessageErrorItems() as $errorItem) {
 printf("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", $errorItem->getRe
ceiptHandle(), $errorItem->getErrorCode(), $errorItem->getErrorCode());
 }
 } else {
 print_r($e);
 }
 }
 function consumeHalfMsg() {
 while($this->count < 3 && $this->popMsgCount < 15) {
 $this->popMsgCount++;
 try {
 $messages = $this->transProducer->consumeHalfMessage(4, 3);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\MessageNotExistException) {
 print "no half transaction message\n";
 continue;

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 244

 continue;
 }
 print_r($e->getMessage() . "\n");
 sleep(3);
 continue;
 }
 foreach ($messages as $message) {
 printf("ID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d\nConsume
dTimes:%d, NextConsumeTime:%d\nPropA:%s\n",
 $message->getMessageId(), $message->getMessageTag(), $message->getMessa
geBody(),
 $message->getPublishTime(), $message->getFirstConsumeTime(), $message->
getConsumedTimes(), $message->getNextConsumeTime(),
 $message->getProperty("a"));
 print_r($message->getProperties());
 $propA = $message->getProperty("a");
 $consumeTimes = $message->getConsumedTimes();
 try {
 if ($propA == "1") {
 print "\n commit transaction msg: " . $message->getMessageId() . "\
n";
 $this->transProducer->commit($message->getReceiptHandle());
 $this->count++;
 } else if ($propA == "2" && $consumeTimes > 1) {
 print "\n commit transaction msg: " . $message->getMessageId() . "\
n";
 $this->transProducer->commit($message->getReceiptHandle());
 $this->count++;
 } else if ($propA == "3") {
 print "\n rollback transaction msg: " . $message->getMessageId() .
"\n";
 $this->transProducer->rollback($message->getReceiptHandle());
 $this->count++;
 } else {
 print "\n unknown transaction msg: " . $message->getMessageId() . "
\n";
 }
 } catch (\Exception $e) {
 processAckError($e);
 }
 }
 }
 }
 public function run()
 {
 // Cyclically send four transactional messages.
 for ($i = 0; $i < 4; $i++) {
 $pubMsg = new TopicMessage("hello,mq");
 // The custom property of the message.
 $pubMsg->putProperty("a", $i);
 // The key of the message.
 $pubMsg->setMessageKey("MessageKey");
 // The time interval between the time when the transactional message is sent an
d the start time of the first transaction status check. Unit: seconds. Valid values: 10 to
300.

User Guide··SDK user guide Alibaba Cloud Message Queue

245 > Document Version: 20220816

300.
 // If the message is not committed or rolled back after the first transaction s
tatus check is performed, the broker initiates a request to check the status of the local t
ransaction at an interval of 10 seconds within the next 24 hours.
 $pubMsg->setTransCheckImmunityTime(10);
 $topicMessage = $this->transProducer->publishMessage($pubMsg);
 print "\npublish -> \n\t" . $topicMessage->getMessageId() . " " . $topicMessage
->getReceiptHandle() . "\n";
 if ($i == 0) {
 try {
 // After the producer sends the transactional message, the broker obtai
ns the handle of the half message that corresponds to the transactional message and commits
or rolls back the transactional message based on the status of the handle.
 $this->transProducer->commit($topicMessage->getReceiptHandle());
 print "\n commit transaction msg when publish: " . $topicMessage->getMe
ssageId() . "\n";
 } catch (\Exception $e) {
 // If the transactional message is not committed or rolled back before
the timeout period specified by the TransCheckImmunityTime parameter elapses, the commit or
rollback operation fails.
 processAckError($e);
 }
 }
 }
 // The client needs a thread or a process to process unacknowledged transactional m
essages.
 // Process unacknowledged transactional messages.
 $this->consumeHalfMsg();
 }
}
$instance = new ProducerTest();
$instance->run();
?>

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

<?php
require "vendor/autoload.php";
use MQ\Model\TopicMessage;
use MQ\MQClient;
class ConsumerTest
{
 private $client;
 private $producer;
 public function __construct()
 {
 $this->client = new MQClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 246

 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 $topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 $groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 $instanceId = "${INSTANCE_ID}";
 $this->consumer = $this->client->getConsumer($instanceId, $topic, $groupId);
 }
 public function run()
 {
 // Cyclically consume messages in the current thread. We recommend that you use mul
tiple threads to concurrently consume messages.
 while (True) {
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consum
ption, the request is suspended on the broker for a specified period of time. If a message
becomes available for consumption within this period, the broker immediately sends a respon
se to the consumer. In this example, the period is set to 3 seconds.
 $messages = $this->consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3 // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\MessageNotExistException) {
 // If no message in the topic is available for consumption, the long po
lling mode continues to take effect.
 printf("No message, contine long polling!RequestId:%s\n", $e->getReques
tId());
 continue;
 }
 print_r($e->getMessage() . "\n");
 sleep(3);
 continue;
 }
 print "consume finish, messages:\n";
 // Specify the message consumption logic.
 $receiptHandles = array();
 foreach ($messages as $message) {
 $receiptHandles[] = $message->getReceiptHandle();

User Guide··SDK user guide Alibaba Cloud Message Queue

247 > Document Version: 20220816

 $receiptHandles[] = $message->getReceiptHandle();
 printf("MessageID:%s TAG:%s BODY:%s \nPublishTime:%d, FirstConsumeTime:%d,
\nConsumedTimes:%d, NextConsumeTime:%d,MessageKey:%s\n",
 $message->getMessageId(), $message->getMessageTag(), $message->getMessa
geBody(),
 $message->getPublishTime(), $message->getFirstConsumeTime(), $message->
getConsumedTimes(), $message->getNextConsumeTime(),
 $message->getMessageKey());
 print_r($message->getProperties());
 }
 // If the broker does not receive an acknowledgment (ACK) for a message from th
e consumer before the period of time specified by $message->getNextConsumeTime() elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 print_r($receiptHandles);
 try {
 $this->consumer->ackMessage($receiptHandles);
 } catch (\Exception $e) {
 if ($e instanceof MQ\Exception\AckMessageException) {
 // If the handle of a message times out, the broker cannot receive an A
CK for the message from the consumer.
 printf("Ack Error, RequestId:%s\n", $e->getRequestId());
 foreach ($e->getAckMessageErrorItems() as $errorItem) {
 printf("\tReceiptHandle:%s, ErrorCode:%s, ErrorMsg:%s\n", $errorIte
m->getReceiptHandle(), $errorItem->getErrorCode(), $errorItem->getErrorCode());
 }
 }
 }
 print "ack finish\n";
 }
 }
}
$instance = new ConsumerTest();
$instance->run();
?>

This topic describes how to prepare the environment before you use the HTTP client SDK for C# to send
and consume messages.

Environment requirementsEnvironment requirements
.NET is installed. For more information, see Install .NET.

Visual Studio 2015 or later is installed. For more information, visit the official website of Visual Studio.

After .NET is installed, you can run the dotnet --version command to check the version of .NET that
you installed.

6.3.7. C# SDK6.3.7. C# SDK

6.3.7.1. Prepare the environment6.3.7.1. Prepare the environment

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 248

https://dotnet.microsoft.com/download
https://visualstudio.microsoft.com/zh-hans/downloads/

Install the SDK for C#Install the SDK for C#
To install the SDK for C#, perform the following steps:

1. Download the SDK for C# and the project f ile to your on-premises machine and decompress them.
Aliyun_MQ_SDK is the directory where the SDK is located. Aliyun_MQ_SDK.sln is the project f ile.

2. Use Visual Studio to open the Aliyun_MQ_SDK.sln file and import the file to the Aliyun_MQ_SDK
project.

3. Run the Samples.cs file. In the Aliyun_MQ_SDK project, the Samples.cs file appears. This file provides
the sample code on how to send and consume messages by using the SDK for C#. Replace the
values in the sample code with the actual values that are used in your application. Then, save and
run the file.

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for C# to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
 public class ProducerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.

6.3.7.2. Send and consume normal messages6.3.7.2. Send and consume normal messages

User Guide··SDK user guide Alibaba Cloud Message Queue

249 > Document Version: 20220816

https://github.com/aliyunmq/mq-http-csharp-sdk

 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQProducer producer = _client.GetProducer(_instanceId, _topicName);
 static void Main(string[] args)
 {
 try
 {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++)
 {
 TopicMessage sendMsg;
 // The content of the message.
 sendMsg = new TopicMessage("hello mq");
 // The custom property of the message.
 sendMsg.PutProperty("a", i.ToString());
 // The key of the message.
 sendMsg.MessageKey = "MessageKey";
 TopicMessage result = producer.PublishMessage(sendMsg);
 Console.WriteLine("publis message success:" + result);
 }
 }
 catch (Exception ex)
 {
 Console.Write(ex);
 }
 }
 }
}

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
 public class ConsumerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 250

on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 private const string _groupId = "${GROUP_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQConsumer consumer = _client.GetConsumer(_instanceId, _topicName, _groupId,
null);
 static void Main(string[] args)
 {
 // Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
 while (true)
 {
 try
 {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.
 List<Message> messages = null;
 try
 {
 messages = consumer.ConsumeMessage(
 3, // The maximum number of messages that can be consumed at a
time. In this example, the value is set to 3. The maximum value that you can specify is 16.

 3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.
);
 }
 catch (Exception exp1)
 {
 if (exp1 is MessageNotExistException)
 {

User Guide··SDK user guide Alibaba Cloud Message Queue

251 > Document Version: 20220816

 Console.WriteLine(Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)exp1).RequestId);
 continue;
 }
 Console.WriteLine(exp1);
 Thread.Sleep(2000);
 }
 if (messages == null)
 {
 continue;
 }
 List<string> handlers = new List<string>();
 Console.WriteLine(Thread.CurrentThread.Name + " Receive Messages:");
 // Specify the message consumption logic.
 foreach (Message message in messages)
 {
 Console.WriteLine(message);
 Console.WriteLine("Property a is:" + message.GetProperty("a"));
 handlers.Add(message.ReceiptHandle);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 try
 {
 consumer.AckMessage(handlers);
 Console.WriteLine("Ack message success:");
 foreach (string handle in handlers)
 {
 Console.Write("\t" + handle);
 }
 Console.WriteLine();
 }
 catch (Exception exp2)
 {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 if (exp2 is AckMessageException)
 {
 AckMessageException ackExp = (AckMessageException)exp2;
 Console.WriteLine("Ack message fail, RequestId:" + ackExp.Reque
stId);
 foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
 {
 Console.WriteLine("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);
 }
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 252

 Console.WriteLine(ex);
 Thread.Sleep(2000);
 }
 }
 }
 }
}

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for C# to send and consume
ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
 public class OrderProducerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e

6.3.7.3. Send and consume ordered messages6.3.7.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

253 > Document Version: 20220816

k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQProducer producer = _client.GetProducer(_instanceId, _topicName);
 static void Main(string[] args)
 {
 try
 {
 // Cyclically send eight messages.
 for (int i = 0; i < 8; i++)
 {
 // The content and tag of the message.
 TopicMessage sendMsg = new TopicMessage("hello mq", "tag");
 // The custom property of the message.
 sendMsg.PutProperty("a", i.ToString());
 // The shard key that is used to distribute ordered messages to a speci
fic partition. Shard keys can be used to identify different partitions. A shard key is diff
erent from a message key.
 sendMsg.ShardingKey = (i % 2).ToString();
 TopicMessage result = producer.PublishMessage(sendMsg);
 Console.WriteLine("publis message success:" + result);
 }
 }
 catch (Exception ex)
 {
 Console.Write(ex);
 }
 }
 }
}

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

using System;
using System.Collections.Generic;
using System.Threading;

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 254

using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
 public class OrderConsumerSample
{
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 private const string _groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
private const string _instanceId = "${INSTANCE_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQConsumer consumer = _client.GetConsumer(_instanceId, _topicName, _groupId,
null);
 static void Main(string[] args)
 {
 // Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
 while (true)
 {
 try
 {
 // Consume messages in long polling mode. The consumer may pull partiti
onally ordered messages from multiple partitions. The consumer consumes messages from the s
ame partition in the order in which the messages are sent.
 // A consumer pulls partitionally ordered messages from a partition. If
the broker does not receive an acknowledgment (ACK) for a message after the message is cons
umed, the consumer consumes the message again.
 // The consumer can consume the next batch of messages from a partition
only after all messages that are pulled from the partition in the previous batch are acknow
ledged to be consumed.
 // In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re

User Guide··SDK user guide Alibaba Cloud Message Queue

255 > Document Version: 20220816

age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.
 List<Message> messages = null;
 try
 {
 messages = consumer.ConsumeMessageOrderly(
 3, // The maximum number of messages that can be consumed at a
time. In this example, the value is set to 3. The maximum value that you can specify is 16.

 3 // The length of a long polling period. Unit: seconds. In thi
s example, the value is set to 3. The maximum value that you can specify is 30.
);
 }
 catch (Exception exp1)
 {
 if (exp1 is MessageNotExistException)
 {
 Console.WriteLine(Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)exp1).RequestId);
 continue;
 }
 Console.WriteLine(exp1);
 Thread.Sleep(2000);
 }
 if (messages == null)
 {
 continue;
 }
 List<string> handlers = new List<string>();
 Console.WriteLine(Thread.CurrentThread.Name + " Receive Messages:");
 // Specify the message consumption logic.
 foreach (Message message in messages)
 {
 Console.WriteLine(message);
 Console.WriteLine("Property a is:" + message.GetProperty("a"));
 handlers.Add(message.ReceiptHandle);
 }
 // If the broker does not receive an ACK for a message from the consume
r before the period of time specified by Message.nextConsumeTime elapses, the broker delive
rs the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 try
 {
 consumer.AckMessage(handlers);
 Console.WriteLine("Ack message success:");
 foreach (string handle in handlers)
 {
 Console.Write("\t" + handle);
 }
 Console.WriteLine();
 }
 catch (Exception exp2)
 {
 // If the handle of a message times out, the broker cannot receive

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 256

 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 if (exp2 is AckMessageException)
 {
 AckMessageException ackExp = (AckMessageException)exp2;
 Console.WriteLine("Ack message fail, RequestId:" + ackExp.Reque
stId);
 foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
 {
 Console.WriteLine("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);
 }
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 Thread.Sleep(2000);
 }
 }
 }
 }
}

This topic provides sample code to show how to use the HTTP client SDK for C# to send and consume
scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

6.3.7.4. Send and consume scheduled messages and6.3.7.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

257 > Document Version: 20220816

Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages
The following sample code provides an example on how to send scheduled messages or delayed
messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
 public class ProducerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQProducer producer = _client.GetProducer(_instanceId, _topicName);
 static void Main(string[] args)
 {
 try
 {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++)
 {
 TopicMessage sendMsg;
 // The content of the message.
 sendMsg = new TopicMessage("hello mq");
 // The custom property of the message.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 258

 // The custom property of the message.
 sendMsg.PutProperty("a", i.ToString());
 // The period of time after which the broker delivers the message. In t
his example, when the broker receives a message, the broker waits for 10 seconds before it
delivers the message to the consumer. Set this parameter to a timestamp in milliseconds.

 // If the producer sends a scheduled message, set the parameter to the
time interval between the scheduled point in time and the current point in time.
 sendMsg.StartDeliverTime = AliyunSDKUtils.GetNowTimeStamp() + 10 * 1000
;
 TopicMessage result = producer.PublishMessage(sendMsg);
 Console.WriteLine("publis message success:" + result);
 }
 }
 catch (Exception ex)
 {
 Console.Write(ex);
 }
 }
 }
}

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
 public class ConsumerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance

User Guide··SDK user guide Alibaba Cloud Message Queue

259 > Document Version: 20220816

does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 private const string _groupId = "${GROUP_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQConsumer consumer = _client.GetConsumer(_instanceId, _topicName, _groupId,
null);
 static void Main(string[] args)
 {
 // Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
 while (true)
 {
 try
 {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.
 List<Message> messages = null;
 try
 {
 messages = consumer.ConsumeMessage(
 3, // The maximum number of messages that can be consumed at a
time. In this example, the value is set to 3. The maximum value that you can specify is 16.

 3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.
);
 }
 catch (Exception exp1)
 {
 if (exp1 is MessageNotExistException)
 {
 Console.WriteLine(Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)exp1).RequestId);
 continue;
 }
 Console.WriteLine(exp1);
 Thread.Sleep(2000);
 }
 if (messages == null)
 {
 continue;
 }
 List<string> handlers = new List<string>();
 Console.WriteLine(Thread.CurrentThread.Name + " Receive Messages:");
 // Specify the message consumption logic.
 foreach (Message message in messages)
 {
 Console.WriteLine(message);

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 260

 Console.WriteLine(message);
 Console.WriteLine("Property a is:" + message.GetProperty("a"));
 handlers.Add(message.ReceiptHandle);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 try
 {
 consumer.AckMessage(handlers);
 Console.WriteLine("Ack message success:");
 foreach (string handle in handlers)
 {
 Console.Write("\t" + handle);
 }
 Console.WriteLine();
 }
 catch (Exception exp2)
 {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 if (exp2 is AckMessageException)
 {
 AckMessageException ackExp = (AckMessageException)exp2;
 Console.WriteLine("Ack message fail, RequestId:" + ackExp.Reque
stId);
 foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
 {
 Console.WriteLine("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);
 }
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 Thread.Sleep(2000);
 }
 }
 }
 }
}

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
C# to send and consume transactional messages.

6.3.7.5. Send and consume transactional messages6.3.7.5. Send and consume transactional messages

User Guide··SDK user guide Alibaba Cloud Message Queue

261 > Document Version: 20220816

Background informationBackground information
The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C#. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ.Util;
namespace Aliyun.MQ.Sample
{
 public class TransProducerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic to which you want to send messages. The topic is created in the Messag
e Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 262

 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 private const string _groupId = "${GROUP_ID}";
 private static readonly MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _se
cretAccessKey, _endpoint);
 private static readonly MQTransProducer transProducer = _client.GetTransProdcuer(_i
nstanceId, _topicName, _groupId);
 static void ProcessAckError(Exception exception)
 {
 // If a transactional message is not committed or rolled back before the timeou
t period specified by the TransCheckImmunityTime parameter for the handle of the transactio
nal message elapses or before the timeout period specified for the handle of consumeHalfMes
sage elapses, the commit or rollback operation fails. In this example, the timeout period f
or the handle of consumeHalfMessage is 10 seconds.
 if (exception is AckMessageException)
 {
 AckMessageException ackExp = (AckMessageException)exception;
 Console.WriteLine("Ack message fail, RequestId:" + ackExp.RequestId);
 foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
 {
 Console.WriteLine("\tErrorHandle:" + errorItem.ReceiptHandle + ",ErrorC
ode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);
 }
 }
 }
 static void ConsumeHalfMessage()
 {
 int count = 0;
 while (true)
 {
 if (count == 3)
 break;
 try
 {
 // Check the status of half messages. This process is similar to consum
ing normal messages.
 List<Message> messages = null;
 try
 {
 messages = transProducer.ConsumeHalfMessage(3, 3);
 } catch (Exception exp1) {
 if (exp1 is MessageNotExistException)
 {
 Console.WriteLine(Thread.CurrentThread.Name + " No half message
, " + ((MessageNotExistException)exp1).RequestId);
 continue;
 }
 Console.WriteLine(exp1);

User Guide··SDK user guide Alibaba Cloud Message Queue

263 > Document Version: 20220816

 Console.WriteLine(exp1);
 Thread.Sleep(2000);
 }
 if (messages == null)
 continue;
 // Specify the business processing logic.
 foreach (Message message in messages)
 {
 Console.WriteLine(message);
 int a = int.Parse(message.GetProperty("a"));
 uint consumeTimes = message.ConsumedTimes;
 try {
 if (a == 1) {
 // Confirm to commit the transactional message.
 transProducer.Commit(message.ReceiptHandle);
 count++;
 Console.WriteLine("Id:" + message.Id + ", commit");
 } else if (a == 2 && consumeTimes > 1) {
 // Confirm to commit the transactional message.
 transProducer.Commit(message.ReceiptHandle);
 count++;
 Console.WriteLine("Id:" + message.Id + ", commit");
 } else if (a == 3) {
 // Confirm to roll back the transactional message.
 transProducer.Rollback(message.ReceiptHandle);
 count++;
 Console.WriteLine("Id:" + message.Id + ", rollback");
 } else {
 // Do not perform operations. Check the status next time.
 Console.WriteLine("Id:" + message.Id + ", unkonwn");
 }
 } catch (Exception ackError) {
 ProcessAckError(ackError);
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 Thread.Sleep(2000);
 }
 }
 }
 static void Main(string[] args)
 {
 // The client needs a thread or a process to process unacknowledged transaction
al messages.
 // Start a thread to process unacknowledged transactional messages.
 Thread consumeHalfThread = new Thread(ConsumeHalfMessage);
 consumeHalfThread.Start();
 try
 {
 // Cyclically send four transactional messages. Among the four messages, co
mmit the first message after the message is sent, and process the other three messages base
d on the specified conditions.

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 264

 for (int i = 0; i < 4; i++)
 {
 TopicMessage sendMsg = new TopicMessage("trans_msg");
 sendMsg.MessageTag = "a";
 sendMsg.MessageKey = "MessageKey";
 sendMsg.PutProperty("a", i.ToString());
 // The time interval between the time when the transactional message is
sent and the start time of the first transaction status check. Unit: seconds. Valid values:
10 to 300.
 // If the message is not committed or rolled back after the first trans
action status check is performed, the broker initiates a request to check the status of the
local transaction at an interval of 10 seconds within the next 24 hours.
 sendMsg.TransCheckImmunityTime = 10;
 TopicMessage result = transProducer.PublishMessage(sendMsg);
 Console.WriteLine("publis message success:" + result);
 try {
 if (!string.IsNullOrEmpty(result.ReceiptHandle) && i == 0)
 {
 // After the producer sends the transactional message, the brok
er obtains the handle of the half message that corresponds to the transactional message and
commits or rolls back the transactional message based on the status of the handle.
 transProducer.Commit(result.ReceiptHandle);
 Console.WriteLine("Id:" + result.Id + ", commit");
 }
 } catch (Exception ackError) {
 ProcessAckError(ackError);
 }
 }
 } catch (Exception ex) {
 Console.Write(ex);
 }
 consumeHalfThread.Join();
 }
 }
}

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

using System;
using System.Collections.Generic;
using System.Threading;
using Aliyun.MQ.Model;
using Aliyun.MQ.Model.Exp;
using Aliyun.MQ;
namespace Aliyun.MQ.Sample
{
 public class ConsumerSample
 {
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint, log
on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, clic
k Instances. On the Instances page, select the name of your instance. Then, view the HTTP e
ndpoint on the Network Management tab.

User Guide··SDK user guide Alibaba Cloud Message Queue

265 > Document Version: 20220816

ndpoint on the Network Management tab.
 private const string _endpoint = "${HTTP_ENDPOINT}";
 // The AccessKey ID that is used for identity verification. You can obtain the Acce
ssKey ID in the Apsara Uni-manager Operations Console.
 private const string _accessKeyId = "${ACCESS_KEY}";
 // The AccessKey secret that is used for identity verification. You can obtain the
AccessKey secret in the Apsara Uni-manager Operations Console.
 private const string _secretAccessKey = "${SECRET_KEY}";
 // The topic from which you want to consume messages. The topic is created in the M
essage Queue for Apache RocketMQ console.
 private const string _topicName = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in th
e Message Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance
does not have a namespace, set the instance ID to null or an empty string. You can check wh
ether your instance has a namespace on the Instances page in the RocketMQ console.
 private const string _instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ co
nsole.
 private const string _groupId = "${GROUP_ID}";
 private static MQClient _client = new Aliyun.MQ.MQClient(_accessKeyId, _secretAcces
sKey, _endpoint);
 static MQConsumer consumer = _client.GetConsumer(_instanceId, _topicName, _groupId,
null);
 static void Main(string[] args)
 {
 // Cyclically consume messages in the current thread. We recommend that you use
multiple threads to concurrently consume messages.
 while (true)
 {
 try
 {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for co
nsumption, the request is suspended on the broker for a specified period of time. If a mess
age becomes available for consumption within this period, the broker immediately sends a re
sponse to the consumer. In this example, the period is set to 3 seconds.
 List<Message> messages = null;
 try
 {
 messages = consumer.ConsumeMessage(
 3, // The maximum number of messages that can be consumed at a
time. In this example, the value is set to 3. The maximum value that you can specify is 16.

 3 // The length of a long polling period. Unit: seconds. In th
is example, the value is set to 3. The maximum value that you can specify is 30.
);
 }
 catch (Exception exp1)
 {
 if (exp1 is MessageNotExistException)
 {
 Console.WriteLine(Thread.CurrentThread.Name + " No new message,
" + ((MessageNotExistException)exp1).RequestId);
 continue;

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 266

 }
 Console.WriteLine(exp1);
 Thread.Sleep(2000);
 }
 if (messages == null)
 {
 continue;
 }
 List<string> handlers = new List<string>();
 Console.WriteLine(Thread.CurrentThread.Name + " Receive Messages:");
 // Specify the message consumption logic.
 foreach (Message message in messages)
 {
 Console.WriteLine(message);
 Console.WriteLine("Property a is:" + message.GetProperty("a"));
 handlers.Add(message.ReceiptHandle);
 }
 // If the broker does not receive an acknowledgment (ACK) for a message
from the consumer before the period of time specified by Message.nextConsumeTime elapses, t
he broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each tim
e the message is consumed.
 try
 {
 consumer.AckMessage(handlers);
 Console.WriteLine("Ack message success:");
 foreach (string handle in handlers)
 {
 Console.Write("\t" + handle);
 }
 Console.WriteLine();
 }
 catch (Exception exp2)
 {
 // If the handle of a message times out, the broker cannot receive
an ACK for the message from the consumer.
 if (exp2 is AckMessageException)
 {
 AckMessageException ackExp = (AckMessageException)exp2;
 Console.WriteLine("Ack message fail, RequestId:" + ackExp.Reque
stId);
 foreach (AckMessageErrorItem errorItem in ackExp.ErrorItems)
 {
 Console.WriteLine("\tErrorHandle:" + errorItem.ReceiptHandl
e + ",ErrorCode:" + errorItem.ErrorCode + ",ErrorMsg:" + errorItem.ErrorMessage);
 }
 }
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex);
 Thread.Sleep(2000);
 }
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

267 > Document Version: 20220816

 }
 }
 }
}

This topic describes how to prepare the environment before you use the HTTP client SDK for C++ to
send and consume messages.

Environment requirementsEnvironment requirements
SCons is installed. For more information, visit the official website of SCons.

Before you can use SCons, make sure that Python 3.5 or later is installed. For more information, visit
the official website of Python.

Visual Studio 2015 or later is installed. For more information, visit the official website of Visual Studio.

Not e Not e Visual Studio is required only in Windows environments. In this topic, Visual Studio
2019 is used in the example.

Install the SDK for C++ in a Windows environmentInstall the SDK for C++ in a Windows environment
1. Download the SDK for C++ to your on-premises machine and decompress the package. For more

information about the download link to the SDK, see Overview.

2. In the SDK directory, run the following command to compile your C++ project:

scons

3. After the project is compiled, copy the include and lib folders in the SDK directory to the C++
project directory that you created on your on-premises machine.

4. Configure project propert ies in Visual Studio. Right-click your project and select Propert iesPropert ies.

Set t he Addit ional Include Direct ories propert ySet t he Addit ional Include Direct ories propert y

In the Property Pages dialog box of your project, choose Conf igurat ion Propert iesConf igurat ion Propert ies > > C/C+ +C/C+ + > >
GeneralGeneral in the left-side navigation pane. On the right side, set Addit ional Include Direct oriesAddit ional Include Direct ories
to the path of the include folder that you copied in Step 3.

6.3.8. C++ SDK6.3.8. C++ SDK

6.3.8.1. Prepare the environment6.3.8.1. Prepare the environment

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 268

https://www.scons.org/
https://www.python.org/downloads/?spm=a2c4g.11186623.2.4.332a78c8iTQUSv
https://visualstudio.microsoft.com/zh-hans/downloads/

Set t he Addit ional Library Direct ories propert ySet t he Addit ional Library Direct ories propert y

In the Property Pages dialog box of your project, choose Conf igurat ion Propert iesConf igurat ion Propert ies > > LinkerLinker > >
GeneralGeneral in the left-side navigation pane. On the right side, set Addit ional Library Direct oriesAddit ional Library Direct ories
to the path of the lib folder that you copied in Step 3 and the path of the lib\windows\ {Platfor
m directory} folder. Configure the {Platform directory} variable based on the OS that you use. If
you use a 64-bit OS, set this variable to AMD64. If you use a 32-bit OS, set this variable to I386.

Set t he Addit ional Dependencies propert ySet t he Addit ional Dependencies propert y

In the Property Pages dialog box of your project, choose Conf igurat ion Propert iesConf igurat ion Propert ies > > LinkerLinker > >
InputInput in the left-side navigation pane. On the right side, add the following content to the
Addit ional DependenciesAddit ional Dependencies field:

User Guide··SDK user guide Alibaba Cloud Message Queue

269 > Document Version: 20220816

mqcpp.lib
libcurl.lib
libcurl_debug.lib
libeay32MT.lib
libeay32MTd.lib
ssleay32MT.lib
ssleay32MTd.lib
DbgHelp.lib
User32.lib
GDI32.lib
Advapi32.lib

5. Copy the sample code to the project f ile, change the parameter values based on the comments in
the code, and then save the changes. For more information about the sample code, see Sample
code.

6. Click the icon to compile the project.

Install the SDK for C++ in a Linux environmentInstall the SDK for C++ in a Linux environment

Not e Not e The following procedure provides an example on how to install the SDK for C++ in
CentOS.

1. Download the SDK for C++ to your on-premises machine and decompress the package. For more
information about the download link to the SDK, see Overview.

2. Run the following commands to install the libcurl-devel and openssl-devel libraries:

yum install libcurl-devel

yum install openssl-devel

3. In the SDK directory, run the following command to compile your C++ project:

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 270

https://github.com/aliyunmq/mq-http-cpp-sdk#sample-codealiyuncom

scons

4. After the project is compiled, copy the include and lib folders in the SDK directory to the C++
project directory that you created on your on-premises machine.

5. Copy the sample code to the project f ile on your on-premises machine, change the parameter
values based on the comments in the code, and then save the changes. For more information
about the sample code, see Sample code.

6. Run the following command to compile the project:

Replace producer.cpp with the name of the project file that you created on your on-pr
emises machine.
g++ producer.cpp -o producer lib/libmqcpp.a -I include/ -lcurl -lcrypto

Normal messages are messages that have no special features in Message Queue for Apache RocketMQ.
They are different from featured messages, such as scheduled messages, delayed messages, ordered
messages, and transactional messages. This topic provides sample code to show how to use the HTTP
client SDK for C++ to send and consume normal messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send normal messagesSend normal messages
The following sample code provides an example on how to send normal messages:

#include <fstream>
#include <time.h>
#include "mq_http_sdk/mq_client.h"
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Message Qu

6.3.8.2. Send and consume normal messages6.3.8.2. Send and consume normal messages

User Guide··SDK user guide Alibaba Cloud Message Queue

271 > Document Version: 20220816

https://github.com/aliyunmq/mq-http-cpp-sdk#sample-codealiyuncom

 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQProducerPtr producer;
 if (instanceId == "") {
 producer = mqClient.getProducerRef(topic);
 } else {
 producer = mqClient.getProducerRef(instanceId, topic);
 }
 try {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++)
 {
 PublishMessageResponse pmResp;
 // The content of the message.
 TopicMessage pubMsg("Hello, mq!have key!");
 // The custom property of the message.
 pubMsg.putProperty("a",std::to_string(i));
 // The key of the message.
 pubMsg.setMessageKey("MessageKey" + std::to_string(i));
 producer->publishMessage(pubMsg, pmResp);
 cout << "Publish mq message success. Topic is: " << topic
 << ", msgId is:" << pmResp.getMessageId()
 << ", bodyMD5 is:" << pmResp.getMessageBodyMD5() << endl;
 }
 } catch (MQServerException& me) {
 cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
 return -1;
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
 return -2;
 }
 return 0;
}

Consume normal messagesConsume normal messages
The following sample code provides an example on how to consume normal messages:

#include <vector>
#include <fstream>
#include "mq_http_sdk/mq_client.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 272

using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 string groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQConsumerPtr consumer;
 if (instanceId == "") {
 consumer = mqClient.getConsumerRef(topic, groupId);
 } else {
 consumer = mqClient.getConsumerRef(instanceId, topic, groupId, "");
 }
 do {
 try {
 std::vector<Message> messages;
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
 consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
 messages
);
 cout << "Consume: " << messages.size() << " Messages!" << endl;
 // Specify the message consumption logic.
 std::vector<std::string> receiptHandles;
 for (std::vector<Message>::iterator iter = messages.begin();
 iter != messages.end(); ++iter)
 {

User Guide··SDK user guide Alibaba Cloud Message Queue

273 > Document Version: 20220816

 {
 cout << "MessageId: " << iter->getMessageId()
 << " PublishTime: " << iter->getPublishTime()
 << " Tag: " << iter->getMessageTag()
 << " Body: " << iter->getMessageBody()
 << " FirstConsumeTime: " << iter->getFirstConsumeTime()
 << " NextConsumeTime: " << iter->getNextConsumeTime()
 << " ConsumedTimes: " << iter->getConsumedTimes()
 << " Properties: " << iter->getPropertiesAsString()
 << " Key: " << iter->getMessageKey() << endl;
 receiptHandles.push_back(iter->getReceiptHandle());
 }
 // Obtain an acknowledgment (ACK) from the consumer.
 // If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 AckMessageResponse bdmResp;
 consumer->ackMessage(receiptHandles, bdmResp);
 if (!bdmResp.isSuccess()) {
 // If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
 const std::vector<AckMessageFailedItem>& failedItems =
 bdmResp.getAckMessageFailedItem();
 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.b
egin();
 iter != failedItems.end(); ++iter)
 {
 cout << "AckFailedItem: " << iter->errorCode
 << " " << iter->receiptHandle << endl;
 }
 } else {
 cout << "Ack: " << messages.size() << " messages suc!" << endl;
 }
 } catch (MQServerException& me) {
 if (me.GetErrorCode() == "MessageNotExist") {
 cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
 continue;
 }
 cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest
Id() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 }

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 274

 }
 } while(true);
}

Ordered messages are a type of message that is published and consumed in a strict order. Ordered
messages in Message Queue for Apache RocketMQ are also known as first-in-first-out (FIFO) messages.
This topic provides sample code to show how to use the HTTP client SDK for C++ to send and consume
ordered messages.

Background informationBackground information
Ordered messages are classified into the following types:

Globally ordered message: All messages in a specified topic are published and consumed in first-in-
first-out (FIFO) order.

Part it ionally ordered message: All messages in a specified topic are distributed to different part it ions
by using shard keys. The messages in each part it ion are published and consumed in FIFO order. A
Sharding Key is a key field that is used for ordered messages to identify different part it ions. The
Sharding Key is different from the key of a normal message.

For more information about the message routing feature, see Ordered messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send ordered messagesSend ordered messages
The following sample code provides an example on how to send ordered messages:

//#include <iostream>
#include <fstream>
#include <time.h>
#include "mq_http_sdk/mq_client.h"
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain

6.3.8.3. Send and consume ordered messages6.3.8.3. Send and consume ordered messages

User Guide··SDK user guide Alibaba Cloud Message Queue

275 > Document Version: 20220816

 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQProducerPtr producer;
 if (instanceId == "") {
 producer = mqClient.getProducerRef(topic);
 } else {
 producer = mqClient.getProducerRef(instanceId, topic);
 }
 try {
 // Cyclically send four messages.
 for (int i = 0; i < 8; i++)
 {
 PublishMessageResponse pmResp;
 // The content of the message.
 TopicMessage pubMsg("Hello, mq!order msg!");
 // The shard key that is used to distribute ordered messages to a specific part
ition. Shard keys can be used to identify different partitions. A shard key is different fr
om a message key.
 pubMsg.setShardingKey(std::to_string(i % 2));
 // The custom property of the message.
 pubMsg.putProperty("a",std::to_string(i));
 producer->publishMessage(pubMsg, pmResp);
 cout << "Publish mq message success. Topic is: " << topic
 << ", msgId is:" << pmResp.getMessageId()
 << ", bodyMD5 is:" << pmResp.getMessageBodyMD5() << endl;
 }
 } catch (MQServerException& me) {
 cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
 return -1;
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
 return -2;
 }
 return 0;
}

Consume ordered messagesConsume ordered messages
The following sample code provides an example on how to consume ordered messages:

#include <vector>
#include <fstream>
#include "mq_http_sdk/mq_client.h"

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 276

#include "mq_http_sdk/mq_client.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 string groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQConsumerPtr consumer;
 if (instanceId == "") {
 consumer = mqClient.getConsumerRef(topic, groupId);
 } else {
 consumer = mqClient.getConsumerRef(instanceId, topic, groupId, "");
 }
 do {
 try {
 std::vector<Message> messages;
 // Consume messages in long polling mode. The consumer may pull partitionally o
rdered messages from multiple partitions. The consumer consumes messages from the same part
ition in the order in which the messages are sent.
 // A consumer pulls partitionally ordered messages from a partition. If the bro
ker does not receive an acknowledgment (ACK) for a message after the message is consumed, t
he consumer consumes the message again.
 // The consumer can consume the next batch of messages from a partition only af
ter all messages that are pulled from the partition in the previous batch are acknowledged
to be consumed.
 // In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t

User Guide··SDK user guide Alibaba Cloud Message Queue

277 > Document Version: 20220816

mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
 consumer->consumeMessageOrderly(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
 messages
);
 cout << "Consume: " << messages.size() << " Messages!" << endl;
 // Specify the message consumption logic.
 std::vector<std::string> receiptHandles;
 for (std::vector<Message>::iterator iter = messages.begin();
 iter != messages.end(); ++iter)
 {
 cout << "MessageId: " << iter->getMessageId()
 << " PublishTime: " << iter->getPublishTime()
 << " Tag: " << iter->getMessageTag()
 << " Body: " << iter->getMessageBody()
 << " FirstConsumeTime: " << iter->getFirstConsumeTime()
 << " NextConsumeTime: " << iter->getNextConsumeTime()
 << " ConsumedTimes: " << iter->getConsumedTimes()
 << " Properties: " << iter->getPropertiesAsString()
 << " ShardingKey: " << iter->getShardingKey() << endl;
 receiptHandles.push_back(iter->getReceiptHandle());
 }
 // Obtain an ACK from the consumer.
 // If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 AckMessageResponse bdmResp;
 consumer->ackMessage(receiptHandles, bdmResp);
 if (!bdmResp.isSuccess()) {
 // If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
 const std::vector<AckMessageFailedItem>& failedItems =
 bdmResp.getAckMessageFailedItem();
 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.b
egin();
 iter != failedItems.end(); ++iter)
 {
 cout << "AckFailedItem: " << iter->errorCode
 << " " << iter->receiptHandle << endl;
 }
 } else {
 cout << "Ack: " << messages.size() << " messages suc!" << endl;
 }
 } catch (MQServerException& me) {
 if (me.GetErrorCode() == "MessageNotExist") {
 cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
 continue;
 }
 cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 278

Id() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 }
 } while(true);
}

This topic provides sample code to show how to use the HTTP client SDK for C++ to send and consume
scheduled messages and delayed messages.

Background informationBackground information
Delayed message: The producer sends the message to the Message Queue for Apache RocketMQ
server, but does not expect the message to be delivered immediately. Instead, the message is
delivered to the consumer for consumption after a certain period of t ime. This message is a delayed
message.

Scheduled message: A producer sends a message to a Message Queue for Apache RocketMQ broker
and expects the message to be delivered to a consumer at a specified point in t ime. This type of
message is called a scheduled message.

If an HTTP client SDK is used, the code configurations of scheduled messages are the same as the code
configurations of delayed messages. Both types of messages are delivered to consumers after a
specific period of t ime based on the attributes of the messages.

For more information about the message routing feature, see Scheduled messages and delayed
messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send scheduled messages or delayed messagesSend scheduled messages or delayed messages

6.3.8.4. Send and consume scheduled messages and6.3.8.4. Send and consume scheduled messages and

delayed messagesdelayed messages

User Guide··SDK user guide Alibaba Cloud Message Queue

279 > Document Version: 20220816

The following sample code provides an example on how to send scheduled messages or delayed
messages:

#include <fstream>
#include <time.h>
#include "mq_http_sdk/mq_client.h"
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that you created in the Resource Access Management (RAM) co
nsole. The AccessKey ID is used for identity verification.
 "${ACCESS_KEY}",
 // The AccessKey secret that you created in the RAM console. The AccessKey secr
et is used for identity verification.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQProducerPtr producer;
 if (instanceId == "") {
 producer = mqClient.getProducerRef(topic);
 } else {
 producer = mqClient.getProducerRef(instanceId, topic);
 }
 try {
 // Cyclically send four messages.
 for (int i = 0; i < 4; i++)
 {
 PublishMessageResponse pmResp;
 // The content of the message.
 TopicMessage pubMsg("Hello, mq!have key!");
 // The custom property of the message.
 pubMsg.putProperty("a",std::to_string(i));
 // The key of the message.
 pubMsg.setMessageKey("MessageKey" + std::to_string(i));
 // The period of time after which the broker delivers the message. In this exam
ple, when the broker receives a message, the broker waits for 10 seconds before it delivers
the message to the consumer. Set this parameter to a timestamp in milliseconds.
 // If the producer sends a scheduled message, set the parameter to the time int
erval between the scheduled point in time and the current point in time.
 pubMsg.setStartDeliverTime(time(NULL) * 1000 + 10 * 1000);
 producer->publishMessage(pubMsg, pmResp);

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 280

 producer->publishMessage(pubMsg, pmResp);
 cout << "Publish mq message success. Topic is: " << topic
 << ", msgId is:" << pmResp.getMessageId()
 << ", bodyMD5 is:" << pmResp.getMessageBodyMD5() << endl;
 }
 } catch (MQServerException& me) {
 cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
 return -1;
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
 return -2;
 }
 return 0;
}

Consume scheduled messages or delayed messagesConsume scheduled messages or delayed messages
The following sample code provides an example on how to consume scheduled messages or delayed
messages:

#include <vector>
#include <fstream>
#include "mq_http_sdk/mq_client.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 string groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe

User Guide··SDK user guide Alibaba Cloud Message Queue

281 > Document Version: 20220816

s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQConsumerPtr consumer;
 if (instanceId == "") {
 consumer = mqClient.getConsumerRef(topic, groupId);
 } else {
 consumer = mqClient.getConsumerRef(instanceId, topic, groupId, "");
 }
 do {
 try {
 std::vector<Message> messages;
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
 consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
 messages
);
 cout << "Consume: " << messages.size() << " Messages!" << endl;
 // Specify the message consumption logic.
 std::vector<std::string> receiptHandles;
 for (std::vector<Message>::iterator iter = messages.begin();
 iter != messages.end(); ++iter)
 {
 cout << "MessageId: " << iter->getMessageId()
 << " PublishTime: " << iter->getPublishTime()
 << " Tag: " << iter->getMessageTag()
 << " Body: " << iter->getMessageBody()
 << " FirstConsumeTime: " << iter->getFirstConsumeTime()
 << " NextConsumeTime: " << iter->getNextConsumeTime()
 << " ConsumedTimes: " << iter->getConsumedTimes()
 << " Properties: " << iter->getPropertiesAsString()
 << " Key: " << iter->getMessageKey() << endl;
 receiptHandles.push_back(iter->getReceiptHandle());
 }
 // Obtain an acknowledgment (ACK) from the consumer.
 // If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 AckMessageResponse bdmResp;
 consumer->ackMessage(receiptHandles, bdmResp);
 if (!bdmResp.isSuccess()) {
 // If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
 const std::vector<AckMessageFailedItem>& failedItems =
 bdmResp.getAckMessageFailedItem();
 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.b

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 282

 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.b
egin();
 iter != failedItems.end(); ++iter)
 {
 cout << "AckFailedItem: " << iter->errorCode
 << " " << iter->receiptHandle << endl;
 }
 } else {
 cout << "Ack: " << messages.size() << " messages suc!" << endl;
 }
 } catch (MQServerException& me) {
 if (me.GetErrorCode() == "MessageNotExist") {
 cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
 continue;
 }
 cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest
Id() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 }
 } while(true);
}

Message Queue for Apache RocketMQ provides a distributed transaction processing feature that is
similar to X/Open XA. Message Queue for Apache RocketMQ uses transactional messages to ensure
transactional consistency. This topic provides sample code to show how to use the HTTP client SDK for
C++ to send and consume transactional messages.

Background informationBackground information

6.3.8.5. Send and consume transactional messages6.3.8.5. Send and consume transactional messages

User Guide··SDK user guide Alibaba Cloud Message Queue

283 > Document Version: 20220816

The following figure shows the interact ion process of transactional messages.

For more information about the message routing feature, see Transactional messages.

PrerequisitesPrerequisites
The following operations are performed:

Install the SDK for C++. For more information about the message routing feature, see Prepare the
environment.

Create resources that you want to specify in the code. For example, you must create the instance,
topic, and group that you want to specify in the code in the Message Queue for Apache RocketMQ
console in advance. For more information about the message routing feature, see Create resources.

Send transactional messagesSend transactional messages
The following sample code provides an example on how to send transactional messages:

//#include <iostream>
#include <fstream>
#ifdef _WIN32
#include <windows.h>
#include <process.h>
#else
#include "pthread.h"
#endif
#include "mq_http_sdk/mq_client.h"
using namespace std;
using namespace mq::http::sdk;
const int32_t pubMsgCount = 4;
const int32_t halfCheckCount = 3;
void processCommitRollError(AckMessageResponse& bdmResp, const std::string& messageId) {
 if (bdmResp.isSuccess()) {
 cout << "Commit/Roll Transaction Suc: " << messageId << endl;
 return;
 }
 const std::vector<AckMessageFailedItem>& failedItems =
 bdmResp.getAckMessageFailedItem();
 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.begin();
 iter != failedItems.end(); ++iter)
 {
 cout << "Commit/Roll Transaction ERROR: " << iter->errorCode
 << " " << iter->receiptHandle << endl;
 }

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 284

 }
}
#ifdef WIN32
unsigned __stdcall consumeHalfMessageThread(void *arg)
#else
void* consumeHalfMessageThread(void *arg)
#endif
{
 MQTransProducerPtr transProducer = *(MQTransProducerPtr*)(arg);
 int count = 0;
 do {
 std::vector<Message> halfMsgs;
 try {
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
 transProducer->consumeHalfMessage(
 1, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 1. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
 halfMsgs
);
 } catch (MQServerException& me) {
 if (me.GetErrorCode() == "MessageNotExist") {
 cout << "No half message to consume! RequestId: " + me.GetRequestId() << en
dl;
 continue;
 }
 cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest
Id() << endl;
 }
 if (halfMsgs.size() == 0) {
 continue;
 }
 cout << "Consume Half: " << halfMsgs.size() << " Messages!" << endl;
 // Process half messages.
 std::vector<std::string> receiptHandles;
 for (std::vector<Message>::iterator iter = halfMsgs.begin();
 iter != halfMsgs.end(); ++iter)
 {
 cout << "MessageId: " << iter->getMessageId()
 << " PublishTime: " << iter->getPublishTime()
 << " Tag: " << iter->getMessageTag()
 << " Body: " << iter->getMessageBody()
 << " FirstConsumeTime: " << iter->getFirstConsumeTime()
 << " NextConsumeTime: " << iter->getNextConsumeTime()
 << " ConsumedTimes: " << iter->getConsumedTimes()
 << " Properties: " << iter->getPropertiesAsString()
 << " Key: " << iter->getMessageKey() << endl;
 int32_t consumedTimes = iter->getConsumedTimes();
 const std::string propA = iter->getProperty("a");
 const std::string handle = iter->getReceiptHandle();

User Guide··SDK user guide Alibaba Cloud Message Queue

285 > Document Version: 20220816

 const std::string handle = iter->getReceiptHandle();
 AckMessageResponse bdmResp;
 if (propA == "1") {
 cout << "Commit msg.." << endl;
 transProducer->commit(handle, bdmResp);
 count++;
 } else if(propA == "2") {
 if (consumedTimes > 1) {
 cout << "Commit msg.." << endl;
 transProducer->commit(handle, bdmResp);
 count++;
 } else {
 cout << "Commit Later!!!" << endl;
 }
 } else if(propA == "3") {
 cout << "Rollback msg.." << endl;
 transProducer->rollback(handle, bdmResp);
 count++;
 } else {
 transProducer->commit(handle, bdmResp);
 cout << "Unkown msg.." << endl;
 }
 // If the transactional message is not committed or rolled back before the peri
od of time specified by the NextConsumeTime parameter elapses, the commit or rollback opera
tion fails.
 processCommitRollError(bdmResp, iter->getMessageId());
 }
 } while(count < halfCheckCount);
#ifdef WIN32
 return 0;
#else
 return NULL;
#endif
}
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic to which you want to send messages. The topic is created in the Message Qu
eue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 286

er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 string groupId = "${GROUP_ID}";
 MQTransProducerPtr transProducer;
 if (instanceId == "") {
 transProducer = mqClient.getTransProducerRef(topic, groupId);
 } else {
 transProducer = mqClient.getTransProducerRef(instanceId, topic, groupId);
 }
 // The client needs a thread or a process to process unacknowledged transactional messa
ges.
 // Start a thread to process unacknowledged transactional messages.
#ifdef WIN32
 HANDLE thread;
 unsigned int threadId;
 thread = (HANDLE)_beginthreadex(NULL, 0, consumeHalfMessageThread, &transProducer, 0, &
threadId);
#else
 pthread_t thread;
 pthread_create(&thread, NULL, consumeHalfMessageThread, static_cast<void *>(&transProdu
cer));
#endif
 try {
 for (int i = 0; i < pubMsgCount; i++)
 {
 PublishMessageResponse pmResp;
 TopicMessage pubMsg("Hello, mq, trans_msg!");
 pubMsg.putProperty("a",std::to_string(i));
 pubMsg.setMessageKey("ImKey");
 pubMsg.setTransCheckImmunityTime(10);
 transProducer->publishMessage(pubMsg, pmResp);
 cout << "Publish mq message success. Topic:" << topic
 << ", msgId:" << pmResp.getMessageId()
 << ", bodyMD5:" << pmResp.getMessageBodyMD5()
 << ", Handle:" << pmResp.getReceiptHandle() << endl;
 if (i == 0) {
 // After the producer sends the transactional message, the broker obtains t
he handle of the half message that corresponds to the transactional message and commits or
rolls back the transactional message based on the status of the handle.
 // If a transactional message is not committed or rolled back after the per
iod of time specified by the TransCheckImmunityTime parameter elapses, the commit or rollba
ck operation fails.
 AckMessageResponse bdmResp;
 transProducer->commit(pmResp.getReceiptHandle(), bdmResp);
 processCommitRollError(bdmResp, pmResp.getMessageId());
 }
 }
 } catch (MQServerException& me) {
 cout << "Request Failed: " + me.GetErrorCode() << ", requestId is:" << me.GetReques
tId() << endl;
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
 }

User Guide··SDK user guide Alibaba Cloud Message Queue

287 > Document Version: 20220816

 }
#ifdef WIN32
 WaitForSingleObject(thread, INFINITE);
 CloseHandle(thread);
#else
 pthread_join(thread, NULL);
#endif
 return 0;
}

Consume transactional messagesConsume transactional messages
The following sample code provides an example on how to consume transactional messages:

#include <vector>
#include <fstream>
#include "mq_http_sdk/mq_client.h"
#ifdef _WIN32
#include <windows.h>
#else
#include <unistd.h>
#endif
using namespace std;
using namespace mq::http::sdk;
int main() {
 MQClient mqClient(
 // The HTTP endpoint to which you want to connect. To obtain the HTTP endpoint,
log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click Instances. On the Instances page, select the name of your instance. Then, view the HT
TP endpoint on the Network Management tab.
 "${HTTP_ENDPOINT}",
 // The AccessKey ID that is used for identity verification. You can obtain the
AccessKey ID in the Apsara Uni-manager Operations Console.
 "${ACCESS_KEY}",
 // The AccessKey secret that is used for identity verification. You can obtain
the AccessKey secret in the Apsara Uni-manager Operations Console.
 "${SECRET_KEY}"
);
 // The topic from which you want to consume messages. The topic is created in the Messa
ge Queue for Apache RocketMQ console.
 string topic = "${TOPIC}";
 // The ID of the group that you created in the Message Queue for Apache RocketMQ consol
e.
 string groupId = "${GROUP_ID}";
 // The ID of the instance to which the topic belongs. The instance is created in the Me
ssage Queue for Apache RocketMQ console.
 // If the instance has a namespace, specify the ID of the instance. If the instance doe
s not have a namespace, set the instance ID to null or an empty string. You can check wheth
er your instance has a namespace on the Instances page in the RocketMQ console.
 string instanceId = "${INSTANCE_ID}";
 MQConsumerPtr consumer;
 if (instanceId == "") {
 consumer = mqClient.getConsumerRef(topic, groupId);
 } else {

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 288

 consumer = mqClient.getConsumerRef(instanceId, topic, groupId, "");
 }
 do {
 try {
 std::vector<Message> messages;
 // Consume messages in long polling mode.
 // In long polling mode, if no message in the topic is available for consumptio
n, the request is suspended on the broker for a specified period of time. If a message beco
mes available for consumption within this period, the broker immediately sends a response t
o the consumer. In this example, the period is set to 3 seconds.
 consumer->consumeMessage(
 3, // The maximum number of messages that can be consumed at a time. In
this example, the value is set to 3. The maximum value that you can specify is 16.
 3, // The length of a long polling period. Unit: seconds. In this examp
le, the value is set to 3. The maximum value that you can specify is 30.
 messages
);
 cout << "Consume: " << messages.size() << " Messages!" << endl;
 // Specify the message consumption logic.
 std::vector<std::string> receiptHandles;
 for (std::vector<Message>::iterator iter = messages.begin();
 iter != messages.end(); ++iter)
 {
 cout << "MessageId: " << iter->getMessageId()
 << " PublishTime: " << iter->getPublishTime()
 << " Tag: " << iter->getMessageTag()
 << " Body: " << iter->getMessageBody()
 << " FirstConsumeTime: " << iter->getFirstConsumeTime()
 << " NextConsumeTime: " << iter->getNextConsumeTime()
 << " ConsumedTimes: " << iter->getConsumedTimes()
 << " Properties: " << iter->getPropertiesAsString()
 << " Key: " << iter->getMessageKey() << endl;
 receiptHandles.push_back(iter->getReceiptHandle());
 }
 // Obtain an acknowledgment (ACK) from the consumer.
 // If the broker does not receive an ACK for a message from the consumer before
the period of time that is specified by the Message.NextConsumeTime parameter elapses, the
broker delivers the message for consumption again.
 // A unique timestamp is specified for the handle of a message each time the me
ssage is consumed.
 AckMessageResponse bdmResp;
 consumer->ackMessage(receiptHandles, bdmResp);
 if (!bdmResp.isSuccess()) {
 // If the handle of a message times out, the broker cannot receive an ACK f
or the message from the consumer.
 const std::vector<AckMessageFailedItem>& failedItems =
 bdmResp.getAckMessageFailedItem();
 for (std::vector<AckMessageFailedItem>::const_iterator iter = failedItems.b
egin();
 iter != failedItems.end(); ++iter)
 {
 cout << "AckFailedItem: " << iter->errorCode
 << " " << iter->receiptHandle << endl;
 }
 } else {

User Guide··SDK user guide Alibaba Cloud Message Queue

289 > Document Version: 20220816

 } else {
 cout << "Ack: " << messages.size() << " messages suc!" << endl;
 }
 } catch (MQServerException& me) {
 if (me.GetErrorCode() == "MessageNotExist") {
 cout << "No message to consume! RequestId: " + me.GetRequestId() << endl;
 continue;
 }
 cout << "Request Failed: " + me.GetErrorCode() + ".RequestId: " + me.GetRequest
Id() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 } catch (MQExceptionBase& mb) {
 cout << "Request Failed: " + mb.ToString() << endl;
#ifdef _WIN32
 Sleep(2000);
#else
 usleep(2000 * 1000);
#endif
 }
 } while(true);
}

Alibaba Cloud Message Queue User Guide··SDK user guide

> Document Version: 20220816 290

This topic describes the terms, scenarios, and usage notes of clustering consumption and broadcasting
consumption in Message Queue for Apache RocketMQ.

TermsTerms
Message Queue for Apache RocketMQ is a messaging system that is based on the publish-subscribe
model. In Message Queue for Apache RocketMQ, a consumer subscribes to a topic to obtain and
consume messages. In most cases, consumer applications use distributed systems. Mult iple machines are
deployed in one cluster. Therefore, Message Queue for Apache RocketMQ defines the following terms:

Clust er:Clust er: Consumers identified by the same group ID belong to the same cluster. These consumers
must have the same consumption logic that also involves tags. These consumers can be considered
logically as one consumption node.

Clust ering consumpt ion:Clust ering consumpt ion: In this mode, a message needs to be processed only by a consumer in the
cluster.

Broadcast ing consumpt ion:Broadcast ing consumpt ion: In this mode, Message Queue for Apache RocketMQ broadcasts each
message to all consumers registered in the cluster to ensure that the message is consumed by each
consumer at least once.

ScenariosScenarios
Clust ering consumpt ion mode:Clust ering consumpt ion mode:

Clustering consumption mode

Scenarios and usage not es:Scenarios and usage not es:

Consumers are deployed in a cluster and each message needs to be processed only once.

The consumption progress is recorded on the Message Queue for Apache RocketMQ broker.
Therefore, the reliability is high.

In clustering consumption mode, each message is delivered to only one consumer in the cluster for
processing. If a message needs to be processed by each consumer in the cluster, use the
broadcasting consumption mode.

7.Best practices7.Best practices
7.1. Clustering consumption and7.1. Clustering consumption and
broadcasting consumptionbroadcasting consumption

User Guide··Best pract ices Alibaba Cloud Message Queue

291 > Document Version: 20220816

In clustering consumption mode, it is not guaranteed that a failed message can be routed to the
same consumer each t ime the message is redelivered. Therefore, no definit ive assumptions can be
made during message processing.

Broadcast ing consumpt ion mode:Broadcast ing consumpt ion mode:

Broadcasting consumption mode

Scenarios and usage notes:

Ordered messages are not supported in broadcasting consumption mode.

Consumer offsets cannot be reset in broadcasting consumption mode.

Each message needs to be processed by mult iple consumers that are subject to the same logic.

The consumption progress is recorded on the consumer. Duplicate messages are more likely to
occur in broadcasting consumption mode than in clustering consumption mode.

In broadcasting consumption mode, Message Queue for Apache RocketMQ ensures that each
message is consumed at least once by each consumer, but does not resend a message that fails to
be consumed. Therefore, you need to pay attention to consumption failures.

In broadcasting consumption mode, a consumer starts consumption from the latest message each
time the consumer is restarted. The consumer automatically skips the messages that are sent to
the Message Queue for Apache RocketMQ broker when the consumer is stopped. Therefore, use
this mode with caution.

In broadcasting consumption mode, each message is repeatedly processed by many consumers.
Therefore, we recommend that you use the clustering consumption mode whenever possible.

Only Java clients support the broadcasting consumption mode.

In broadcasting consumption mode, the Message Queue for Apache RocketMQ broker does not
record the consumption progress. In this mode, you cannot query accumulated messages,
configure message accumulation alerts, or query subscript ions in the Message Queue for Apache
RocketMQ console.

Use t he clust ering consumpt ion mode t o simulat e t he broadcast ing consumpt ion modeUse t he clust ering consumpt ion mode t o simulat e t he broadcast ing consumpt ion mode

If the broadcasting consumption mode is required for your business, you can create mult iple group
IDs to subscribe to the same topic.

Use the clustering consumption mode to simulate the broadcasting consumption mode

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 292

Scenarios and usage notes:

Each message needs to be processed by mult iple consumers, and the logic of the consumers can
be the same or different.

The consumption progress is recorded on the Message Queue for Apache RocketMQ broker.
Therefore, the reliability is higher than that in broadcasting consumption mode.

For each group ID, one or more consumer instances can be deployed. When mult iple consumer
instances are deployed, these instances compose a cluster and work together to consume
messages. Assume that three consumer instances C1, C2, and C3 are deployed for Group ID 1. These
instances share the messages sent from the Message Queue for Apache RocketMQ broker to Group
ID 1. In addit ion, these instances must subscribe to the same topics and same tags.

This topic describes how Message Queue for Apache RocketMQ consumers filter messages on the
Message Queue for Apache RocketMQ broker based on tags.

A tag is used to classify messages in a topic into different types. Message Queue for Apache RocketMQ
allows consumers to filter messages by using tags. This ensures that the consumers consume only
messages that they are concerned with.

The following figure shows an example in the e-commerce transaction scenario. In the process from
placing an order to receiving the product by the customer, a series of messages including order
messages, payment messages, and logist ics messages are generated. These messages are sent to the
Trade_Topic topic and subscribed to by different systems, such as the payment system, analysis system
for transaction success rate, and real-t ime computing system. Among these systems, the logist ics
system receives only logist ics messages and the real-t ime computing system receives all transaction-
related messages, including the order messages, payment messages, and logist ics messages.

Filter messages

7.2. Message filtering7.2. Message filtering

User Guide··Best pract ices Alibaba Cloud Message Queue

293 > Document Version: 20220816

Not e Not e To classify messages, you can create mult iple topics, or create mult iple tags in the
same topic. In most cases, messages in one topic are irrelevant to those in another topic. Tags are
used to dist inguish between relevant messages in the same topic. For example, you can create
different tags in the same topic to dist inguish between a set and its subsets or dist inguish between
processes in sequence.

ExamplesExamples
Send messages

Specify a tag for each message before the message is sent.

Message msg = new Message("MQ_TOPIC","TagA","Hello MQ".getBytes());

Subscribe to messages

Consumption method 1

If a consumer needs to subscribe to messages of all types in a topic, use an asterisk (*) to represent
all tags.

consumer.subscribe("MQ_TOPIC", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 294

Consumption method 2

If a consumer needs to subscribe to messages of a specific type in a topic, specify the
corresponding tag.

consumer.subscribe("MQ_TOPIC", "TagA", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Consumption method 3

If a consumer needs to subscribe to messages of mult iple types in a topic, separate the
corresponding tags with two vert ical bars (||).

consumer.subscribe("MQ_TOPIC", "TagA||TagB", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Consumption method 4 (error example)

If a consumer subscribes to messages with specific tags in a topic mult iple t imes, the tags in the
last subscript ion prevail:

// In the following error code, the consumer can receive only messages with TagB in MQ_
TOPIC and cannot receive messages with TagA.
consumer.subscribe("MQ_TOPIC", "TagA", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});
consumer.subscribe("MQ_TOPIC", "TagB", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

In Message Queue for Apache RocketMQ, a group ID represents a consumer instance group. For most
distributed applications, mult iple consumer instances are attached to the same group ID. Subscript ion
consistency means that the processing logic of all consumer instances identified by the same group ID
must be identical. If the subscript ions of the consumer instances are inconsistent, errors occur in the
message consumption logic and messages may be lost.

Subscript ions in Message Queue for Apache RocketMQ involve topics and tags. Therefore, all consumer
instances identified by the same group ID must be consistent in the following two aspects to ensure
subscript ion consistency:

7.3. Subscription consistency7.3. Subscription consistency

User Guide··Best pract ices Alibaba Cloud Message Queue

295 > Document Version: 20220816

The topics to which the consumer instances subscribe must be the same.

The tags of the topics to which the consumer instances subscribe must be the same.

Examples of subscriptionsExamples of subscriptions
Consistent subscript ions

Mult iple group IDs subscribe to mult iple topics, and the subscript ions of different consumer instances
identified by the same group ID are consistent, as shown in the following figure.

Consistent subscript ions

Inconsistent subscript ions

One group ID subscribes to mult iple topics, but the subscript ions of different consumer instances
identified by the group ID are inconsistent, as shown in the following figure.

Inconsistent subscript ions

Sample code of subscriptionsSample code of subscriptions
Sample code of inconsistent subscript ions

Example 1

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 296

In the following example, two consumer instances identified by the same group ID subscribe to
different topics.

Consumer instance 1-1:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_1");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_A", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Consumer instance 1-2:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_1");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_B ", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Example 2

In the following example, two consumer instances identified by the same group ID subscribe to the
same topic but subscribe to different numbers of tags of the topic. Consumer instance 2-1 has
subscribed to Tag A, whereas consumer instance 2-2 has not specified a tag.

Consumer instance 2-1:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_2");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_A", "TagA", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Consumer instance 2-2:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_2");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_A", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

User Guide··Best pract ices Alibaba Cloud Message Queue

297 > Document Version: 20220816

Example 3

In this example, the subscript ions are inconsistent due to the following reasons:

Two consumer instances identified by the same group ID subscribe to different numbers of topics.

Both the consumer instances subscribe to one same topic but subscribe to different tags of the
topic.

Consumer instance 3-1:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_3");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_A", "TagA", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});
consumer.subscribe("jodie_test_B", "TagB", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

Consumer instance 3-2:

Properties properties = new Properties();
properties.put(PropertyKeyConst.GROUP_ID, "GID_jodie_test_3");
Consumer consumer = ONSFactory.createConsumer(properties);
consumer.subscribe("jodie_test_A", "TagB", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println(message.getMsgID());
 return Action.CommitMessage;
 }
});

After a Message Queue for Apache RocketMQ consumer receives messages, the consumer needs to
perform idempotent processing on these messages based on the unique business-specific keys of the
messages.

Necessity for consumption idempotenceNecessity for consumption idempotence
In Internet applications, duplicate messages may occur in Message Queue for Apache RocketMQ
especially if Internet connection is unstable. Duplicate messages may occur in the following two
scenarios:

A producer repeatedly sends a message to the Message Queue for RocketMQ broker.

7.4. Consumption idempotence7.4. Consumption idempotence

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 298

If a network disconnection occurs or the producer breaks down after a message is sent to and
persisted in the Message Queue for Apache RocketMQ broker, the broker fails to respond to the
producer. If the producer realizes that the message failed to be sent and resends the message, the
consumer subsequently receives two messages that have the same content and message ID.

The Message Queue for Apache RocketMQ broker repeatedly delivers a message to a consumer.

A message is delivered to a consumer and is processed by the consumer. However, a network
disconnection occurs when the consumer sends a response to the Message Queue for Apache
RocketMQ broker. To ensure that the message is consumed at least once, the Message Queue for
Apache RocketMQ broker redelivers the previously processed message after the network connection
recovers. The consumer subsequently receives two messages that have the same content and
message ID.

Duplicate messages are generated when rebalancing is triggered in scenarios such as network jit ter,
broker restart , and consumer application restart .

Traffic is rebalanced if the Message Queue for Apache RocketMQ broker or consumer client is
restarted or scaled. In this case, a consumer may receive duplicate messages.

SolutionSolution
Message IDs may be duplicate. Therefore, we recommend that you do not implement idempotent
processing based on message IDs. The best pract ice is to use unique business-specific keys for
idempotent processing. The following sample code provides an example on how to specify a unique
business-specific key for a message:

Message message = new Message();
message.setKey("ORDERID_100");
SendResult sendResult = producer.send(message);

The following sample code provides an example on how a consumer performs idempotent processing
after it receives a message:

consumer.subscribe("ons_test", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 String key = message.getKey()
 // Use the unique business-specific key for idempotent processing.
 }
});

Message Queue for Apache RocketMQ leverages Alibaba Cloud Express Connect and Mult i-Site High
Availability (MSHA) to support act ive geo-redundancy. MSHA allows you to implement two-way data
synchronization and business traffic switchover across instances. This way, business recovery is
decoupled from fault recovery. If a fault occurs, business continuity can be ensured. This topic
introduces the concept of MSHA and describes the common scenarios in which MSHA is suitable. This
topic also describes the benefits of MSHA.

What is MSHA?What is MSHA?

7.5. Active geo-redundancy7.5. Active geo-redundancy

User Guide··Best pract ices Alibaba Cloud Message Queue

299 > Document Version: 20220816

MSHA is an act ive geo-redundancy solut ion that was developed in the e-commerce business
environment of Alibaba Group. MSHA can help decouple business recovery from fault recovery. MSHA
provides capabilit ies such as flexible scheduling based on traffic rules, cross-region and cross-cloud
management, and data protect ion. If a fault occurs, fast failover and recovery operations can be
performed.

Message Queue for Apache RocketMQ leverages Alibaba Cloud Express Connect and MSHA to
implement two-way synchronization of message data across instances in the same region or different
regions. MSHA is different from a tradit ional disaster recovery solut ion. MSHA allows Message Queue for
Apache RocketMQ clusters that are deployed in different units to provide services at the same t ime.
This helps implement disaster recovery, improve business continuity, and achieve remote resource
scaling.

The following figure shows how to use MSHA to implement act ive geo-redundancy for Message Queue
for Apache RocketMQ.

A complete business system is deployed in the Hangzhou and Shanghai units.

The MSHA access layer routes business data to the two units based on traffic rules. The application
systems and Message Queue for Apache RocketMQ broker clusters in the Hangzhou and Shanghai
units process business data in their local regions.

The broker clusters in the two units are configured to support act ive geo-redundancy. Data is
synchronized between Broker Cluster A and Broker Cluster B in a two-way manner. The data includes
topics, groups, and consumer offsets. In normal cases, the business systems in the Hangzhou and
Shanghai units process business data only in their local regions, and synchronize message data of the
local unit to the cluster of the remote unit for disaster recovery and backup.

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 300

Assume that a disaster occurs in the Hangzhou unit and the entire business system in the Hangzhou
unit fails. In this case, MSHA switches the business data of the Hangzhou unit to the Shanghai unit . As
a result , Broker Cluster B of the Shanghai unit stores the business data of the Hangzhou unit and can
continue to process the unfinished message data. This allows you to troubleshoot and fix the fault
without service downtime. This way, the business can be recovered before the fault is rect if ied.

After the Hangzhou unit is recovered from the fault , MSHA switches the business data of the
Hangzhou unit back to the business system in the Hangzhou unit . During the entire process, users are
not aware of the fault , and the user experience is not affected.

Common scenariosCommon scenarios
MSHA can be used in the following common business scenarios:

Business scenarios in which workloads are divided into different units by region, such as logist ics
workloads. You can divide the logist ics workloads based on the regions in which logist ics orders are
placed and send business data to production centers in different regions. This way, the data can be
simultaneously processed. This helps improve resource ut ilizat ion and business concurrency.

Business scenarios that have strict requirements for the reliability of business data, such as financial
and securit ies systems. If a system fault occurs, the transaction results are negatively affected. In this
case, you can use MSHA to switch the workloads to the disaster recovery site. The disaster recovery
site can continue to process unfinished message data based on the synchronized data.

BenefitsBenefits
High availabilit yHigh availabilit y

Compared with a tradit ional disaster recovery solut ion, MSHA implements two-way data
synchronization across production centers. All production centers can provide services at the same
time. This implements traffic balancing and improves resource ut ilizat ion.

Fast f ault recoveryFast f ault recovery

MSHA effect ively ensures business continuity. MSHA decouples business recovery from fault recovery.
When one of the production centers fails, MSHA immediately switches the business to other healthy
production centers to ensure business continuity. This is different from a tradit ional solut ion in which
the fault must be identified and fixed before the business can be recovered.

Remot e resource scalingRemot e resource scaling

The limited resources in a single data center or region may not meet the requirements as the business
rapidly develops. In addit ion, the business may face bott lenecks such as limited storage and
computing performance. The horizontal scaling capability of Message Queue for Apache RocketMQ
allows the business to be expanded in other data centers or regions to improve cost efficiency.

The message routing feature provided by Message Queue for Apache RocketMQ can be used to
synchronize message data across clusters to ensure message consistency and integrity between
clusters. This topic introduces the concept of message routing and describes the common scenarios in
which the message routing feature is suitable. This topic also describes the benefits of the feature and
how to configure the feature.

What is message routing?What is message routing?

7.6. Message routing7.6. Message routing

User Guide··Best pract ices Alibaba Cloud Message Queue

301 > Document Version: 20220816

The message routing feature of Message Queue for Apache RocketMQ is used to synchronize messages
across clusters. You can configure routing rules to dynamically plan the synchronization path of
messages so that messages can be synchronized from the source node to the dest ination node based
on filter condit ions. This implements remote message synchronization and allows you to synchronize
messages across clusters within milliseconds. This way, data consistency and integrity across clusters are
ensured.

The following figure shows how the message routing feature works in Message Queue for Apache
RocketMQ. In the figure, one-way synchronization is performed based on topics to synchronize
messages from a specified source topic in the source instance to a specified dest ination topic in the
destination instance.

Common scenariosCommon scenarios
The message routing feature can be used in the following common scenarios:

Dat a synchronizat ionDat a synchronizat ion

Taobao and Tmall serve users all over the world. If sellers in a country or a region want to publish
products, the products must be reviewed before they can be available for sale. However, the
product review systems of Alibaba Group are central systems deployed only in the cit ies of China,
such as Shanghai. In this scenario, messages from the regions outside China must be synchronized to
the product review systems in China to achieve cross-region data synchronization.

Disast er recovery and backupDisast er recovery and backup

For core trading systems, changes in the details and prices of various commodit ies need to be
updated across all business systems in real t ime. Mult i-region disaster recovery and backup solut ions
can be used to ensure high availability. This way, service continuity is ensured even if a region
becomes unavailable due to issues such as the cut of optical f ibers.

Alibaba Cloud Message Queue User Guide··Best pract ices

> Document Version: 20220816 302

BenefitsBenefits
High perf ormanceHigh perf ormance

The message routing feature provided by Message Queue for Apache RocketMQ enables real-t ime
message synchronization within milliseconds and supports millions of transactions per second (TPS).

Low cost sLow cost s

You do not need to purchase addit ional leased lines, perform upgrades, or modify application code
to use the message routing feature. The message routing process is transparent to your application.

Ease of useEase of use

The message routing feature supports GUI-based configuration. You can create and manage routing
tasks in the Message Queue for Apache RocketMQ console.

LimitsLimits
The message routing feature is available only for instances that have namespaces. You can check
whether an instance has a namespace on the Inst ance Inf ormat ionInst ance Inf ormat ion tab of the details page of the
instance in the Message Queue for Apache RocketMQ console.

Configure message routingConfigure message routing
This sect ion describes the procedure that is used to configure the message routing feature for a
Message Queue for Apache RocketMQ instance. For more information, see Configure message routing.

St ep 1: Creat e a dest inat ion cloudSt ep 1: Creat e a dest inat ion cloud

Before you create a routing task, you must specify information to create a cloud where your Message
Queue for Apache RocketMQ cluster is deployed. The information includes the endpoint of your
Message Queue for Apache RocketMQ instance and the AccessKey ID and AccessKey secret of the
account to which the cloud belongs. Message Queue for Apache RocketMQ obtains the permissions
that are required to access Message Queue for Apache RocketMQ resources across clouds based on
the cloud information that you specified.

St ep 2: Creat e a rout ing t askSt ep 2: Creat e a rout ing t ask

Specify the message source and the message dest ination, and configure relevant information. For
example, specify filter condit ions and set the start offset of message synchronization.

User Guide··Best pract ices Alibaba Cloud Message Queue

303 > Document Version: 20220816

This topic provides answers to questions frequently asked by new users when they use Message Queue
for Apache RocketMQ.

1. Where do consumers identified by a new group ID start to consume?

If a consumer identified by the group ID is started for the first t ime, the consumer ignores the
messages that are sent before the consumer is started. This means that the consumer ignores
historical messages and starts to consume messages that are sent after the consumer is started.

If the consumer is started for the second t ime, the consumer starts consumption from the
previous consumer offset.

If you want the consumer to start consumption from a specific offset, you can reset the previous
consumer offset in the Message Queue for Apache RocketMQ console to specify a point in t ime
from which the consumer starts to consume messages. Each reset affects only the specific topic
under the specific group ID but does not affect other group IDs.

2. How does the Message Queue for Apache RocketMQ broker redeliver a message if the message fails
to be consumed?

Clust ering consumpt ionClust ering consumpt ion

In clustering consumption mode, if Act ion.ReconsumerLater or NULL is returned or an error occurs
during consumption, the Message Queue for Apache RocketMQ broker attempts to redeliver the
message for up to 16 t imes. If the message st ill fails to be consumed after the 16 delivery retries,
the message is discarded. The following table describes the intervals between delivery retries.

Nth delivery retry Interval

1 10 seconds

2 30 seconds

3 1 minute

4 2 minutes

5 3 minutes

6 4 minutes

7 5 minutes

8 6 minutes

9 7 minutes

10 8 minutes

8.Service usage FAQ8.Service usage FAQ
8.1. FAQ8.1. FAQ
8.1.1. Quick start8.1.1. Quick start

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 304

11 9 minutes

12 10 minutes

13 20 minutes

14 30 minutes

15 1 hour

16 2 hours

Nth delivery retry Interval

The message.getReconsumeTimes() method can be called to query the serial number of a
delivery retry.

Broadcast ing consumpt ionBroadcast ing consumpt ion

In broadcasting consumption mode, Message Queue for Apache RocketMQ guarantees that a
message can be consumed at least once. If the message fails to be consumed, the Message
Queue for Apache RocketMQ broker does not redeliver the message.

3. What do I do if a sent message is not received?

Message Queue for Apache RocketMQ provides the following methods for Message query:

Specify a topic and t ime range to query all messages received by this topic within the specified
time range.

Specify a topic and message ID to query messages by using exact match.

Specify a topic and message key to query messages with the same message key.

You can use the preceding methods to query the specific content and consumption information of
messages. To track the t ime and location of each role from the producer to the consumer in the
entire trace of a message, you can use the message tracing feature provided by Message Queue
for Apache RocketMQ. For more information, see Query the message trace.

4. Can Message Queue for Apache RocketMQ ensure that no duplicate messages are delivered to
consumers?

In most cases, Message Queue for Apache RocketMQ can ensure that no duplicate messages are
delivered to consumers. As a distributed messaging middleware, Message Queue for Apache
RocketMQ cannot ensure that no duplicate messages are delivered to consumers when exceptions
such as network jit ter and application processing t imeout occur. However, Message Queue for
Apache RocketMQ can ensure that no messages are lost.

This topic provides answers to frequently asked questions about Message Queue for Apache RocketMQ
configurations.

1. How long can messages be retained on the Message Queue for Apache RocketMQ broker?

Messages can be retained on the Message Queue for Apache RocketMQ broker for up to three
days. The system automatically deletes the unconsumed after the three days.

2. What is the maximum message body size in Message Queue for Apache RocketMQ?

8.1.2. Configurations8.1.2. Configurations

User Guide··Service usage FAQ Alibaba Cloud Message Queue

305 > Document Version: 20220816

The maximum message body size in Message Queue for Apache RocketMQ varies with the message
type. The following information shows the maximum message body size for different types of
messages:

A normal or ordered message: 4 MB

A transactional, scheduled, or delayed message: 64 KB

3. How do I set the number of consumer threads on a Message Queue for Apache RocketMQ
consumer?

To set the number of consumer threads on a Message Queue for Apache RocketMQ consumer, set
the ConsumeThreadNums attribute when you start the consumer. The following sample code
provides an example on how to set the number of consumer threads:

 public static void main(String[] args) {
 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID_001");
 properties.put(PropertyKeyConst.AccessKey, "xxxxxxxxxxxx");
 properties.put(PropertyKeyConst.SecretKey, "xxxxxxxxxxxx");
 /**
 * Set the number of consumer threads to 20.
 */
 properties.put(PropertyKeyConst.ConsumeThreadNums,20);
 Consumer consumer =ONSFactory.createConsumer(properties);
 consumer.subscribe("TestTopic", "*", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();
 System.out.println("Consumer Started");
 }

4. What do I do if an error in loading DLL or another running error occurs due to invalid .NET client
configuration?

For more information, see SDK_GUIDE.pdf in the compressed package of SDK for .NET to verify that
the project configuration is the same as that described in the document.

This topic provides answers to frequently asked questions about the message tracing feature of
Message Queue for Apache RocketMQ.

1. Why is trace data not found?

If no trace data is found based on the specified query condit ions, check whether the following
requirements are met:

i. Only Java clients of version 1.2.2 or later support the message tracing feature.

ii. Check whether the query condit ions are properly specified. This means that you need to check
whether the topic name, message ID, and message key are properly entered.

8.1.3. Message tracing8.1.3. Message tracing

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 306

iii. Check whether the query t ime range is correct. To accelerate the query, you must specify the
range of the message sending t ime. If you st ill cannot retrieve the data, expand the t ime range
and try again.

iv. If the preceding sett ings are correct but the trace data is st ill not found, contact the technical
support and provide the related log file. The path to the log file is /home/{user}/logs/ons.log.

v. If the preceding sett ings are correct but the trace data is st ill not found, submit a t icket to
seek help from the technical support and provide the log file. The path to the log file is /home
/{user}/logs/ons.log.

2. What do I do if the consumption information about a consumed message is not included in the
trace data and the client IP address and group ID in the trace data are wrong?

This problem occurs because the client is not updated to the version that supports the message
tracing feature. Therefore, the message tracing module of Message Queue for Apache RocketMQ
can obtain only some trace data, and the displayed result is abnormal. We recommend that you
upgrade your client as soon as possible. For more information about the message tracing feature,
see Query the message trace.

3. Why is my group ID not shown in the list of consumers?

The possible cause is that a large number of downstream consumers have subscribed to messages,
and the space in the tracing map is insufficient to display all the data. Move the pointer over the
scroll bar and scroll down to see all the data.

4. Why are previous query tasks not displayed?

A large number of historical query tasks affect the display result . Therefore, Message Queue for
Apache RocketMQ regularly cleans up historical query tasks and retains only query tasks created
within the recent seven days. If you cannot find a historical task, query it again.

Alert handling is unavailable for Message Queue for Apache RocketMQ.

Apsara Stack provides an isolated cloud-based environment and cannot be connected to the APIs of
Internet services, such as the short message service (SMS) gateway. Therefore, the monitoring and
alert ing module in the console is unavailable.

This topic provides answers to frequently asked questions about ordered messages in Message Queue
for Apache RocketMQ.

1. Do ordered messages support clustering consumption and broadcasting consumption?

Ordered messages support clustering consumption but do not support broadcasting consumption.

2. Can a message be an ordered message, a scheduled message, and a transactional message at the
same t ime?

No, a message cannot be an ordered message, a scheduled message, and a transactional message
at the same t ime. Ordered messages, scheduled messages, and transactional messages are
different and mutually exclusive message types.

3. What is the usage scope of ordered messages?

8.1.4. Alert handling8.1.4. Alert handling

8.1.5. Ordered messages8.1.5. Ordered messages

User Guide··Service usage FAQ Alibaba Cloud Message Queue

307 > Document Version: 20220816

Ordered messages are messages that are guaranteed to be consumed in the order they are sent
within the same topic. Ordered messages are classified into globally ordered messages and part ially
ordered messages.

4. Why is the performance of globally ordered messages mediocre?

Globally ordered messages are processed in first-in-first-out (FIFO) order. If the previous message is
not consumed, the next message will be stored in a queue of the corresponding topic until the
previous message is consumed. To improve the transactions per second (TPS) of globally ordered
messages, upgrade the specificat ions of the host that runs the message client, and reduce as much
as possible the t ime required by the message client application to process the local business logic.

5. What transmission modes do ordered messages support?

Ordered messages support only the reliable synchronous transmission mode.

This topic describes the exceptions that may occur when you use Message Queue for Apache
RocketMQ. This topic also provides solut ions.

1. The producer or consumer failed to be started, or duplicate group IDs exist .

Cause:

You attempt to start mult iple producer or consumer instances identified by the same group ID in
one JVM process. This results in client startup failures.

Solut ion:

Perform the following steps:

i. Make sure that only one producer instance identified by a group ID and one consumer instance
identified by a group ID are started in one JVM process. This means that you cannot start
mult iple producer instances identified by the same group ID or mult iple consumer instances
identified by the same group ID in the same JVM process.

ii. Restart your application.

2. In broadcasting consumption mode, an error occurred when the JSON file is loaded for consumer
startup.

Cause:

The Fast json version is much earlier. In broadcasting consumption mode, the consumer failed to
load the local offsets.json file and failed to be started.

Solut ion:

Update Fast json to a version supported by ons-client and make sure that the offsets.json file can
be normally loaded. By default , the offsets.json file is located in the /home/{user}/.rocketmq_offs
ets/ directory.

3. The queue list failed to be obtained when the consumer subscribes to messages.

Cause:

You did not create this topic in the console. As a result , the consumer failed to obtain the queue
information of the topic during startup.

8.2. Exceptions8.2. Exceptions
8.2.1. Usage-related exceptions8.2.1. Usage-related exceptions

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 308

Solution:

Perform the following steps:

i. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click T opicsT opics. On the Topics page, click Creat e T opicCreat e T opic.

ii. In the left-side navigation pane, click GroupsGroups. On the Groups page, click Creat e Group IDCreat e Group ID to
create a group ID as prompted.

iii. Restart your application.

4. The message failed to be sent.

The message failed to be sent after mult iple delivery retries.

Cause:

i. The Message Queue for Apache RocketMQ broker returned an error code to the producer. For
more information about the error code, see the nested exception that corresponds to this
exception.

ii. After the Message Queue for Apache RocketMQ broker unexpectedly fails and before the
producer detects the latest broker list , this exception temporarily occurs.

iii. The producer t imed out when it attempted to send a message. This problem may be caused
by heavy load on the broker or unstable network connectivity.

Solut ion:

Perform the following steps:

i. Try again later. This exception is temporary. The temporary t imeout might be caused by the
restart of the Message Queue for Apache RocketMQ broker or heavy load on the broker.

ii. If the problem persists after you try for several t imes, contact technical support engineers.

5. No exception is recorded.

Problem descript ion:

No exception is recorded.

Solution:

Contact technical support engineers.

6. The status of the message is Consumed, but the consumer is not aware of this.

The status of the message is Consumed, but the consumer log shows that the message is not
received. This problem is due to the following three reasons:

The business code defines that the message is not immediately printed after the message is
received.

If the business logic is directly executed after a message is received, the message information is
not recorded in the log if the code misses a specific logic branch. This leads to the false
symptom that the message is not received.

We recommend that you immediately print the message information after you receive a message
to keep the information such as messageId, t imestamp, and reconsumeTime.

Mult iple consumer instances are deployed.

User Guide··Service usage FAQ Alibaba Cloud Message Queue

309 > Document Version: 20220816

A consumer is often restarted mult iple t imes at the debugging stage. If the previous process
does not exit before the next process starts, mult iple consumption processes coexist . In this
case, mult iple consumer instances share the message information. This scenario is similar to
clustering consumption. A message that fails to be received by one consumer is received by
another consumer.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click GroupsGroups. On the Groups page, select your instance and click Consumer St at usConsumer St at us in the
Actions column. In the Consumer Status panel, view Connect ion Inf ormat ionConnect ion Inf ormat ion. The deployment
information of consumer instances is displayed, including the number of consumer instances and
the IP address of each instance. You can check for the problem based on the information.

An exception that failed to be caught occurred during the consumption of a message. As a
result , the message is redelivered.

public class MessageListenerImpl implements MessageListener {
 @Override
 public Action consume(Message message, ConsumeContext context) {
 // The message processing logic throws an exception. The message will be redeli
vered.
 doConsumeMessage(message);
 // If an exception that is not caught occurs in the doConsumeMessage() method,
this line of log is not printed.
 log.info("Receive Message, messageId:", message.getMsgID());
 return Action.CommitMessage;
 }
}

If the problem persists, contact technical support engineers and provide the local SDK logs.

This topic describes exceptions related to nonexistent resources and provides solut ions.

1. Nonexistent group ID

Cause:

The group ID is not created in the Message Queue for Apache RocketMQ console. As a result , when
the group ID is used to connect to the Message Queue for Apache RocketMQ broker, verificat ion
fails on the broker.

Solut ion:

Perform the following steps:

i. Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane,
click GroupsGroups.

If the group ID already exists, proceed to the next step.

If the group ID does not exist , create the group ID. Then, perform the next step.

ii. Restart your application.

2. Nonexistent hostname

Cause:

8.2.2. Nonexistent resources8.2.2. Nonexistent resources

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 310

A possible cause is that the correct hostname or host IP address cannot be retrieved. To verify this
assumption, run the host namehost name command.

If the correct hostname cannot be retrieved, this assumption is true. Otherwise, this problem may
be due to another reason. In this case, contact technical support engineers.

Solut ion:

Perform the following steps:

i. On the host for which the error is reported, run the following command to check the
hostname:

[root@iZ231wxgt6mZ ~]# hostname
iZ231wxgt6mZ

If an error is returned, check whether an alias is defined for the hostname. For example, an alias
can be alias xxx='hostname' in .bash_profile or .bashrc. Another possible cause is that the
command path does not point to $PATH.

ii. Ping the host.

[root@iZ231wxgt6mZ ~]# ping iZ231wxgt6mZ

If the hostname cannot be pinged, add the local IP address to the /etc/hosts file. By default ,
each Elast ic Compute Service (ECS) instance establishes a binding relat ionship between the
local IP address and the hostname. Do not manually remove the relat ionship.

iii. Check the system configurations.

Check whether the hostname recorded in /etc/sysconfig/network is the same as that added
to /etc/hosts. If the hostname is not the same as that added to /etc/hosts, modify the
hostname. If you modify the content in /etc/sysconfig/network, you must restart the host
after you modify the content. This way, the modificat ion can take effect. Exercise caution
when you modify configurations in a system file, because this operation may cause other
exceptions.

After the preceding three steps are performed, UnknownHostException will no longer be returned
when your client starts.

This topic describes the exceptions related to inconsistent status and provides solut ions.

1. Invalid messages

Cause:Cause:

The message attribute or content is invalid in the following scenarios:

The message is empty.

The message content is empty.

The message content is 0 character in length.

The length of the message content exceeds the limit .

Solut ion:Solut ion:

Check whether the preceding exceptions occur to the message and handle the exceptions as
prompted.

8.2.3. Inconsistent status8.2.3. Inconsistent status

User Guide··Service usage FAQ Alibaba Cloud Message Queue

311 > Document Version: 20220816

2. Invalid parameters

Cause:Cause:

The following table lists the cases in which the parameters are invalid.

Nested exception Description

consumeThreadMin Out of range [1, 1000]
The specified number of consumer threads is
inappropriate.

consumeThreadMax Out of range [1, 1000]
The specified number of consumer threads is
inappropriate.

messageListener is null messageListener is not configured.

consumerGroup is null The group ID is not specified.

msg delay t ime more than 40 day
The delay for the delivery of a scheduled
message cannot exceed 40 days.

Solut ion:Solut ion:

Perform the following steps:

i. Modify the parameter sett ings for the client as prompted and make sure that the new
parameter values are within the valid ranges.

ii. Restart your application.

3. Abnormal client status

Cause:Cause:

i. After the consumer or producer is created, the return code does not show that the start()
method is called to start the consumer or producer.

ii. After the consumer or producer is created, the consumer or producer fails to start due to an
exception in the start() process.

iii. After the consumer or producer is created and the start() method is called, the return code
shows that the shutdown() method is called to shut down the consumer or producer.

Solut ion:Solut ion:

Perform the following steps:

i. Make sure that the start() method is called after the group ID is created. Make sure that the
producer or consumer is started.

ii. Check ons.log for exceptions that occur during the startup of the producer or consumer.

4. Subscript ion inconsistency

Problem descript ion:Problem descript ion:

Mult iple consumer instances are started in different JVM processes. Consumer instances identified
by the same group ID subscribe to different topics, or subscribe to the same topic but different
tags. As a result , the subscript ions of the consumer instances are inconsistent, and messages
cannot be received as expected.

Sample code of inconsist ent subscript ions:Sample code of inconsist ent subscript ions:

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 312

Example 1: The consumer instance on JVM 1 and the consumer instance on JVM 2 use the same
group ID GID-MQ-FAQ. The two consumer instances subscribe to different topics. The consumer
instance on JVM 1 subscribes to MQ-FAQ-TOPIC-1, whereas the consumer instance on JVM 2
subscribes to MQ-FAQ-TOPIC-2.

Code on JVM-1:Code on JVM-1:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Code on JVM-2:Code on JVM-2:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-2", "NM-MQ-FAQ", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Example 2: The consumer instance on JVM 1 and the consumer instance on JVM 2 use the same
group ID GID-MQ-FAQ and subscribe to the same topic. However, the two consumer instances
subscribe to different tags. The consumer instance on JVM 1 subscribes to NM-MQ-FAQ-1,
whereas the consumer instance on JVM 2 subscribes to NM-MQ-FAQ-2.

Code on JVM-1:Code on JVM-1:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-1", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Code on JVM-2:Code on JVM-2:

User Guide··Service usage FAQ Alibaba Cloud Message Queue

313 > Document Version: 20220816

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-2", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Solut ion:Solut ion:

If you start mult iple consumer instances identified by the same group ID in different JVM processes,
make sure that the topics and tags to which the consumer instances subscribe are the same.

This topic describes the symptoms of an unexpected consumer connection, analyzes causes, provides a
solut ion, and verifies the solut ion.

Problem descriptionProblem description
[Symptom 1]: Some messages are sent but not received. After you query message traces in the
Message Queue for Apache RocketMQ console, the returned information shows that some messages
are sent to the Message Queue for Apache RocketMQ broker, but the broker does not deliver the
messages to consumers. To query message traces, log on to Message Queue for Apache RocketMQ
console. In the left-navigation pane, click Message T racingMessage T racing. On the Message Tracing page, click
Creat e Query T askCreat e Query T ask. In the Create Query Task dialog box, click the By Message IDBy Message ID tab.

[Symptom 2]: Some consumer IP addresses are not within the expected range and messages are
accumulated on the consumers that correspond to these IP addresses. To query connection
information about consumers, log on to the Message Queue for Apache RocketMQ console. In the
left-side navigation pane, click GroupsGroups. On the Groups page, find the group ID whose connection
information you want to view and click Consumer St at usConsumer St at us in the Act ions column. In the Consumer
Status panel, view the connection information in the Connect ion Inf ormat ionConnect ion Inf ormat ion sect ion.

Problem analysisProblem analysis
AnalysisAnalysis: Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation
pane, click GroupsGroups. On the Groups page, find the group ID whose connection information you want to
view and click Consumer St at usConsumer St at us in the Act ions column. In the Consumer Status panel, view the
connection information in the Connect ion Inf ormat ionConnect ion Inf ormat ion sect ion. The connection information about all
consumers identified by the group ID are displayed. You can check the IP address and process ID of the
unexpected consumer and check whether the configurations loaded by the process are valid. The
configurations include the AccessKey ID, AccessKey secret, topic, and group ID. If the configurations are
invalid, the consumer process occupies some queues but cannot properly consume messages.

8.3. Troubleshooting8.3. Troubleshooting
8.3.1. Unexpected consumer connections8.3.1. Unexpected consumer connections

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 314

CauseCause: In the same environment, if a consumer identified by the group ID and configured with an invalid
AccessKey ID, AccessKey secret, and topic is started, this consumer process may occupy some queues of
the topic but cannot properly consume messages. As a result , messages are accumulated on the
Message Queue for Apache RocketMQ broker and cannot be properly delivered to downstream
consumers whose IP addresses are within the expected range.

Conf irmat ionConf irmat ion: Locate the faulty process based on the connection status and check the AccessKey
ID, AccessKey secret, and topic of the process based on the /{user.home}/logs/ons.log file or
program code.

Solut ionSolut ion: This is a quick solut ion. Shut down the faulty consumer process first . Then, the
accumulated messages will be immediately rebalanced and delivered to proper consumers. After the
fault is rect if ied, restart the faulty process.

VerificationVerification
Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
GroupsGroups. On the Groups page, find the group ID that you want to view and click Consumer St at usConsumer St at us in
the Act ions column. In the Consumer Status panel, view the connection information of consumers
identified by the group ID in the Connect ion Inf ormat ionConnect ion Inf ormat ion sect ion. The displayed information shows
that IP addresses of all consumers are within the expected range and the value of Consist entConsist ent
Subscript ionSubscript ion is YesYes.

This topic describes the symptoms of inconsistent subscript ions, analyzes causes, provides a solut ion,
and verifies the solut ion.

Problem descriptionProblem description
Consumers identified by a group ID failed to receive some messages to which they want to subscribe.
To query messages, log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click Message QueryMessage Query. On the Message Query page, click the By Message IDBy Message ID tab.
Specify the corresponding topic and message ID. The displayed information shows that the message
has been consumed at least once. However, the message is considered unconsumed based on the
consumption logic.

The subscript ions of consumers identified by the group ID are inconsistent. To check whether the
subscript ions of consumers are consistent, log on to the Message Queue for Apache RocketMQ
console. In the left-side navigation pane, click GroupsGroups. On the Groups page, find the group ID and
click Consumer St at usConsumer St at us in the Act ions column. In the Consumer Status panel, the value of
Consist ent Subscript ionConsist ent Subscript ion is NoNo.

Problem analysisProblem analysis
In Message Queue for Apache RocketMQ, a group ID represents a consumer instance group. For most
distributed applications, mult iple consumer instances are attached to the same group ID. Subscript ion
consistency means that the topics and tags of all consumer instances identified by the same group ID
must be identical.

If the consumer instances identified by the same group ID subscribe to different topics, or subscribe to
the same topic but different tags, the subscript ions are inconsistent. If the subscript ions are
inconsistent, errors occur in the message consumption logic and messages may be lost.

[Cause 1]:[Cause 1]: The topics subscribed to by consumers with the same group ID are different.

8.3.2. Inconsistent subscriptions8.3.2. Inconsistent subscriptions

User Guide··Service usage FAQ Alibaba Cloud Message Queue

315 > Document Version: 20220816

Example 1:Example 1: Two consumers identified by the group ID GID-MQ-FAQ subscribe to different topics:
MQ-FAQ-TOPIC-1 and MQ-FAQ-TOPIC-2.

Code on JVM-1:Code on JVM-1:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Code on JVM-2:Code on JVM-2:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-2", "NM-MQ-FAQ", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

[Cause 2]:[Cause 2]: Two consumers identified by the same group ID subscribe to the same topic but different
tags.

Example:Example: Two consumers identified by the group ID GID-MQ-FAQ subscribe to the same topic but
different tags: NM-MQ-FAQ-1 and NM-MQ-FAQ-2.

Code on JVM-1:Code on JVM-1:

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-1", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

Code on JVM-2:Code on JVM-2:

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 316

 Properties properties = new Properties();
 properties.put(PropertyKeyConst.GROUP_ID, "GID-MQ-FAQ");
 Consumer consumer = ONSFactory.createConsumer(properties);
 consumer.subscribe("MQ-FAQ-TOPIC-1", "NM-MQ-FAQ-2", new MessageListener() {
 public Action consume(Message message, ConsumeContext context) {
 System.out.println("Receive: " + message);
 return Action.CommitMessage;
 }
 });
 consumer.start();

SolutionSolution
Perform the following steps:

1. Check the subscript ion code of different consumers. Make sure that the subscript ions of all
consumers identified by the same group ID are consistent. This means that the topics and tags
subscribed to by the consumers are all identical.

2. Restart all consumer applications.

VerificationVerification
Consumers can receive messages as expected.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
GroupsGroups. On the Groups page, find the group ID that you want to view and click Consumer St at usConsumer St at us in
the Act ions column. In the Consumer Status panel, the value of Consist ent Subscript ionConsist ent Subscript ion is YesYes.

This topic describes the symptoms of message accumulation, analyzes causes, provides a solut ion, and
verifies the solut ion.

Problem descriptionProblem description
The value of Accumulat ed MessagesAccumulat ed Messages is higher than expected. To query the number of
accumulated messages, log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click GroupsGroups. On the Groups page, find the group ID that you want to view and click
Consumer St at usConsumer St at us in the Act ions column. In the Consumer Status panel, check the value of
Accumulated Messages in the Connection Information sect ion.

Some messages have been sent to the Message Queue for Apache RocketMQ broker but are not
delivered to consumers. To query message traces, log on to the Message Queue for Apache
RocketMQ console. In the left-side navigation pane, click Message T racingMessage T racing. On the Message Tracing
page, click Creat e Query T askCreat e Query T ask. In the Create Query Task dialog box, click the By Message IDBy Message ID tab.
Specify the corresponding topic and message ID to query the trace of a message.

Problem analysisProblem analysis
In Message Queue for Apache RocketMQ, messages are first sent to the broker. Then, consumers
identified by the group ID pull some messages from the broker to the on-premises machine for
consumption based on the current consumer offset. In the consumption process, it may take a long
time to consume a single message due to various reasons, such as access to locked shared resources,
competit ion for I/O and network resources, and no t imeout set for HTTP calls. As a result , messages
start to accumulate on the broker.

8.3.3. Message accumulation8.3.3. Message accumulation

User Guide··Service usage FAQ Alibaba Cloud Message Queue

317 > Document Version: 20220816

If messages are not accumulated, check whether the threshold value is excessively small and causes
alerts on message accumulation.

SolutionSolution
Perf orm t he f ollowing operat ions f or t roubleshoot ing:Perf orm t he f ollowing operat ions f or t roubleshoot ing:

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
Resource St at ist icsResource St at ist ics. On the Resource Stat ist ics page, click the Message Consumpt ionMessage Consumpt ion tab. Enter
the information to query historical consumption records. If message writ ing is faster than message
consumption, modify the code or scale out the consumer.

Print the Jstack information jst ack -l {PID} | grep ConsumeMessageT hreadjst ack -l {PID} | grep ConsumeMessageT hread in the application. If
messages are blocked, print the Jstack information for five consecutive t imes and identify the spot
where the consumer thread is stuck. Then, rect ify the fault and restart the application. Check
whether messages can be consumed.

VerificationVerification
Print the Jstack information jst ack -l {PID} | grep ConsumeMessageT hreadjst ack -l {PID} | grep ConsumeMessageT hread in the application.
Verify that no consumer thread is blocked.

Log on to the Message Queue for Apache RocketMQ console. In the left-side navigation pane, click
GroupsGroups. On the Groups page, find the group ID that you want to view and click Consumer St at usConsumer St at us in
the Act ions column. In the Consumer Status panel, check whether the value of Real-t imeReal-t ime
Consumpt ion SpeedConsumpt ion Speed increases and the value of Accumulat ed MessagesAccumulat ed Messages decreases.

Problem descriptionProblem description
In the Consumer St at usConsumer St at us panel of the Message Queue for Apache RocketMQ console, the number of
real-t ime accumulated messages of the group ID is higher than expected, and the performance is much
lower.

CauseCause
The number of real-t ime accumulated messages of the group ID is higher than expected due to an
excessive number of messages accumulated in the Java process.

SolutionSolution

ProcedureProcedure
1. Log on to the Message Queue for Apache RocketMQ console. Navigate to the Consumer Status

panel, obtain the host IP address of the consumer instance that has accumulated messages, and
then log on to the host or container.

2. Run one of the following commands to view the PID of the Java process and record the PID:

ps -ef |grep java

jps -lm

3. Run the following command to view the stack information:

jstack -l pid > /tmp/pid.jstack

8.3.4. Message accumulation in Java processes8.3.4. Message accumulation in Java processes

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 318

4. Run the following command to view the information about ConsumeMessageThread and focus on
the thread status and stack:

cat /tmp/pid.jstack|grep ConsumeMessageThread -A 10 --color

The following figure shows an example of command output.

For more information about the thread status, see official Java documentation.

Not e Not e Message Queue for Apache RocketMQ can support 1 billion accumulated messages
without compromising the performance. If the problem of compromised performance is not
solved after you perform the preceding steps, contact O&M engineers and provide the
following information:

The heap.bin file. Run the jmap -dump:format=b,file=heap.bin [$PID] command to
obtain this f ile. Then, run the gzip heap.bin command to generate a compressed
package.[$PID] represents the PID of the Java process recorded in Step 2.

The local ons.log file of the consumer client where messages are accumulated.

The version of the consumer client.

This topic describes the symptoms of application out of memory (OOM), analyzes causes, provides
solut ions, and verifies each solut ion.

Problem descriptionProblem description
[Symptom 1]: The memory is exhausted on the machine where the application is deployed.

[Symptom 2]: The keyword OutOfMemory can be found in /{user.home}/logs/ons.log .

[Symptom 3]: In the Message Queue for Apache RocketMQ console, Real-t ime Accumulat edReal-t ime Accumulat ed
MessagesMessages in the Consumer St at usConsumer St at us panel of the GroupsGroups page shows that a large number of
messages are accumulated. The Connection Information sect ion displays the number of accumulated
messages for each connected consumer client. In addit ion, the result of check by running the jstack
command indicates that ConsumeMessageThread_ is not blocked.

8.3.5. Application OOM due to message caching8.3.5. Application OOM due to message caching
on the clienton the client

User Guide··Service usage FAQ Alibaba Cloud Message Queue

319 > Document Version: 20220816

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.State.html?spm=a2c4g.11186623.2.18.77e94c07b6JihO#RUNNABLE

AnalysisAnalysis
AnalysisAnalysis: A Message Queue for Apache RocketMQ consumer proactively pulls messages from the
Message Queue for Apache RocketMQ broker and caches them to the client. Then, the messages are
consumed based on the consumption logic of the client. In versions earlier than 1.7.0.Final, the client
caches up to 1,000 messages for each queue of each topic by default . Assume that each topic has 16
queues (two primary brokers and two secondary brokers, and eight queues on each broker). The
average size of a message in this topic is 64 KB. The final message size cached for this topic on the
client is calculated by using the following formula: 16 × 1000 × 64 KB = 1 GB. If you subscribe to eight
topics at the same t ime and caches messages of all these topics in the client memory, the memory
consumed will exceed the memory size specified in the JVM configuration. In this case, OOM occurs.

[Cause 1]:An ons-client version earlier than 1.7.0.Final is depended on, and the average size of a
message in each topic exceeds 4 KB. In addit ion, message consumption is slow. This is prone to
message caching in the memory of the client.

Conf irmat ionConf irmat ion: Check whether the keyword OutOfMemory can be found in /{user.home}/logs/on
s.log , or run the jmap -dump:live,format=b,file=heap.bin <pid> command to detect the
objects that occupy a large amount of memory.

Solut ionSolut ion: Update the ons-client version to 1.7.0.Final or later and set the com.aliyun.openservic
es.ons.api.PropertyKeyConst#MaxCachedMess ageSizeInMiB parameter to an appropriate value
for the corresponding ConsumerBean. Then, restart the application.

[Cause 2]:ons-client-1.7.0.Final or later is depended on, and the default maximum memory consumed
is 512 MB, which is the total cache capacity of all topics to which consumer instances identified by a
group ID subscribe. If the application st ill suffers OOM, set the com.aliyun.openservices.ons.api.Pr
opertyKeyConst#MaxCachedMessageSizeInMiB parameter to a value within the valid range from 16 MB
to 2048 MB to customize the maximum memory that can be consumed during the startup of
ConsumerBean.

Conf irmat ionConf irmat ion: Check the ons-client version used by the application and check the memory size
allocated to the process based on the JVM configuration.

Solut ionSolut ion: Set the com.aliyun.openservices.ons.api.PropertyKeyConst#MaxCachedMess ageSizeI
nMiB parameter for the corresponding ConsumerBean, based on the memory usage of the
machine where the application runs. Then, restart the application.

VerificationVerification
[Verificat ion 1]: The keyword OutOfMemory disappears from /{user.home}/logs/ons.log .

[Verificat ion 2]: Log on to the Message Queue for Apache RocketMQ console. In the left-side
navigation pane, click GroupsGroups. On the Groups page, select your instance and click Consumer St at usConsumer St at us
in the Act ions column. In the Consumer Status panel, the value of Real-t ime Consumpt ion SpeedReal-t ime Consumpt ion Speed
increases, whereas the value of Real-t ime Accumulat ed MessagesReal-t ime Accumulat ed Messages decreases.

Problem descriptionProblem description
The application cannot send messages and AuthenticationException is reported in the
{user.home}/logs/ons.log log of the host.

8.3.6. AuthenticationException reported due to8.3.6. AuthenticationException reported due to
failure in sending or receiving messagesfailure in sending or receiving messages

Alibaba Cloud Message Queue User Guide··Service usage FAQ

> Document Version: 20220816 320

CauseCause
A wrong AccessKey ID or AccessKey secret is used.

SolutionSolution

ProcedureProcedure
1. Check whether you use an Apsara Stack tenant account or a Resource Access Management (RAM)

user.

The following table describes the Apsara Stack tenant account and RAM user.

Apsara Uni-manager RocketMQ

Organization administrator Apsara Stack tenant account

Resource user RAM user

You can create roles in the Apsara Uni-manager Management Console. If you want a role to
become a resource user, the selected permissions must be consistent with the default
configuration in the system.

2. Check the permissions of the user who creates resources.

The Apsara Stack tenant account can create a topic and a group ID in the Message Queue for
Apache RocketMQ console. The created resources are of the current organization level. A RAM user
cannot create a topic, but can create a group ID. The created resource is of the RAM user level.

If you need to use a RAM user to send and receive messages, use the Apsara Stack tenant
account to create a topic in the Message Queue for Apache RocketMQ console. For example, you
can create a topic named Topic_bumen. Then, grant the permissions on the topic to a RAM user.
At this point, the RAM user can view Topic_bumen in the Message Queue for Apache RocketMQ
console. The RAM user can create its own group ID, for example, GID_zizhanghao. Then, the
messaging program of the client can send and receive messages by using Topic_bumen,
GID_zizhanghao, and the AccessKey ID and AccessKey secret of the RAM user.

If you need to use the topics and group IDs created by the Apsara Stack tenant account to send
and receive messages, the AccessKey ID and AccessKey secret of the organization level must be
configured because the topics and group IDs created by the Apsara Stack tenant account are of
the organizational level and do not belong to the account itself.

User Guide··Service usage FAQ Alibaba Cloud Message Queue

321 > Document Version: 20220816

	1.What is Message Queue for Apache RocketMQ?
	2.Updates
	3.Quick start
	3.1. Overview
	3.2. Log on to the Message Queue for Apache RocketMQ console
	3.3. Create resources
	3.4. Send messages
	3.4.1. Use the TCP client SDK for Java to send and subscribe to normal messages
	3.4.2. Use the HTTP client SDK for Java to send and subscribe to normal messages
	3.4.3. Check whether messages are sent

	3.5. Subscribe to messages

	4.Message types
	4.1. Normal messages
	4.2. Scheduled messages and delayed messages
	4.3. Transactional messages
	4.4. Ordered messages

	5.Console guide
	5.1. Resource management
	5.1.1. Resource management overview
	5.1.2. Manage instances
	5.1.3. Manage topics
	5.1.4. Manage groups

	5.2. Message query
	5.2.1. Overview
	5.2.2. Query messages
	5.2.3. Query results

	5.3. Message tracing
	5.3.1. Overview
	5.3.2. Query message traces
	5.3.3. Status in message traces

	5.4. View the consumer status
	5.5. Reset consumer offsets
	5.6. Dead-letter queues
	5.7. Resource statistics
	5.7.1. Overview
	5.7.2. Query the statistics of produced messages
	5.7.3. Query the statistics of consumed messages

	5.8. Account authorization management
	5.9. Switch between different access modes
	5.10. Bind a VPC to a Message Queue for Apache RocketMQ instance
	5.11. Route messages from a cluster to another cluster

	6.SDK user guide
	6.1. Overview
	6.2. SDK user guide
	6.2.1. Demo projects
	6.2.1.1. Overview
	6.2.1.2. Prepare the environment
	6.2.1.3. Configure a demo project
	6.2.1.4. Run the demo project

	6.2.2. Client parameters
	6.2.3. Client error codes
	6.2.4. SDK for Java
	6.2.4.1. Usage notes
	6.2.4.2. Prepare the environment
	6.2.4.3. Configure logging
	6.2.4.4. Spring integration
	6.2.4.4.1. Overview
	6.2.4.4.2. Integrate a producer with Spring
	6.2.4.4.3. Integrate a transactional message producer with Spring
	6.2.4.4.4. Integrate a consumer with Spring

	6.2.4.5. Three modes for sending messages
	6.2.4.5.1. Overview
	6.2.4.5.2. Reliable synchronous transmission
	6.2.4.5.3. Reliable asynchronous transmission
	6.2.4.5.4. One-way transmission

	6.2.4.6. Send messages by using multiple threads
	6.2.4.7. Send and subscribe to ordered messages
	6.2.4.8. Send and subscribe to transactional messages
	6.2.4.9. Send and subscribe to delayed messages
	6.2.4.10. Send and subscribe to scheduled messages
	6.2.4.11. Subscribe to messages

	6.2.5. SDK for C or C++
	6.2.5.1. Prepare the SDK for C or C++ environment
	6.2.5.1.1. Overview
	6.2.5.1.2. Download SDK for C++
	6.2.5.1.3. Use SDK for C++ in Linux

	6.2.5.2. Send and subscribe to normal messages
	6.2.5.3. Send and subscribe to ordered messages
	6.2.5.4. Send and subscribe to scheduled messages
	6.2.5.5. Send and subscribe to transactional messages
	6.2.5.6. Subscribe to messages

	6.2.6. SDK for .NET
	6.2.6.1. .Prepare the SDK for .NET environment
	6.2.6.1.1. Overview
	6.2.6.1.2. Download SDK for .NET
	6.2.6.1.3. .Configure SDK for .NET

	6.2.6.2. Send and subscribe to normal messages
	6.2.6.3. Send and subscribe to ordered messages
	6.2.6.4. Send and subscribe to scheduled messages
	6.2.6.5. Send and subscribe to transactional messages
	6.2.6.6. Subscribe to messages

	6.3. HTTP client SDK reference
	6.3.1. Protocol description
	6.3.1.1. Common parameters
	6.3.1.2. Request signatures
	6.3.1.3. Operation for sending messages
	6.3.1.4. Operation for consuming messages
	6.3.1.5. Operation for acknowledging messages

	6.3.2. Java SDK
	6.3.2.1. Prepare the environment
	6.3.2.2. Send and consume normal messages
	6.3.2.3. Send and consume ordered messages
	6.3.2.4. Send and consume scheduled messages and delayed messages
	6.3.2.5. Send and consume transactional messages

	6.3.3. Go SDK
	6.3.3.1. Prepare the environment
	6.3.3.2. Send and consume normal messages
	6.3.3.3. Send and consume ordered messages
	6.3.3.4. Send and consume scheduled messages and delayed messages
	6.3.3.5. Send and consume transactional messages

	6.3.4. Python SDK
	6.3.4.1. Prepare the environment
	6.3.4.2. Send and consume normal messages
	6.3.4.3. Send and consume ordered messages
	6.3.4.4. Send and consume scheduled messages and delayed messages
	6.3.4.5. Send and consume transactional messages

	6.3.5. Node.js SDK
	6.3.5.1. Prepare the environment
	6.3.5.2. Send and consume normal messages
	6.3.5.3. Send and consume ordered messages
	6.3.5.4. Send and consume scheduled messages and delayed messages
	6.3.5.5. Send and consume transactional messages

	6.3.6. PHP SDK
	6.3.6.1. Prepare the environment
	6.3.6.2. Send and consume normal messages
	6.3.6.3. Send and consume ordered messages
	6.3.6.4. Send and consume scheduled messages and delayed messages
	6.3.6.5. Send and consume transactional messages

	6.3.7. C# SDK
	6.3.7.1. Prepare the environment
	6.3.7.2. Send and consume normal messages
	6.3.7.3. Send and consume ordered messages
	6.3.7.4. Send and consume scheduled messages and delayed messages
	6.3.7.5. Send and consume transactional messages

	6.3.8. C++ SDK
	6.3.8.1. Prepare the environment
	6.3.8.2. Send and consume normal messages
	6.3.8.3. Send and consume ordered messages
	6.3.8.4. Send and consume scheduled messages and delayed messages
	6.3.8.5. Send and consume transactional messages

	7.Best practices
	7.1. Clustering consumption and broadcasting consumption
	7.2. Message filtering
	7.3. Subscription consistency
	7.4. Consumption idempotence
	7.5. Active geo-redundancy
	7.6. Message routing

	8.Service usage FAQ
	8.1. FAQ
	8.1.1. Quick start
	8.1.2. Configurations
	8.1.3. Message tracing
	8.1.4. Alert handling
	8.1.5. Ordered messages

	8.2. Exceptions
	8.2.1. Usage-related exceptions
	8.2.2. Nonexistent resources
	8.2.3. Inconsistent status

	8.3. Troubleshooting
	8.3.1. Unexpected consumer connections
	8.3.2. Inconsistent subscriptions
	8.3.3. Message accumulation
	8.3.4. Message accumulation in Java processes
	8.3.5. Application OOM due to message caching on the client
	8.3.6. AuthenticationException reported due to failure in sending or receiving messages

