
Alibaba Cloud
Apsara Stack Enterprise

User Guide - Middleware and Enterprise 
Applications

Version: 2001, Internal: V3.11.0

Issue: 20200513



User Guide - Middleware and Enterprise Applications / 
Legal disclaimer

Legal disclaimer
Alibaba Cloud reminds you to carefully read and fully understand the terms and conditions

 of this legal disclaimer before you read or use this document. If you have read or used this 

document, it shall be deemed as your total acceptance of this legal disclaimer.

1. You shall download and obtain this document from the Alibaba Cloud website or other 

Alibaba Cloud-authorized channels, and use this document for your own legal business

 activities only. The content of this document is considered confidential information of 

Alibaba Cloud. You shall strictly abide by the confidentiality obligations. No part of this

 document shall be disclosed or provided to any third party for use without the prior 

written consent of Alibaba Cloud.

2. No part of this document shall be excerpted, translated, reproduced, transmitted, or 

disseminated by any organization, company, or individual in any form or by any means 

without the prior written consent of Alibaba Cloud.

3. The content of this document may be changed due to product version upgrades, 

adjustments, or other reasons. Alibaba Cloud reserves the right to modify the content

 of this document without notice and the updated versions of this document will be

 occasionally released through Alibaba Cloud-authorized channels. You shall pay 

attention to the version changes of this document as they occur and download and 

obtain the most up-to-date version of this document from Alibaba Cloud-authorized 

channels.

4. This document serves only as a reference guide for your use of Alibaba Cloud products

 and services. Alibaba Cloud provides the document in the context that Alibaba Cloud

 products and services are provided on an "as is", "with all faults" and "as available" 

basis. Alibaba Cloud makes every effort to provide relevant operational guidance based 

on existing technologies. However, Alibaba Cloud hereby makes a clear statement that it

 in no way guarantees the accuracy, integrity, applicability, and reliability of the content 

of this document, either explicitly or implicitly. Alibaba Cloud shall not bear any liability 

for any errors or financial losses incurred by any organizations, companies, or individual

s arising from their download, use, or trust in this document. Alibaba Cloud shall not, 

under any circumstances, bear responsibility for any indirect, consequential, exemplary

, incidental, special, or punitive damages, including lost profits arising from the use or 

trust in this document, even if Alibaba Cloud has been notified of the possibility of such 

a loss.

Issue: 20200513 I



User Guide - Middleware and Enterprise Applications / 
Legal disclaimer

5. By law, all the contents in Alibaba Cloud documents, including but not limited to 

pictures, architecture design, page layout, and text description, are intellectual property

 of Alibaba Cloud and/or its affiliates. This intellectual property includes, but is not 

limited to, trademark rights, patent rights, copyrights, and trade secrets. No part of 

this document shall be used, modified, reproduced, publicly transmitted, changed, 

disseminated, distributed, or published without the prior written consent of Alibaba

 Cloud and/or its affiliates. The names owned by Alibaba Cloud shall not be used, 

published, or reproduced for marketing, advertising, promotion, or other purposes 

without the prior written consent of Alibaba Cloud. The names owned by Alibaba Cloud

 include, but are not limited to, "Alibaba Cloud", "Aliyun", "HiChina", and other brands

 of Alibaba Cloud and/or its affiliates, which appear separately or in combination, as

 well as the auxiliary signs and patterns of the preceding brands, or anything similar 

to the company names, trade names, trademarks, product or service names, domain 

names, patterns, logos, marks, signs, or special descriptions that third parties identify as

 Alibaba Cloud and/or its affiliates.

6. Please contact Alibaba Cloud directly if you discover any errors in this document.

II Issue: 20200513



User Guide - Middleware and Enterprise Applications / 
Legal disclaimer

Issue: 20200513 III



User Guide - Middleware and Enterprise Applications / 
Document conventions

Document conventions

Style Description Example

A danger notice indicates a 
situation that will cause major 
system changes, faults, physical 
injuries, and other adverse results.

Danger:
Resetting will result in the loss of
user configuration data.

A warning notice indicates a 
situation that may cause major 
system changes, faults, physical 
injuries, and other adverse results.

Warning:
Restarting will cause business
interruption. About 10 minutes
are required to restart an
instance.

A caution notice indicates warning
 information, supplementary 
instructions, and other content 
that the user must understand.

Notice:
If the weight is set to 0, the server
no longer receives new requests.

A note indicates supplemental 
instructions, best practices, tips, 
and other content.

Note:
You can use Ctrl + A to select all
files.

> Closing angle brackets are used
 to indicate a multi-level menu 
cascade.

Click Settings > Network > Set
network type.

Bold Bold formatting is used for buttons
, menus, page names, and other UI
 elements.

Click OK.

Courier font Courier font is used for commands. Run the cd /d C:/window
 command to enter the Windows
system folder.

Italic Italic formatting is used for 
parameters and variables.

bae log list --instanceid

Instance_ID

[] or [a|b] This format is used for an optional 
value, where only one item can be
 selected.

ipconfig [-all|-t]

Issue: 20200513 I



User Guide - Middleware and Enterprise Applications / 
Document conventions

Style Description Example

{} or {a|b} This format is used for a required 
value, where only one item can be
 selected.

switch {active|stand}

II Issue: 20200513



User Guide - Middleware and Enterprise Applications / 
Document conventions

Issue: 20200513 III



User Guide - Middleware and Enterprise Applications / 
Contents

Contents

Legal disclaimer......................................................................... I
Document conventions................................................................I
1 Enterprise Distributed Application Service (EDAS)..................... 1

1.1 What is EDAS?........................................................................................................ 1
1.2 Quick start............................................................................................................. 2

1.2.1 Log on to the EDAS console...................................................................... 2
1.2.2 Deploy Java applications in ECS clusters................................................... 3
1.2.3 Deploy Spring Cloud applications to EDAS................................................8
1.2.4 Deploy Dubbo applications to EDAS....................................................... 15
1.2.5 Deploy multi-language microservice-oriented applications....................22

1.3 Application development.................................................................................... 29
1.3.1 Use Spring Cloud to develop applications............................................... 29
1.3.1.1 Spring Cloud overview.......................................................................... 29
1.3.1.2 Implement service registration and discovery.......................................32
1.3.1.3 Implement load balancing................................................................... 32
1.3.1.4 Implement configuration management................................................ 34
1.3.1.5 Build gateways based on Spring Cloud Gateway..................................38
1.3.1.6 Implement task scheduling...................................................................41
1.3.2 Use Dubbo to develop applications........................................................ 44
1.3.2.1 Dubbo overview....................................................................................44
1.3.2.2 Use Spring Boot to develop Dubbo applications.................................. 47
1.3.3 Develop applications in HSF................................................................... 54
1.3.3.1 HSF overview........................................................................................ 54
1.3.3.2 Configure the lightweight configuration center.................................... 56
1.3.3.3 Use Ali-Tomcat to develop applications............................................... 57
1.3.3.3.1 Ali-Tomcat overview.......................................................................... 57
1.3.3.3.2 Install Ali-Tomcat and Pandora......................................................... 57
1.3.3.3.3 Perform startup configuration for an IDE runtime environment..........59
1.3.3.3.3.1 Configure the Eclipse development environment............................ 59
1.3.3.3.3.2 Configure the IntelliJ IDEA development environment.....................59
1.3.3.3.4 Develop HSF applications (EDAS-SDK)...............................................60
1.3.3.3.4.1 Download demo projects................................................................60
1.3.3.3.4.2 Define service interfaces.................................................................61
1.3.3.3.4.3 Implement services as a provider...................................................61
1.3.3.3.4.4 Subscribe to services as a consumer.............................................. 64
1.3.3.3.4.5 Use HSF features............................................................................ 67
1.3.3.3.4.6 Query services................................................................................ 71
1.3.3.3.5 Migrate Dubbo applications to HSF (not recommended)................... 74
1.3.3.3.5.1 Precautions for developing Dubbo applications............................. 74
1.3.3.3.5.2 Modify Dubbo application configurations.......................................74

IV Issue: 20200513



User Guide - Middleware and Enterprise Applications / 
Contents

1.3.3.3.5.3 Convert the format of a package from JAR to WAR..........................76
1.3.3.3.5.4 Run programs.................................................................................76
1.3.3.3.5.5 Compatibility between Dubbo and HSF.......................................... 76
1.3.3.4 Use Pandora Boot to develop applications...........................................79
1.3.3.4.1 Pandora Boot overview......................................................................80
1.3.3.4.2 Configure the local repository path and lightweight configuration

center of EDAS.............................................................................................80
1.3.3.4.3 Develop HSF applications (Pandora Boot)......................................... 82
1.3.3.4.3.1 Example of HSF application development.......................................82
1.3.3.4.3.2 Advanced HSF features...................................................................87
1.3.3.4.3.3 Local debugging............................................................................ 91
1.3.3.4.3.4 Deploy applications to EDAS.......................................................... 93
1.3.3.4.4 Develop RESTful applications (not recommended)............................ 93
1.3.3.4.4.1 Terms.............................................................................................. 93
1.3.3.4.4.2 Service registration and discovery.................................................. 94
1.3.3.4.4.3 Distributed tracing........................................................................ 102
1.3.3.4.5 Migrate Dubbo applications to HSF (not recommended)................. 106

1.4 Deploy applications...........................................................................................108
1.4.1 Deploy applications in the console........................................................108
1.4.1.1 Deploy web applications in ECS clusters............................................. 108
1.4.1.2 Deploy applications in Container Service Kubernetes clusters by using

images....................................................................................................... 111
1.4.2 Use CLI to deploy applications.............................................................. 117
1.4.2.1 Use toolkit-maven-plugin to automatically deploy applications......... 117
1.4.2.2 Use CLI to deploy applications in EDAS.............................................. 125
1.4.2.3 Use Alibaba Cloud Toolkit for Eclipse to deploy applications.............. 127
1.4.2.4 Use Alibaba Cloud Toolkit for IntelliJ IDEA to deploy applications....... 130
1.4.3 Deploy applications in hybrid clouds.................................................... 133

1.5 Console user guide............................................................................................137
1.5.1 Overview page.......................................................................................137
1.5.2 Resource management......................................................................... 137
1.5.2.1 Import ECS instances.......................................................................... 138
1.5.2.2 View a VPC......................................................................................... 138
1.5.2.3 Manage clusters................................................................................. 139
1.5.2.3.1 Create an ECS cluster....................................................................... 139
1.5.2.4 Manage resource groups....................................................................141
1.5.3 Manage applications.............................................................................142
1.5.3.1 Namespace.........................................................................................142
1.5.3.2 Lifecycle management for applications in ECS clusters.......................142
1.5.3.2.1 Publish an application..................................................................... 143
1.5.3.2.1.1 Create an empty application (applicable to ECS clusters).............. 144
1.5.3.2.1.2 Deploy an application (applicable to ECS clusters)........................146
1.5.3.2.2 Manage applications.......................................................................148
1.5.3.2.2.1 Scaling (applicable to ECS clusters).............................................. 148
1.5.3.2.2.2 Create an application branch version........................................... 149

Issue: 20200513 V



User Guide - Middleware and Enterprise Applications / 
Contents

1.5.3.2.2.3 Upgrade the container version..................................................... 150
1.5.3.2.2.4 Roll back an application...............................................................151
1.5.3.2.2.5 Delete an application................................................................... 151
1.5.3.2.3 Application settings.........................................................................152
1.5.3.2.3.1 Set JVM parameters....................................................................... 152
1.5.3.2.3.2 Configure Tomcat..........................................................................153
1.5.3.2.3.3  Bind an SLB instance to EDAS......................................................154
1.5.3.2.3.4 Set JVM -D startup parameters......................................................157
1.5.3.3 Lifecycle management for Container Service Kubernetes

applications............................................................................................... 159
1.5.3.3.1 Container Service Kubernetes clusters............................................. 159
1.5.3.3.2 Prepare an application image (a Container Service Kubernetes

cluster).......................................................................................................159
1.5.3.3.3 Deploy an application (applicable to Container Service Kubernetes

clusters)..................................................................................................... 164
1.5.3.3.4 Scaling (applicable to Container Service Kubernetes clusters)......... 167
1.5.3.4 Log management...............................................................................167
1.5.3.5 Throttling and degradation (only applicable to HSF applications in

ECS clusters).............................................................................................. 168
1.5.3.5.1 Throttling management................................................................... 170
1.5.3.5.2 Degradation management.............................................................. 172
1.5.3.6 Container version management (only applicable to HSF applications

in ECS clusters).......................................................................................... 174
1.5.4 Microservice management.................................................................... 174
1.5.4.1 Trace details........................................................................................175
1.5.5 Batch operations................................................................................... 177
1.5.6 System management............................................................................ 179
1.5.6.1 Introduction to the EDAS account system............................................179
1.5.6.2 Manage RAM users.............................................................................180
1.5.6.2.1 RAM user overview...........................................................................180
1.5.6.2.2 Use a primary account for RAM user operations.............................. 181
1.5.6.3 Manage roles..................................................................................... 182
1.5.6.4 View all permissions...........................................................................182

1.6 FAQ.................................................................................................................... 183
1.6.1 Known issues and solutions.................................................................. 183
1.6.2 Development FAQ..................................................................................185
1.6.2.1 Ali-Tomcat FAQ................................................................................... 185
1.6.2.2 Lightweight configuration center FAQ................................................ 188
1.6.2.3 HSF FAQ..............................................................................................190
1.6.2.4 HSF error codes.................................................................................. 192
1.6.2.5 Other development problems.............................................................199
1.6.3 Usage FAQ.............................................................................................199
1.6.3.1 Account management.........................................................................199
1.6.3.2 Resource management.......................................................................200
1.6.3.3 Application lifecycle........................................................................... 202

VI Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1 Enterprise Distributed Application Service
(EDAS)

1.1 What is EDAS?
Enterprise Distributed Application Service (EDAS) is a Platform as a Service (PaaS) platform

for application hosting and microservice management, providing full-stack solutions

such as application development, deployment, monitoring, and O&M. It supports Dubbo,

Spring Cloud, and other microservice runtime environments, helping you easily migrate

applications to the cloud.

Diverse application hosting environments

You can select instance-exclusive Elastic Compute Service (ECS) clusters, Container Service

 Kubernetes clusters, and user-created Kubernetes clusters based on your application 

systems and resource needs.

Abundant microservice frameworks

You can develop applications and services in the native Dubbo, native Spring Cloud, and

 High-Speed Service Framework (HSF) frameworks, and host the developed applications 

and services to EDAS.

• You can host Dubbo and Spring Cloud applications to EDAS by adding dependencies 

and modifying a few configurations. You have access to the features of EDAS, such as 

enterprise-level application hosting, service governance, monitoring and alerting, and

 application diagnosis, without having to build ZooKeeper, Eureka, and Consul. This 

lowers the costs of deployment and O&M.

• HSF is the distributed remote procedure call (RPC) framework that is widely used within

 Alibaba Group. It interconnects different service systems and decouples inter-system

 implementation dependencies. HSF unifies the service publishing and call methods 

for distributed applications to help you conveniently and quickly develop distributed 

applications. HSF provides or uses common functional modules, and frees developers

 from various complex technical details involved in distributed architectures, such as

 remote communication, serialization, performance loss, and the implementation of 

synchronous and asynchronous calls.

Issue: 20200513 1



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Comprehensive application management

You can perform end-to-end management, service governance, and microservice 

management for your applications in the EDAS console.

• Application lifecycle management

EDAS provides end-to-end application management, allowing you to deploy, scale out, 

scale in, stop, and delete applications. Applications of all sizes can be managed in the 

EDAS console.

• Service governance

EDAS integrates a wide variety of service governance components, such as auto scaling, 

throttling and degradation, and health check, to deal with unexpected traffic spikes and 

crashes caused by dependencies. This greatly improves platform stability.

• Microservice management

EDAS provides the service topology, service report, and trace query features to help you 

manage every component and service in a distributed system.

Comprehensive monitoring and diagnosis

You can monitor the status of resources and services in applications in the EDAS console

 to promptly identify problems and quickly locate their causes through the logging and 

diagnosis components.

EDAS is connected to the Application Real-Time Monitoring Service (ARMS) to monitor the 

health status of application resources and services at the Infrastructure as a Service (IaaS) 

layer in real time, helping you quickly locate problems.

1.2 Quick start
This topic describes how to use EDAS to publish a simple web application that only contains

a welcome page in Alibaba Cloud Virtual Private Cloud (VPC).

1.2.1 Log on to the EDAS console
This topic describes how to log on to the Enterprise Distributed Application Service (EDAS)

console.

Prerequisites

• Before logging on to the ASCM console, make sure that you have obtained the IP address

 or domain name of the ASCM console from the deployment personnel. The URL used to 

2 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

access the ASCM console is in the following format: https://[IP address or domain name 

of the ASCM console].

• We recommend that you use the Google Chrome browser.

Procedure

1. In the address bar, enter the URL used to access the ASCM console. Press the Enter key.

2. Enter your username and password.

Obtain the username and password for logging on to the console from the operations 

administrator.

Note:

When you log on to the ASCM console for the first time, you must change the password

of your username as prompted. Due to security concerns, your password must meet the

minimum complexity requirements: The password must be 8 to 20 characters in length

and must contain at least two of the following character types: uppercase letters,

lowercase letters, digits, and special characters such as exclamation points (!), at signs

(@), number signs (#), dollar signs ($), and percent signs (%).

3. Click Login to go to the ASCM console homepage.

4. In the top navigation bar, click Products, and select EDAS.

5. On the EDAS page, select an organization and a region, and then click Go to EDAS.

1.2.2 Deploy Java applications in ECS clusters
To help you get started quickly, Enterprise Distributed Application Service (EDAS) provides

a Java web application demo that only contains a welcome page so that you can quickly

learn how to publish the Java application on multiple Elastic Compute Service (ECS)

instances. To use these ECS instances, you must create them on Alibaba Cloud and then

deploy them in Alibaba Cloud Virtual Private Cloud (VPC) instances.

Prerequisites

• You have created a VPC instance, VSwitch, and security group.

• You have created an ECS cluster and added instances to the cluster.

• Before deploying an application, ensure that the RAM is authorized.

Create an application in an ECS cluster

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management > Applications.

Issue: 20200513 3



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

3. On the Applications page, click Create Application in the upper-right corner.

4. On the Application Information page, set the parameters of the application. Then, click

Next.

Table 1-1: Basic information and parameters of the application

Parameter Description

Namespace Select a namespace from the drop-down list.

Cluster Type From the first drop-down list, select ECS Cluster. From the second
drop-down list, select a specific cluster.

Application Name Enter an application name, which must be 1 to 36 characters in 
length.

Deployment
Method

Select WAR or JAR based on the application.

Application
Runtime
Environment

Select the application runtime environment based on the
application framework.

• For High-Speed Service Framework (HSF) applications, select
EDAS-Container.

• For Spring Cloud or Dubbo applications,

- WAR: Select Apache Tomcat.
- JAR: Select Standard Java application runtime

environment.

Java Environment Select Open JDK 8.

Application
Description

Enter remarks for the application.

4 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

5. On the Application Configuration page, add an instance, set the deployment

parameters, and then click Create.

Parameter Description

Selected Instances Click New. On the Instances page, select instances
and click > to add the instances to the right-side
section. Then, click OK.

• If no instances are selected, click Create an Empty

Application. Then, Scaling (applicable to ECS

clusters), add instances or Deploy an application

(applicable to ECS clusters) to complete the

deployment.

• If instances are selected, click Create to create

an empty application that contains the instances.

Then, you can click Deploy ApplicationDeploy an

application (applicable to ECS clusters) to publish

the application.

Deploy Now Select this option after instances are added. Set the 
deployment parameters in the lower section.

Deployment Method Select WAR or JAR. The configuration processes
for WAR package deployment and JAR package
deployment are similar. Here, WAR package
deployment is used as an example.

Issue: 20200513 5



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Parameter Description

File Uploading Method Select Upload WAR Package or WAR Package
Location.

• Upload WAR Package: Click Download Sample 
WAR Package. After the sample is downloaded,
click Select File and select the WAR package.

• WAR Package Location: Right-click Download

 Sample WAR Package and choose Copy Link

Address from the shortcut menu. Copy and paste

the address in the WAR package address bar.

Note:
The name of the application deployment package
can only contain letters, numbers, hyphens
(-), and underscores (_). A JAR package can be
uploaded only when the JAR package deployment
method is selected. Otherwise, you can only
deploy the application by using a WAR package.

Version Enter a version number, for example, 1.1.0. We do not
 recommend that you use a timestamp as the version 
number.

(Optional) Application Health
Check

Set a URL for application health check. The system
checks the health of the application after EDAS
Container has started or is running. Then, it performs
a service routing task based on the health check
result. In this example, the health check URL is set to 
http://127.0.0.1:8080/healthCheck.html.

Batch Specify a number of deployment batches. Select
an option from the drop-down list. The options are
automatically generated based on the number of
instances for the application. If you select two or more
batches, you must set Batch Wait Time.

Batch Mode Select Automatic.

After creating the application, go to the Change Details page. Click the Basic

Information and Instance Information tabs. If the application status is Normal, the

application is successfully deployed.

6 Issue: 20200513

http://edas.oss-cn-hangzhou.aliyuncs.com/demo/hello-edas.war?spm=5176.edas_createapps.0.0.4c1461f2SzhLX0&file=hello-edas.war
http://edas.oss-cn-hangzhou.aliyuncs.com/demo/hello-edas.war?spm=5176.edas_createapps.0.0.4c1461f2SzhLX0&file=hello-edas.war
http://edas.oss-cn-hangzhou.aliyuncs.com/demo/hello-edas.war?spm=5176.edas_createapps.0.0.4c1461f2SzhLX0&file=hello-edas.war
http://edas.oss-cn-hangzhou.aliyuncs.com/demo/hello-edas.war?spm=5176.edas_createapps.0.0.4c1461f2SzhLX0&file=hello-edas.war


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Update an application

The application has been deployed. You can update the application by deploying the 

application.

1. In the left-side navigation pane of the EDAS console, choose Application Management >

Applications.

2. On the Applications page, click the name of the application for which you want to

deploy.

3. On the Instance Information tab of the Application Details page, check whether

any instances are available for the application. If no instances are available, click

Application Scale Out to add at least one instance for the application. For more

information, see Scaling (applicable to ECS clusters).

4. Click Deploy Applications. Configure the deployment parameters as prompted and click

Deploy.

5. After the application is redeployed, the Change Details page appears, where you can

view the deployment process and logs.

After the deployment process is completed, if the status changes to Execution

Successful, the deployment is successful.

Configure SLB and access the application

The application is created and published in a VPC. Therefore, the application does not have

 a public IP address unless otherwise specified. If your application is deployed on multiple 

ECS instances and you want to expose your application to external systems, we recommend

 that you configure a public Server Load Balancer (SLB). In this way, application access 

traffic can be distributed to ECS instances based on forwarding policies, which can enhance

 the service capability and availability of the application.

1. In the Application Settings section of the Basic Information page, click Add on the right

of SLB (Internet).

Note:

If you have configured an SLB instance, the IP address and port number of the SLB

instance are displayed. You can click Modify to go to the configuration page and

modify the information of the SLB instance. You can also click Unbind to unbind the SLB

instance.

Issue: 20200513 7



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. In the Bind SLB to Application dialog box, select an SLB instance and set the listening

port, virtual group, and forwarding policy. Set the SLB parameters, and click Confirm

change to complete the configuration.

3. Copy the configured IP address and port number of the SLB instance such as

118.31.XXX.XXX:81, paste it in your browser address bar, and press Enter to go to the

homepage of the application.

1.2.3 Deploy Spring Cloud applications to EDAS
You have developed a Spring Cloud application that depends on components such as

Eureka, Consul, and ZooKeeper to implement service registration and discovery. To deploy

the application in Enterprise Distributed Application Service (EDAS), you need to replace

the dependencies and configurations of the service registration and discovery components

with Spring Cloud Alibaba Nacos Discovery. In this case, you can deploy the application in

EDAS and manage the application's microservices in EDAS without modifying any business

code.

Background

Spring Cloud Alibaba Nacos Discovery implements the standard interfaces and specificat

ions of Spring Cloud Registry, which are consistent with how Spring Cloud visits 

components such as Eureka, Consul, and ZooKeeper for service registration and discovery.

If you deploy applications developed by using the open-source Spring Cloud Alibaba Nacos

 Discovery in EDAS, you can enjoy the advantages and capabilities of the commercial EDAS 

Service Registry.

The commercial EDAS Service Registry has the following advantages over Nacos, Eureka,

and Consul:

• Components are shared, which saves you the costs of deploying, operating, and 

maintaining Nacos, Eureka, or Consul.

• The links for calling service registration and discovery are encrypted to protect your 

services from being discovered by unauthorized applications.

• EDAS Service Registry is tightly integrated with other EDAS components to provide you 

with a complete set of microservice solutions, including environment isolation, smooth 

connection and disconnection, and phased release.

8 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Prerequisites

You have downloaded the latest version of Nacos Server and started Nacos Server as

follows:

1. Decompress the downloaded Nacos Server package.

2. Go to the nacos/bin directory and start Nacos Server.

• For Linux, UNIX, or MacOS: Run the sh startup.sh -m standalone command.

• For Windows: Double-click the startup.cmd file to run the file.

Step 1: Obtain a demo.

eureka-service-provider and eureka-service-consumer are the two demos provided

by EDAS. They are Spring Cloud applications that have been connected to Eureka for

registration and discovery. You need to download them to your local device for subsequent

operations.

• eureka-service-provider

• eureka-service-consumer

Step 2: Perform operations on the provider application

To deploy the original application in EDAS, you must add the project object model

(pom.xml) dependency to the provider application and specify the IP address of Nacos

Server.

1. Add the pom.xml dependency.

Open the pom.xml file of the provider application to replace spring-cloud-starter-netflix

-eureka-client with spring-cloud-starter-alibaba-nacos-discovery and set the version of

Nacos Server.

Before the replacement:

<dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
       

After the replacement:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
    <version>2.1.0.RELEASE</version>
</dependency>

Issue: 20200513 9

https://github.com/alibaba/nacos/releases
https://aliware-images.oss-cn-hangzhou.aliyuncs.com/EDAS/demo/eureka-service-provider.zip
https://aliware-images.oss-cn-hangzhou.aliyuncs.com/EDAS/demo/eureka-service-consumer.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

       

Note:

• In this example, Spring Cloud Greenwich is used, corresponding to spring-cloud-

starter-alibaba-nacos-discovery of 2.1.0.RELEASE.

• If you use Spring Cloud Finchley, the version of spring-cloud-starter-alibaba-nacos-

discovery is 2.0.0.RELEASE.

• If you use Spring Cloud Edgware, the version of spring-cloud-starter-alibaba-nacos-

discovery is 1.5.0.RELEASE.

2. Specify the IP address of Nacos Server.

Open application.properties in src\main\resources to specify the IP address of Nacos

Server.

Before the modification:

spring.application.name=service-provider
server.port=18081
eureka.client.serviceUrl.defaultZone=http://127.0.0.1:8761/eureka/
       

After the modification:

spring.application.name=service-provider
server.port=18081
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848
       

Where, 127.0.0.1 is the IP address of Nacos Server. If your Nacos Server is deployed on

another device, set the IP address to that of the corresponding device. If you have other

requirements, see Reference configuration items to add the required configurations in

the application.properties file.

3. Query the application service.

a. Run the main function of ProviderApplication in nacos-service-provider to start the

application.

b. Log on to the Nacos Server console at http://127.0.0.1:8848/nacos. In the left-side

navigation pane, choose Service Management > Services. You can see service-

provider in the list of services and query the details of the service in Details.

Note:

The default user name and password of the local Nacos Server console are nacos.

10 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Step 3: Perform operations on the consumer application

To deploy the original application in EDAS, you must add the pom.xml dependency to the

consumer application and specify the IP address of Nacos Server.

1. Add the pom.xml dependency.

Open the pom.xml file of the consumer application to replace spring-cloud-starter-

netflix-eureka-server with spring-cloud-starter-alibaba-nacos-discovery and set the

version of Nacos Server.

Before the replacement:

<dependency>
   <groupId>org.springframework.cloud</groupId>
   <artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
       

After the replacement:

<dependency>
    <groupId>com.alibaba.cloud</groupId>
    <artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
    <version>2.1.0.RELEASE</version>
</dependency>
       

Note:

• In this example, Spring Cloud Greenwich is used, corresponding to spring-cloud-

starter-alibaba-nacos-discovery of 2.1.0.RELEASE.

• If you use Spring Cloud Finchley, the version of spring-cloud-starter-alibaba-nacos-

discovery is 2.0.0.RELEASE.

• If you use Spring Cloud Edgware, the version of spring-cloud-starter-alibaba-nacos-

discovery is 1.5.0.RELEASE.

2. Modify the settings.

Open application.properties in src\main\resources to specify the IP address of Nacos

Server.

Before the modification:

spring.application.name=service-consumer
server.port=18082
eureka.client.serviceUrl.defaultZone=http://127.0.0.1:8761/eureka/

Issue: 20200513 11



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

       

After the modification:

spring.application.name=service-consumer
server.port=18082
spring.cloud.nacos.discovery.server-addr=127.0.0.1:8848
       

Where, 127.0.0.1 is the IP address of Nacos Server. If your Nacos Server is deployed on

another device, set the IP address to that of the corresponding device. If you have other

requirements, see Reference configuration items to add the required configurations in

the application.properties file.

3. Query the application service.

a. Run ConsumerApplication.java in eureka-service-provider to start the application.

b. Log on to the Nacos Server console at http://127.0.0.1:8848/nacos. In the left-side

navigation pane, choose Service Management > Services. You can see service-

consumer in the list of services and query the details of the service in Details.

Note:

The default user name and password of the local Nacos Server console are nacos.

Step 4: View the call result.

Test the result of calling the provider's service by the consumer on the local device. Start the

service, and run IP + port / echo-rest / user-defined variable or IP + port / echo-feign / user

-defined variable to view the call result.

• For Linux, UNIX, or MacOS, run curl http://127.0.0.1:18082/echo-rest/{user-defined 

variable} or curl http://127.0.0.1:18082/echo-feign/{user-defined variable}.

• For Windows, enter http://127.0.0.1:18082/echo-rest/{user-defined variable} or http://

127.0.0.1:18082/echo-feign/{user-defined variable} in the browser.

Step 5: Deploy the application to EDAS.

1. In thepom.xml file of the application, add the following configuration, and then run

the mvn clean package command to compile the local program into an executable JAR

package:

<build>
     <plugins>
         <plugin>
             <groupId>org.springframework.boot</groupId>
             <artifactId>spring-boot-maven-plugin</artifactId>
             <executions>

12 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

                 <execution>
                     <goals>
                         <goal>repackage</goal>
                     </goals>
                 </execution>
             </executions>
         </plugin>
     </plugins>
 </build>
     

2. See Deploy Java applications in ECS clusters to deploy the two applications whose

dependency configurations are modified in Step 2: Perform operations on the provider

application and Step 3: Perform operations on the consumer application to EDAS.

Notice:

The preceding applications are deployed using JAR packages. Therefore, Application

Runtime Environment must be set to Standard Java application runtime environment.

When you deploy the applications to EDAS, EDAS Service Registry automatically sets 

the IP address, port number, and other information such as namespace, AccessKey ID, 

AccessKey secret, and context-path of Nacos Server with a high priority. No additional 

configuration is required. You can retain or delete the original configurations.

Step 6: Verify the result

1. Configure SLB and access the application for the consumer application to go to the

homepage of the application.

2. Initiate a request on the homepage of the application. Then, log on to the EDAS console 

and go to the Application Details page of the consumer.

3. In the left-side navigation pane, choose Application Monitoring > Overview to overview

the service call data. If call data is detected, the service call is successful.

Reference configuration items

Configuration item Key Default value Description

IP Addresses spring.cloud.nacos
.discovery.server-
addr

None The IP address and
 port number of the
 server that Nacos 
Server listens to.

Service Name spring.cloud.nacos.
discovery.service

${spring.application.
name}

The name of the 
current service.

Issue: 20200513 13



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Configuration item Key Default value Description

Network Interface 
Name

spring.cloud.nacos.
discovery.network-
interface

None The registered IP 
address is that of 
the corresponding
 network interface
 card (NIC) when
 no IP address 
is configured. If
 this item is not 
configured, the 
IP address of the 
first NIC is used by 
default.

Registered IP 
Address

spring.cloud.nacos.
discovery.ip

None This IP address is of 
the highest priority.

Registered Port spring.cloud.nacos.
discovery.port

-1 No configuration
 is required by 
default. The system 
automatically detects
 the port.

Namespace spring.cloud.
nacos.discovery.
namespace

None One of the common
 use cases is the 
isolation of registrati
on in different 
environments, 
for example, the
 isolation of the 
resources (such 
as configurations
 and services) in 
development, test
, and production 
environments.

Metadata spring.cloud.nacos.
discovery.metadata

None This item is 
configured in the 
Map format. You can
 customize metadata
 information related
 to your services as 
needed.

14 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Configuration item Key Default value Description

Cluster spring.cloud.nacos
.discovery.cluster-
name

DEFAULT Set this item to the
 name of a Nacos 
Server cluster.

Endpoint spring.cloud.nacos.
discovery.enpoint

UTF-8 The domain name
 of a service in 
the region. The 
system dynamicall
y retrieves the 
endpoint through 
this domain name. 
This configuration 
item is not required 
when an application 
is deployed to EDAS.

Enable Ribbon 
Integration

ribbon.nacos.
enabled

true You do not need to 
modify this item in 
most cases.

References

For more information on Spring Cloud Alibaba Nacos Discovery, see the open-source Spring

 Cloud Alibaba Nacos Discovery documentation.

1.2.4 Deploy Dubbo applications to EDAS
You can host Dubbo microservice-oriented applications to Enterprise Distributed

Application Service (EDAS) and then use the shared components, enterprise-class security

hardening, and comprehensive microservice solutions provided by EDAS. This reduces

O&M costs and improves security and development efficiency. This topic describes how

to develop a sample Dubbo microservice-oriented application in the local development

environment through XML configuration, and deploy it in EDAS. The sample application

contains a service provider and a service consumer.

Context

By hosting Dubbo applications to EDAS, you can focus on building the logic of Dubbo

applications rather than creating and maintaining the registry, configuration center,

and metadata center. Additionally, you can use EDAS capabilities such as auto scaling,

throttling and degradation, monitoring, and microservice governance for various

management purposes. The entire hosting process is completely transparent to you. It does

not require you to learn anything, or increase your development costs.

Issue: 20200513 15

https://github.com/spring-cloud-incubator/spring-cloud-alibaba/wiki/Nacos-discovery
https://github.com/spring-cloud-incubator/spring-cloud-alibaba/wiki/Nacos-discovery


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Preparations

Before you start development, be sure to complete the following tasks:

• Download Maven and set the environment variables.

• Download the latest version of Nacos Server.

• Start Nacos Server as follows:

1. Decompress the downloaded Nacos Server package.

2. Go to the nacos/bin directory and start Nacos Server as follows:

- For Linux, UNIX, or MacOS: Run the sh startup.sh -m standalone command.

- For Windows: Double-click the startup.cmd file to run the file.

Version description

EDAS supports Dubbo 2.5.x, 2.6.x, and 2.7.x. We recommended that you use 2.7.x for better

 service governance. This topic takes the version 2.7.3 as an example to describe how to 

host Dubbo applications to EDAS.

Create a service provider

Create a provider application project in the local development environment, add 

dependencies, configure service registration and discovery, and specify Nacos as the 

registry.

1. Create a Maven project and add dependencies.

a) Create a Maven project by using an integrated development environment (IDE), such

as IntelliJ IDEA or Eclipse.

b) Add dubbo, dubbo-registry-nacos, and nacos-client to the pom.xml file.

<dependencies>

    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo</artifactId>
        <version>2.7.3</version>
    </dependency>

    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo-registry-nacos</artifactId>
        <version>2.7.3</version>
    </dependency>

    <dependency>
        <groupId>com.alibaba.nacos</groupId>
        <artifactId>nacos-client</artifactId>
        <version>1.1.1</version>
    </dependency>

16 Issue: 20200513

https://aliware-images.oss-cn-hangzhou.aliyuncs.com/EDAS/App-develop/apache-maven-3.6.0-bin.tar.gz
https://github.com/alibaba/nacos/releases


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

</dependencies>            

2. Develop a Dubbo service provider.

All services in Dubbo are provided as interfaces.

a) Create a package named com.alibaba.edas in src/main/java.

b) Create an interface named IHelloService that contains a SayHello method in com.

alibaba.edas.

  package com.alibaba.edas;

  public interface IHelloService {
      String sayHello(String str);
  }                                

c) Create a class named IHelloServiceImpl in com.alibaba.edas to implement the

interface.

  package com.alibaba.edas;

  public class IHelloServiceImpl implements IHelloService {
      public String sayHello(String str) {
          return "hello " + str;
      }
  }                          

3. Configure the Dubbo service.

a) Create a file named provider.xml in src/main/resources and open the file.

b) In provider.xml, add Spring-related XML namespace (xmlns) and XML schema

instance (xmlns:xsi), as well as the Dubbo-related XML namespace (xmlns:dubbo)

and XML schema instance (xsi:schemaLocation).

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dubbo="http://dubbo.apache.org/schema/dubbo"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans-4.3.xsd
http://dubbo.apache.org/schema/dubbo http://dubbo.apache.org/schema/
dubbo/dubbo.xsd">
        

c) In provider.xml, expose the interface and implementation class as a Dubbo service.

  <dubbo:application name="demo-provider"/>

  <dubbo:protocol name="dubbo" port="28082"/>

  <dubbo:service interface="com.alibaba.edas.IHelloService" ref="helloService"/>

Issue: 20200513 17



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

  <bean id="helloService" class="com.alibaba.edas.IHelloServiceImpl"/>                     
           

d) In provider.xml, specify Nacos Server that starts locally as the registry.

<dubbo:registry address="nacos://127.0.0.1:8848" />                                

• 127.0.0.1 is the IP address of Nacos Server. If your Nacos Server is deployed on

another machine, change the IP address to the corresponding one. When an

application is deployed in EDAS, the registry address will be replaced with the

address of the registry in EDAS. You do not need to make any changes.

• 8848 is the port number of Nacos Server, which cannot be changed.

4. Start the service.

a) Create the class Provider in com.alibaba.edas and load Spring context to the main

function of Provider based on the following code to expose the configured Dubbo

service.

package com.alibaba.edas;

import org.springframework.context.support.ClassPathXmlApplicationContext;

public class Provider {
    public static void main(String[] args) throws Exception {
        ClassPathXmlApplicationContext context = new ClassPathXmlApplicat
ionContext(new String[] {"provider.xml"});
        context.start();
        System.in.read();
    }
}                

b) Execute the main function of Provider to start the service.

5. Log on to the Nacos console at http://127.0.0.1:8848. In the left-side navigation pane,

click Services to view the list of providers. You can see that com.alibaba.edas.IHelloServ

ice is available in the list of providers. In addition, you can query Service Group and

Provider IP of the service.

Create a service consumer

Create a consumer application project in the local development environment, add 

dependencies, and add the configuration to subscribe to the Dubbo service.

18 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Create a Maven project and add dependencies.

a) Create a Maven project by using an integrated development environment (IDE), such

as IntelliJ IDEA or Eclipse.

b) Add dubbo, dubbo-registry-nacos, and nacos-client to the pom.xml file.

<dependencies>

    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo</artifactId>
        <version>2.7.3</version>
    </dependency>

    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo-registry-nacos</artifactId>
        <version>2.7.3</version>
    </dependency>

    <dependency>
        <groupId>com.alibaba.nacos</groupId>
        <artifactId>nacos-client</artifactId>
        <version>1.1.1</version>
    </dependency>
</dependencies>            

2. Develop a Dubbo service provider.

All services in Dubbo are provided as interfaces.

a) Create a package named com.alibaba.edas in src/main/java.

b) Create an interface named IHelloService that contains a SayHello method in com.

alibaba.edas.

Note:

Generally, an interface is defined in an independent module. The provider and

consumer reference the same module through Maven dependencies. In this topic,

two identical interfaces are created for the provider and consumer for ease of

description. However, we do not recommend this procedure in actual use.

  package com.alibaba.edas;

  public interface IHelloService {
      String sayHello(String str);

Issue: 20200513 19



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

  }                                

3. Configure the Dubbo service.

a) Create a file named consumer.xml in src/main/resources and open the file.

b) In consumer.xml, add the Spring-related XML namespace (xmlns) and XML schema

instance (xmlns:xsi), as well as the Dubbo-related XML namespace (xmlns:dubbo)

and XML schema instance (xsi:schemaLocation).

<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:dubbo="http://dubbo.apache.org/schema/dubbo"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://
www.springframework.org/schema/beans/spring-beans-4.3.xsd
http://dubbo.apache.org/schema/dubbo http://dubbo.apache.org/schema/
dubbo/dubbo.xsd">                              

c) Add the following configuration to consumer.xml to subscribe to the Dubbo service:

  <dubbo:application name="demo-consumer"/>

  <dubbo:registry address="nacos://127.0.0.1:8848"/>

  <dubbo:reference id="helloService" interface="com.alibaba.edas.IHelloService"/>

4. Start and verify the Dubbo service.

a) Create the class Consumer in com.alibaba.edas and load Spring context to the main

function of Consumer based on the following code to subscribe to and consume the

Dubbo service:

    package com.alibaba.edas;

    import org.springframework.context.support.ClassPathXmlApplicationContext;

    import java.util.concurrent.TimeUnit;

    public class Consumer {
        public static void main(String[] args) throws Exception {
            ClassPathXmlApplicationContext context = new ClassPathXmlApplicat
ionContext(new String[] {"consumer.xml"});
            context.start();
            while (true) {
                try {
                    TimeUnit.SECONDS.sleep(5);
                    IHelloService demoService = (IHelloService)context.getBean("helloServi
ce");
                    String result = demoService.sayHello("world");
                    System.out.println(result);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        }
    }               

b) Execute the main function of Consumer to start the Dubbo service.

20 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

5. Verify the creation result.

After the Dubbo service is started, the console outputs hello world continuously,

indicating successful service consumption.

Log on to the Nacos console at http://127.0.0.1:8848. In the left-side navigation pane,

click Services. On the Services page, select Callers.

You can see that com.alibaba.edas.IHelloService is available in the list. In addition, you

can query Service Group and Caller IP of the service.

Deploy the application to EDAS

You can deploy the application that uses local Nacos as the registry directly to EDAS 

without making any changes. This registry will be automatically replaced with the registry 

in EDAS.

Based on your actual needs, you can choose the cluster type (the ECS cluster or Container

Service Kubernetes cluster) and deployment method (console or tools). For more

information, see Deploy web applications in ECS clusters and Deploy applications in

Container Service Kubernetes clusters by using images.

If you use the console for deployment, follow these steps in your local application before 

deploying it:

1. Add the following configuration of the packaging plug-in to the pom.xml file.

• Provider

<build>
 <plugins>
       <plugin>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-maven-plugin</artifactId>
           <executions>
               <execution>
                   <goals>
                       <goal>repackage</goal>
                   </goals>
                   <configuration>
                       <classifier>spring-boot</classifier>
                       <mainClass>com.alibaba.edas.Provider</mainClass>
                   </configuration>
               </execution>
           </executions>
       </plugin>
 </plugins>
</build>

Issue: 20200513 21



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

       

• Consumer

<build>
 <plugins>
       <plugin>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-maven-plugin</artifactId>
           <executions>
               <execution>
                   <goals>
                       <goal>repackage</goal>
                   </goals>
                   <configuration>
                       <classifier>spring-boot</classifier>
                       <mainClass>com.alibaba.edas.Consumer</mainClass>
                   </configuration>
               </execution>
           </executions>
       </plugin>
 </plugins>
</build>
       

2. Run mvn clean package to package your local program into a JAR file.

After deploying the Dubbo microservice application to EDAS, you can use EDAS for 

microservice governance.

1.2.5 Deploy multi-language microservice-oriented
applications

With the rapid development of languages such as Python and Node.js, more and more

multi-language microservice-oriented applications have been developed. Enterprise

Distributed Application Service (EDAS) supports the deployment of multi-language

microservice-oriented applications through a service mesh, and provides service

governance capabilities such as application hosting, service discovery, distributed tracing,

and load balancing. This topic describes how to use EDAS to deploy an application that

consists of microservice-oriented applications written in different languages by using an

example.

Context

Applications have evolved from the original monolithic architecture to the current 

microservice architecture, which brings convenience and greatly increases the complexity

 of service deployment and O&M. Microservices can be developed in any language. After 

multi-language services are deployed, two methods can be used to provide capabilities 

such as distributed tracing, service discovery, and load balancing for an application that 

consists of microservices written in different languages: multi-language SDKs and service 

22 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

meshes. SDKs are invasive to applications, while service meshes are non-invasive and can 

also provide capabilities such as service discovery, load balancing, and distributed tracing. 

Therefore, EDAS uses service mesh to supports multiple languages.

A service mesh is an infrastructure that is used to implement communication between 

services. It is responsible for reliably delivering requests in the complex service topologies

 of modern cloud-native applications. Generally, a service mesh integrates a group of 

lightweight network agents with applications, without perceiving the applications.

Value and access cost of service mesh

• Value

Currently, most services are deployed on multiple instances, which naturally require

service discovery, load balancing, and distributed tracing. When deploying an

application, you need to enter the name and port number of the service according to the

code. The EDAS service mesh automatically registers services based on this information.

When you use http://service name:service port to initiate an access request, the service

mesh parses the service name from the request to complete service discovery, load

balancing, and distributed tracing.

• Access cost

Application A provides the test service. Generally, we access the service by using the

domain name or IP address, for example, http://test.com:8080/ or http://xx.xx.xx.xx:

8080. After the service mesh is used, the instance where a service is deployed can be

abstracted into a service. The following uses the test service as an example. Assume

that the name and port number of the service are my-test-service and 8080. In the

service code, change the call syntax to http://service name:service port, such as http

://my-test-service:8080. Then, enable service mesh when deploying my-test-service in

image mode, and set the service name (my-test-service) and the port number (9080) to

complete the access.

Example

BookInfo is a sample application that simulates a category of online bookstores and 

displays information about a book. The application page displays the description of a book

, the details of the book (such as the ISBN and page number), and some reviews on the 

book.

BookInfo is a heterogeneous application that comprises several microservice-oriented 

applications written in different languages. These microservices constitute a sample of a 

Issue: 20200513 23



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

representative service mesh: It consists of multiple services and languages. The Reviews 

service has multiple versions. The microservice architecture is as follows:

The Bookinfo application contains four independent services:

• Productpage: a Python service that calls the Details and Reviews services to generate a 

page. The Productpage also provides the sign-in and sign-out features.

• Details: a Ruby service that contains book information.

• Reviews: a Java service that contains reviews on the book. It also calls the Ratings 

service.

• Ratings: a Node.js service that contains rating information formed by book reviews.

Three versions are available:

- Version v1 does not call the Ratings service.

- Version v2 calls the Ratings service and displays each rating as 1 to 5 black stars.

- Version v3 calls the Ratings service and displays each rating as 1 to 5 red stars.

Prerequisites

Before deploying a multi-language microservice-oriented application in EDAS, complete 

the following tasks:

24 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Create an image of the sample application and upload it to the Alibaba Cloud image

repository.

Address for downloading the sample application: BookInfo Sample.

• Import a user-created Kubernetes cluster.

- When creating a cluster, you must enable the Internet access feature, that is, checking

Use EIP Exposed API Server.

- Make sure that the Kubernetes version is 1.8.4 and no service mesh components are 

installed in the cluster.

Note:

This topic describes how to deploy the BookInfo application as an example. Actually, you

need to deploy your own application, which may be a microservice architecture. Therefore,

you need to plan and develop your services as follows before deploying your application:

• To deploy multiple services, ensure that the service name of each service is unique. This

 is because service names must be unique in the same namespace of EDAS to ensure 

that they can be called by other services.

• If there are call relationships between multiple services you deployed, modify the call

code in the following format for the caller service: http://<service name of the provider

>:<service port of the provider>.

Step 1: Install service mesh for the Container Service Kubernetes cluster

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Resource Management > Clusters.

3. On the Clusters page, select the region and namespace for the Container Service

Kubernetes cluster, click the Container Service K8s Cluster tab, and then click the name

of the Container Service Kubernetes cluster that you imported.

4. At the bottom of the Cluster Details page, click Installing a service grid in the Service

grid section.

5. In the dialog box that appears, click OK.

The dialog box displays In Execution, and then disappears. In service grid installation

appears on the top of the Cluster Details page. Wait about 1 minute. When In service

grid installation disappears, the installation is completed.

Issue: 20200513 25

https://github.com/istio/istio/tree/master/samples/bookinfo


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

6. Click > on the right of the Service grid section to expand the section and view

Component version, Component health, and Tracking sample rate.

Step 2: Deploy an application

You need to deploy the services in the sample scenario to EDAS as applications. The 

following describes how to deploy a single service.

Note:

Currently, multi-language applications can only be deployed in image mode.

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management > Applications. On

the Applications page, click Create Application in the upper-right corner.

3. On the Application Information page, set the parameters of the application. Then, click

Next.

Basic parameters:

• Namespace: Select a region from the left-side drop-down list. Select a namespace

from the right-side drop-down list. If no namespace is selected, Default is selected.

• Cluster Type: Select Container Service K8S Cluster from the left-side drop-down list

and select a specific cluster from the right-side drop-down list.

• K8S Namespace: Internal system objects are allocated to different namespaces to

form logically isolated projects, groups, or user groups. In this way, different groups

can share resources of the whole cluster while being managed separately.

- default: When an object is not set with a namespace, default is used.

- kube-system: The namespace used by objects that are created by the system.

- kube-public: The namespace that is automatically created by the system. It can be

read by all users, including users that are not authenticated.

- istio-system: The namespace that is automatically created by the system after

service mesh is deployed.

• Application Name: Enter the name of application.

• Application Description: Enter the basic information of the application.

4. On the Application Configuration page, set Deployment Method to Image, and select

the service image that you uploaded.

26 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

5. Set pods.

Pods are the smallest units for deploying an application. An application can contain 

multiple pods. On a Server Load Balancer (SLB) instance, a request is randomly allocated

 to a pod for processing.

a) Set Pods.

When a pod fails to run or encounters a fault, it can automatically restart or services

 on the pod seamlessly fail over to other pods, ensuring a high availability for 

applications. For stateful applications that use persistent storage, instance data is 

retained when the applications are redeployed. For stateless applications, instance

 data is not retained when the applications are redeployed. You can set Pods to a 

maximum value of 50.

b) Set Single Pod Resource Quota.

No quota is set by default. Therefore, both the CPU Cores and Memory values of a 

single pod are 0. To set the quota, enter a number.

6. Startup Command, Environment Variables, Persistent Storage, Local Storage, and

Application Life Cycle Management are optional. For more information, see the

parameter description in Deploy an application (applicable to Container Service

Kubernetes clusters).

7. Set service mesh.

Service mesh parameters:

• Service grid: It enables service mesh.

• Service name: The service name provided by the application, which must be

consistent with the service name in the application code to ensure that the service

can be successfully registered and called. The service names of the four services

in this demo are Productpage, Details, Ratings, and Reviews. To deploy your own

service, enter the service name in the service code.

• Service Port: The service port number provided by the application, which must

be consistent with that in the application code to ensure that the service can be

successfully registered and called. The service port numbers of the four services in

this demo are 9080. To deploy your own service, enter the service port number in the

service code.

Issue: 20200513 27



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

8. Then, click Create.

Creating an application may take up to several minutes. During the creation process, you

 can track the creation process based on the change record.

After the application is created in the Container Service Kubernetes cluster, the

application is deployed. After the application is created, return to the Application

Details page. If the pod status in the instance deployment information is Running, the

application is successfully deployed.

Optional. Step 3: Enable access from the Internet

If a service needs to be accessed from the Internet, you must enable and set Internet access

. In this sample, you need to set Internet for the main service Productpage.

1. In the Application Settings section of the Application Details page, enable Public

access.

2. Set Public access path.

Internet access path parameters:

• Service Name is set during deployment and cannot be modified.

• Service Port is also set during deployment and cannot be modified. In this sample, all

the port numbers are 9080 and cannot be modified.

• Public IP and Public network ports are automatically allocated by EDAS for a

Container Service Kubernetes cluster through SLB when service mesh is installed for

the cluster. They cannot be modified.

• Public access path: When the service mesh is installed, the system allocates a public

IP address and a port number for the cluster. Therefore, the services deployed in the

cluster must be differentiated by paths. In this sample, only the main service needs to

be accessed from the Internet. Therefore, the paths for the access, sign-in, and sign-

out services of Productpage can be set as follows:

- Access: /productpage

- Sign-in: /login

- Sign-out: /logout

Note:

To deploy your own service, enter the actual access path in the service code.

28 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Verification

After deploying the four applications, you can access the main service. The page displays 

a book description, details (such as ISBN and number of pages), and reviews on the book. 

You can also log on to and log out of the page.

1. In the address bar of the browser, enter http://<Internet IP address>:<Internet port

number><main service path> such as http://xxx.xxx.xxx.xxx:80/productpage, and then

click Enter.

The page is accessible, and the Book Details and Book Reviews sections are properly

displayed. This indicates that the main service Productpage, subservice Details, and

subservice Reviews are normal.

2. Click Sign in. In the dialog box, enter the user name and password admin, and then click

Sign in. The sign-in is successful.

3. After sign-in, click Sign out. The page can exit properly.

What to do next

After deploying a service, you can monitor the running of the service in the EDAS console. 

When an error occurs, you can use logs for diagnosis.

• Monitoring: You can use Tracing Analysis integrated into EDAS to monitor applications

and view trace information on the Application Details page. For more information on

how to use specific features such as Application Overview, Application Details, and API

Calls), see Tracing Analysis documentation.

• Logs: You can view standard logs and service logs of Container Service by using the log

management feature of EDAS. For more information, see Log management.

1.3 Application development

1.3.1 Use Spring Cloud to develop applications

1.3.1.1 Spring Cloud overview
Enterprise Distributed Application Service (EDAS) supports the native Spring Cloud

microservice framework. You can deploy Spring Cloud applications to EDAS simply by

adding dependencies and modifying configurations. Then you can use EDAS functions,

such as enterprise-level application hosting, application governance, monitoring and

alerting, and application diagnosis. This ensures zero code intrusion.

Issue: 20200513 29



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Introduction

Spring Cloud provides a series of standards and specifications to simplify application 

development. These standards and specifications cover service discovery, load balancing, 

circuit breakers, configuration management, message event triggering, and message bus. 

In addition, Spring Cloud provides implementation components for gateways, distributed 

tracing, security, distributed job scheduling, and distributed job coordination.

Currently, the most popular Spring Cloud implementation components in the industry 

include Spring Cloud Netflix, Spring Cloud Consul, Spring Cloud Gateway, and Spring Cloud

 Sleuth. Spring Cloud Alibaba, an open-source middleware recently developed by Alibaba, 

is also a very popular implementation component in the industry.

You can directly deploy and manage applications developed by using Spring Cloud 

components, such as Spring Cloud Netflix and Spring Cloud Consul, in EDAS. In addition

, you can directly use the advanced monitoring functions provided by EDAS without 

modifying any code, enabling monitoring functions such as distributed tracing, monitoring 

and alerting, and application diagnosis.

To use more service governance functions in EDAS to manage your Spring Cloud applicatio

ns, you need to replace your Spring Cloud components with those in Spring Cloud Alibaba 

or add Spring Cloud Alibaba components.

Compatibility

Currently, Enterprise Distributed Application Service (EDAS) supports Spring Cloud 

Greenwich, Spring Cloud Finchley, and Spring Cloud Edgware.

The following table lists the compatibility between Spring Cloud features, other open-

source implementation components, and EDAS.

Spring Cloud feature Open source 

component

Compatibility with 

EDAS

Service registration 
and discovery

• Netflix Eureka
• Consul Discovery

Compatible, with
 an equivalent 
component

Load balancing Netflix Ribbon Compatible

Common features

Service call • Feign
• RestTemplate

Compatible

30 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Spring Cloud feature Open source 

component

Compatibility with 

EDAS

Configuration management • Config Server
• Consul Config

Compatible, with
 an equivalent 
component

Service gateway • Spring Cloud 
Gateway

• Netflix Zuul

Compatible

Distributed tracing Spring Cloud Sleuth Compatible, with
 an equivalent 
component

Message-driven application development: 
Spring Cloud Stream

• RabbitMQ Binder
• Kafka Binder

Compatible, with
 an equivalent 
component

Message bus: Spring Cloud Bus • RabbitMQ
• Kafka

Compatible, with
 an equivalent 
component

Security Spring Cloud Security Compatible

Distributed job scheduling Spring Cloud Task Compatible

Distributed coordination Spring Cloud Cluster Compatible

Version mapping

The following table describes the mapping among Spring Cloud, Spring Boot, Spring Cloud 

Alibaba, and commercially available EDAS components.

Spring Cloud Spring Boot Spring Cloud 

Alibaba

Commercially

available EDAS

components

• Nacos Registry

• Nacos Config

Greenwich 2.1.x 2.1.1.RELEASE 2.1.1.RELEASE

Finchley 2.0.x 2.0.1.RELEASE 2.0.1.RELEASE

Edgware 1.5.x 1.5.1.RELEASE 1.5.1.RELEASE

Issue: 20200513 31



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.1.2 Implement service registration and discovery
You can add basic dependencies and configurations to your Spring Cloud applications and

then deploy them to Enterprise Distributed Application Service (EDAS) and use EDAS Service

Registry to discover services.

For more information, see Deploy Spring Cloud applications to EDAS.

1.3.1.3 Implement load balancing
Spring Cloud uses the Ribbon component for load balancing. Ribbon mainly provides

consumer-side software load balancing algorithms. In Spring Cloud, load balancing is

implemented for RestTemplate and FeignClient through Ribbon.

Spring Cloud Alibaba ANS integrates the functions of Ribbon and AnsServerList implements 

the com.netflix.loadbalancer.ServerList interface provided by Ribbon.

This interface is generic and other similar service discovery components, such as Nacos, 

Eureka, Consul, and ZooKeeper, implement ServerList interfaces such as NacosServerList, 

DomainExtractingServerList, ConsulServerList, and ZookeeperServerList.

Implementing the com.netflix.loadbalancer.ServerList interface is equivalent to complying

 with the load balancing specifications of Spring Cloud. These specifications are generic. 

This means that no code modification is required to change the service discovery solution

 from Eureka, Consul, or ZooKeeper to Spring Cloud Alibaba, including RestTemplate, 

FeignClient, and the outdated AsyncRestTemplate.

The following describes how to implement load balancing for RestTemplate and FeignClien

t in your application.

This topic describes key information for developing applications locally. For more

information about Spring Cloud, download service-provider and service-consumer.

The methods to implement load balancing for RestTemplate and FeignClient are different 

and thus described below separately.

RestTemplate

RestTemplate is a client provided by Spring Cloud to access RESTful services. It provides 

multiple ways to conveniently access remote HTTP services, greatly improving the writing 

efficiency of client-side code.

To use the load balancing feature of RestTemplate, you need to modify the code in your 

application based on the following example.

public class MyApp {

32 Issue: 20200513

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/ans-service-provider.zip?spm=a2c4g.11186623.2.17.7fd57836eQ2eVq&file=ans-service-provider.zip
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/ans-service-consumer.zip?spm=a2c4g.11186623.2.18.7fd57836eQ2eVq&file=ans-service-consumer.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

    // Inject the RestTemplate you built with the @LoadBalanced annotation.
    // This annotation adds the LoadBalancerInterceptor to RestTemplate.
    // Internally, LoadBalancerInterceptor uses the implementation class RibbonLoad
BalancerClient of the LoadBalancerClient interface for load balancing.
    @Autowired
    private RestTemplate restTemplate;
    @LoadBalanced // Modify the built RestTemplate with this annotation to enable its 
load balancing function.
    @Bean
    public RestTemplate restTemplate() {
        return new RestTemplate();
    }
    // RestTemplate internally calls services in load balancing mode.
    public void doSomething() {
        Foo foo = restTemplate.getForObject("http://service-provider/query", Foo.class);
        doWithFoo(foo);
    }
    ...
}

Feign

Feign is an HTTP client written in Java to simplify RESTful API calls. To enable load balancing

 on Feign, perform the following steps:

1. To enable load balancing on Feign, add the Ribbon dependency.

<dependency> 
<groupId>org.springframework.cloud</groupId> 
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId> 
<version>{version}</version> 
</dependency> 

2. Use @EnableFeignClients and @FeignClient to initiate a load balancing request.

a. Use @EnableFeignClients to enable the functions of Feign.

@SpringBootApplication
@EnableFeignClients // Enable the functions of Feign.
public class MyApplication {
...
}

b. Use @FeignClient to build FeignClient.

@FeignClient(name = "service-provider")
public interface EchoService {
@RequestMapping(value = "/echo/{str}", method = RequestMethod.GET)
String echo(@PathVariable("str") String str);
}

c. Inject EchoService and call the echo method.

Calling the echo method is equivalent to initiating an HTTP request.

public class MyService {
@Autowired // Inject the EchoService you built with @FeignClient.
private EchoService echoService;
public void doSomething() {

Issue: 20200513 33



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

  // This is equivalent to initiating an http://service-provider/echo/test request.
  echoService.echo("test");
}
...
}

Verify the result

After service-consumer and multiple service-providers are started, access the URL provided

by the service-consumer to check whether load balancing is implemented.

• RestTemplate

Access /echo-rest/rest-test multiple times and check whether the request is forwarded

to different instances.

• Feign

Access /echo-feign/feign-test multiple times and check whether the request is

forwarded to different instances.

1.3.1.4 Implement configuration management
EDAS integrates ACM into the console as a component to implement application

configuration management. This topic describes how to connect your Spring Cloud

applications to ACM, deploy the applications to EDAS, and use ACM to manage their

configurations.

Prerequisites

• You have downloaded, started, and configured the lightweight configuration center.

To help you develop applications locally, EDAS provides the lightweight configuration 

center that contains the basic functions of the EDAS service registry. Applications that 

are developed in the lightweight configuration center can be deployed to off-premises 

EDAS, without the need to modify any code or configuration.

For more information about how to download, start, and configure the lightweight

configuration center, see Configure the lightweight configuration center. The latest

version is recommended.

34 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Log on to the lightweight configuration center console. In the left-side navigation pane,

choose Configuration List. On the Configuration List page, click Add. On the Create

Configuration page, enter the following information:

- Group: DEFAULT_GROUP

- DataId: acm-example.properties

- Content: user.id=amctest

Note:

When setting the configuration management parameters, you must set Group to

DEFAULT_GROUP. After local debugging is finished, log on to the EDAS console. In

the left-side navigation pane, choose Application Management > Configuration

Management. On the Configuration Management page, enter the configuration

information based on this restriction. You do not need to modify the code. Therefore,

you do not need to refer to the sample code in the Actions column and add such

configuration items as AccessKeyId, AccessKeySecret, and ACM endpoint and

namespace.

Context

ACM is a configuration management product of Alibaba Cloud, which is a commercial 

version of open source Nacos. Compared with other similar products, ACM offers certain 

advantages.

This topic describes key information for developing applications locally. For more

information about Spring Cloud, download acm-example.

Procedure

1. Create a Maven project named acm-example.

2. The following takes Spring Boot 2.0.6.RELEASE and Spring Cloud Finchley.SR1 as an

example. Add the following dependencies to the pom.xml file:

 <parent>
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-parent</artifactId>
     <version>2.0.6.RELEASE</version> 
     <relativePath/>
 </parent>
  <dependencies> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-alicloud-acm</artifactId> 
         <version>0.2.2.RELEASE</version>
     </dependency> 

Issue: 20200513 35

http://127.0.0.1:8080/
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/acm-example.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

     <dependency> 
         <groupId>org.springframework.boot</groupId> 
         <artifactId>spring-boot-starter-web</artifactId> 
     </dependency> 
 </dependencies> 
 <dependencyManagement>
     <dependencies> 
         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId>
             <version>Finchley.SR1</version>
             <type>pom</type> 
             <scope>import</scope>
         </dependency> 
     </dependencies> 
 </dependencyManagement> 

If you want to use Spring Boot 1.x, use Spring Boot 1.5.x, Spring Cloud Edgware, and 

Spring Cloud Alibaba 0.1.2.RELEASE.

Note:

Spring Boot 1.x will expire in August 2019, so we recommend that you use a later

version to develop applications.

3. Develop the startup class AcmExampleApplication of acm-example.

 @SpringBootApplication
 public class AcmExampleApplication {
     public static void main(String[] args) {
         SpringApplication.run(AcmExampleApplication.class, args);
     }
 }

4. Create a simple controller and retrieve the value of UserId from the key user.id in the

configuration file.

 @RestController
 public class EchoController {
     @Value("${user.id}")
     private String userId;
     @RequestMapping(value = "/")
     public String echo() {
         return userId;
     }
 }

5. In the bootstrap.properties file, add the following configuration and specify the EDAS

lightweight configuration center as the registry.

In the configuration, 127.0.0.1 is the address of the lightweight configuration center.

If your the lightweight configuration center is deployed on another instance, change

36 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

the address to the IP address of the instance. The default port of the lightweight

configuration center is 8080 and cannot be changed.

 spring.application.name=acm-example
 server.port=18081
 spring.cloud.alicloud.acm.server-list=127.0.0.1
 spring.cloud.alicloud.acm.server-port=8080

If you have additional requirements, see the section "Reference configuration items" and

add relevant configurations in the bootstrap.properties file.

Table 1-2: Reference configuration items

Configuration item Key Default value Description

Extension spring.cloud.
alicloud.acm.file-
extension

properties The extension of the
 configuration file
, which typically is 
properties or yaml.

Timeout spring.cloud.
alicloud.acm.
timeout

3000 The timeout period
 for retrieving the 
configuration.

Refresh spring.cloud.
alicloud.acm.refresh
-enabled

true Specifies whether to
 refresh the Spring
 context when 
the configuration 
changes.

Endpoint spring.cloud.
alicloud.acm.
endpoint

None None

Namespace spring.cloud.
alicloud.acm.
namespace

None None

RAM role spring.cloud.
alicloud.acm.ram-
role-name

None None

6. Run the main function in AcmExampleApplication to enable the service.

Result

In the address bar of your browser, enter http://127.0.0.1:18081/. The value acmtest

 is returned, which indicates the value of user.id you configured in the lightweight

configuration center.

Issue: 20200513 37

http://127.0.0.1:18081/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

What's next

Deploy applications to EDAS

ACM is designed for migrating applications from the development environment to EDAS

. It allows you to directly deploy applications to EDAS without any code or configuration

 modifications. After the applications are deployed, you can manage the application 

configuration in the EDAS console. The configuration management function in the EDAS 

console is consistent with that in ACM.

1. In the pom.xml file of acm-example, add the following configuration. Then, run the mvn

clean package command to package local programs into executable JAR packages.

 <build> 
     <plugins> 
         <plugin> 
             <groupId>org.springframework.boot</groupId> 
             <artifactId>spring-boot-maven-plugin</artifactId> 
         </plugin> 
     </plugins> 
 </build> 

2. Deploy applications according to the relevant documentation for the cluster type you 

want to deploy.

1.3.1.5 Build gateways based on Spring Cloud Gateway
This topic describes how to use ANS to build an application gateway from scratch based on

Spring Cloud Gateway.

Prerequisites

• You have downloaded, started, and configured the lightweight configuration center.

To help you develop applications locally, EDAS provides the lightweight configuration 

center that contains the basic functions of the EDAS service registry. Applications that 

are developed in the lightweight configuration center can be deployed to off-premises 

EDAS, without the need to modify any code or configuration.

• You have downloaded Maven and set the environment variables. If you have installed

Maven in your local instance, skip this step.

Procedure

1. Create a Maven project named spring-cloud-example-ans-gateway.

38 Issue: 20200513

http://mirrors.tuna.tsinghua.edu.cn/apache/maven/maven-3/3.6.0/binaries/apache-maven-3.6.0-bin.tar.gz


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. In the pom.xml file, add the dependencies of Spring Boot and Spring Cloud Finchley.

The following takes Spring Boot 2.0.6.RELEASE and Spring Cloud Finchley.SR1 as an 

example.

Note:

Spring Cloud Gateway is a component developed based on Spring Boot 2.0. If you use

Spring Cloud Gateway as the gateway, select Spring Boot 2.0 or later. If you use Spring

Boot 1.x, we recommend that you upgrade it to Spring Cloud 2.0.

  <parent>
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-parent</artifactId>
     <version>2.0.6.RELEASE</version>
     <relativePath/>
 </parent>
 <properties>
     <spring-cloud.version>Finchley.SR1</spring-cloud.version>
     <spring-cloud-alibaba-cloud.version>0.2.1.RELEASE</spring-cloud-alibaba-cloud.
version>
 </properties>
 <dependencyManagement>
   <dependencies> 
       <dependency> 
           <groupId>org.springframework.cloud</groupId> 
           <artifactId>spring-cloud-dependencies</artifactId>
           <version>${spring-cloud.version}</version>
           <type>pom</type>
           <scope>import</scope>
       </dependency> 
       <dependency> 
           <groupId>org.springframework.cloud</groupId> 
           <artifactId>spring-cloud-alibaba-dependencies</artifactId> 
           <version>${spring-cloud-alibaba-cloud.version}</version>
           <type>pom</type> 
           <scope>import</scope> 
        </dependency> 
   </dependencies> 
   </dependencyManagement>
 <dependencies> 
     <dependency> 
         <groupId>org.springframework.boot</groupId> 
         <artifactId>spring-boot-starter-webflux</artifactId> 
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-gateway</artifactId> 
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-alicloud-ans</artifactId>
         <exclusions> 
             <! -- Spring Cloud Gateway uses Netty as its HTTP server. You must **exclude
** the dependency on spring-boot-starter-web. Otherwise, the gateway cannot be 
started. -->
             <exclusion> 
                 <groupId>org.springframework.boot</groupId> 
                 <artifactId>spring-boot-starter-web</artifactId> 

Issue: 20200513 39



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

             </exclusion> 
         </exclusions> 
     </dependency>
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-alicloud-context</artifactId>
     </dependency> 
 </dependencies> 

3. Develop the gateway startup class AnsGatewayApplication.

 @SpringBootApplication
 @EnableDiscoveryClient
 <! -- Service registration and discovery must be enabled for the application. -->
 public class AnsGatewayApplication {
     public static void main(String[] args) {
         SpringApplication.run(AnsGatewayApplication.class, args);
     }
 }

4. In the application.yaml file, add the following configuration and specify the EDAS

lightweight configuration center as the registry.

In the configuration, 127.0.0.1 is the address of the lightweight configuration center.

If your lightweight configuration center is deployed on another instance, change

the address to the IP address of the instance. The default port of the lightweight

configuration center is 8080 and cannot be changed.

 server:
   port: 15012
 spring:
   application:
     name: spring-gateway-example
   cloud:
     gateway: # config the routes for gateway
       routes:
       - id: lb_service-provider
         uri: lb://service-provider
         predicates:
         - Path=/**
     alicloud:
       ans:
         server-list: 127.0.0.1
         server-port: 8080

5. Run the main function in the AnsGatewayApplication startup class to enable the service.

6. Log on to the lightweight configuration center consolehttp://127.0.0.1:8080. In the

left-side navigation pane, choose Services to view the list of service providers. spring-

gateway-example exists in the list of service providers.

7. Create a service provider.

Result

40 Issue: 20200513

http://127.0.0.1:8080


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Locally verify the result.

Locally start the gateway and service provider you just created and access Spring Cloud 

Gateway to forward the request to the service provider. The result indicating a successful

 call is returned.

2. Verify the result in EDAS.

Deploy the gateway and service provider you just created to EDAS and access Spring 

Cloud Gateway to forward the request to the service provider. The result indicating a 

successful call is returned.

1.3.1.6 Implement task scheduling
EDAS integrates SchedulerX into the console as a component to implement distributed task

scheduling. This topic describes how to use SchedulerX to schedule tasks in Spring Cloud

applications, deploy the applications to EDAS in the test region, and realize task scheduling

in Simple Job Single-Server Edition mode.

Context

SchedulerX is a distributed task scheduling product developed by Alibaba, which is 

accurate, highly reliable, and highly available. It allows you to run tasks on a schedule in

 seconds based on the Cron expression. It provides models for implementing distributed 

tasks, such as grid jobs.

Procedure

1. Create a Maven project named scx-example.

2. Take Spring Boot 2.0.6.RELEASE and Spring Cloud Finchley.SR1 as an example. Add the

following dependencies to the pom.xmlfile.

 <parent>
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-parent</artifactId> 
     <version>2.0.6.RELEASE</version>
     <relativePath/>
 </parent>
  <dependencies> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-alicloud-schedulerx</artifactId> 
         <version>0.2.1.RELEASE</version> 
     </dependency> 
     <dependency> 
         <groupId>org.springframework.boot</groupId> 
         <artifactId>spring-boot-starter-web</artifactId> 
     </dependency> 
 </dependencies> 
 <dependencyManagement> 
     <dependencies> 

Issue: 20200513 41



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId> 
             <version>Finchley.SR1</version> 
             <type>pom</type>
             <scope>import</scope>
         </dependency> 
     </dependencies> 
 </dependencyManagement>

Note:

• If you want to use Spring Boot 1.x, use Spring Boot 1.5.x, Spring Cloud Edgware, and 

Spring Cloud Alibaba0.1.1.RELEASE.

• Spring Boot 1.x will expire in August 2019, so we recommend that you use a later

version of Spring Boot to develop applications.

3. Create the startup class ScxApplication for scx-example.

 import org.springframework.boot.SpringApplication;
 import org.springframework.boot.autoconfigure.SpringBootApplication;
 @SpringBootApplication
 public class ScxApplication {
     public static void main(String[] args) {
         SpringApplication.run(ScxApplication.class, args);
     }
 }
 ```

4. Create a simple class TestService and inject the class to IoC of the test task through

Spring.

 import org.springframework.stereotype.Service;
 @Service
 public class TestService {
     public void test() {
         System.out.println("---------IOC Success--------");
     }
 }

5. Create a simple class SimpleTask as the test task class and inject TestService to the class.

 import com.alibaba.edas.schedulerx.ProcessResult;
 import com.alibaba.edas.schedulerx.ScxSimpleJobContext;
 import com.alibaba.edas.schedulerx.ScxSimpleJobProcessor;
 import org.springframework.beans.factory.annotation.Autowired;
 public class SimpleTask implements ScxSimpleJobProcessor {
     @Autowired
     private TestService testService;
     @Override
     public ProcessResult process(ScxSimpleJobContext context) {
         System.out.println("-----------Hello world---------------");
         testService.test();
         ProcessResult processResult = new ProcessResult(true);
         return processResult;
     }

42 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 }

6. Create a scheduled task and add a configuration.

a) Log on to the EDAS console. In the test region, create a scheduled task group and

record the group ID.

b) In the task group that you created, configure the scheduled task as follows:

• Job Group: Select the ID of the group you created in the test region.

• Job Processing Interface: Enter the name of the class that implements the job

interface. In this example, the value is SimpleTask, which is the same as the test

task class in the application.

• Type: Select Simple Job Single-Server Edition.

• Cron Expression: *0 * * * * ? * is selected by default. It means that the task is run

once every minute.

• Job Description: None.

• Custom Parameters: None.

c) In the src/main/resources path of the local Maven project, create the application.

properties file and add the following configuration to the file:

server.port=18033
# Configure the region (the **regionName** of the test region is *cn-test*) and the 
group ID (group-id) of the task.
spring.cloud.alicloud.scx.group-id=***
spring.cloud.alicloud.edas.namespace=cn-test

Note:

In this topic, the test region is used and the test is performed in a public network

environment. You can verify the deployment result both in on-premises and off-

premises instances, without permission restrictions. If you want to deploy applications

to other regions, for example, China (Hangzhou), you need to perform the following

steps in addition to creating a scheduled task and scheduling the task:

a. Log on to the EDAS console. In the China (Hangzhou) region, create a task group and

a scheduled task.

b. Access the Security Management page, and retrieve the AccessKeyId and 

AccessKeySecret.

c. In the application.properties file, configure the scheduled task.

Issue: 20200513 43



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

d. In the application.properties file, add the AccessKeyId and AccessKeySecret of your

Alibaba Cloud account.

spring.cloud.alicloud.access-key=xxxxx
spring.cloud.alicloud.secret-key=xxxxx

7. Run the main function in ScxApplication to start the service.

Result

Log on to the IntelliJ IDEA console and view the standard output. The following test

information is printed periodically:

-----------Hello world---------------
---------IOC Success--------

What's next

After your application is deployed to EDAS, you can use SchedulerX to implement more task

scheduling functions. For more information, see SchedulerX overview.

1.3.2 Use Dubbo to develop applications

1.3.2.1 Dubbo overview
Enterprise Distributed Application Service (EDAS) supports the Apache Dubbo microservice

framework. With zero code intrusion, you can deploy Apache Dubbo microservices to EDAS

simply by adding dependencies and modifying configurations. Then you have access to the

features of EDAS, such as hosting of enterprise-level microservice-oriented applications,

microservice governance, monitoring and alerting, and application diagnosis.

Dubbo architecture

There are two mainstream versions of open-source Apache Dubbo: 2.6.x and 2.7.x.

• Dubbo 2.6.x is widely used and will be maintained, but will not be upgraded with new 

features.

• Dubbo 2.7.x is the latest version of Apache Dubbo and will be upgraded with new 

features.

We recommend that you use Dubbo 2.7.x. If you are using Dubbo 2.6.x, we recommend that

 you migrate to Dubbo 2.7.x to use future new features.

Dubbo 2.6.x

44 Issue: 20200513

https://help.aliyun.com/document_detail/43136.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Dubbo 2.7.x

The workflow of the Dubbo service framework is as follows:

1. During startup, the provider registers with the registry.

2. During startup, the consumer subscribes to services from the registry as needed.

3. The registry returns a list of provider addresses to the consumer. When the provider 

changes, the registry pushes changed data to the consumer.

4. The consumer selects a provider from the list of provider addresses based on the 

software load balancing algorithm.

Issue: 20200513 45



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Meaning of hosting Dubbo applications to EDAS

Hosting a Dubbo application to EDAS is hosting the registry, configuration center, and 

metadata center.

• Before hosting, you need to build and maintain the registry, configuration center, and

 metadata center. The registry is an open-source component such as ZooKeeper or 

Nacos. The configuration center and metadata center are included in Dubbo Admin.

• After hosting, EDAS provides Nacos (including the registry, configuration center, and 

metadata center) and the Dubbo service governance platform. You do not need to build

 or maintain these components or monitor their availability. You can use a microservice 

governance platform more powerful than the user-created Dubbo Admin.

Type Open-source 

component

EDAS component Hosting instruction

Registry • Nacos (
recommended)

• ZooKeeper (
recommended)

• etcd
• Consul
• Eureka

• Nacos (
recommended)

• EDAS registry

Nacos is the
recommended
registry. You only
need to add the
open-source dubbo
-nacos-registry
 dependency to the
application.

Configuration center • Nacos (
recommended)

• ZooKeeper (
recommended)

• Apollo

Nacos (recommende
d)

Add the dubbo-
configcenter-nacos
 dependency to the
application.

Metadata center • Nacos (
recommended)

• Redis (
recommended)

• ZooKeeper

Nacos (recommende
d)

Add the dubbo-
metadata-report-
nacos dependency to
the application.

Benefits of hosting Dubbo applications to EDAS

By hosting Dubbo applications to EDAS, you only need to focus on building the logic of the

 Dubbo applications other than creating and maintaining the registry, configuration center

, and metadata center. Also, you can take advantage of EDAS capabilities such as auto 

scaling, throttling, graceful service degradation, monitoring, and microservice governance 

46 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

for various management purposes. The entire hosting process is completely transparent to 

you. It does not require you to learn anything, or increase your development costs. Specific 

benefits of hosting are as follows:

• Costs: EDAS provides the service discovery and configuration management features, 

saving you from maintaining the middleware such as Eureka, ZooKeeper, and Consul.

• Deployment: EDAS provides flexible configuration of startup parameters, process 

visualization, graceful service connection and disconnection, and batch publishing, 

allowing you to configure, query, and manage your application deployment.

• Service governance: EDAS provides the service query, conditional routing, blacklist and

 whitelist, label-based routing, dynamic configuration, load balancing configuration

, weight configuration, and centralized configuration management, allowing you to 

comprehensively govern your services.

• Auto scaling: EDAS provides the auto scaling feature, allowing you to dynamically scale 

your applications in or out based on traffic peaks and valleys.

• Throttling and degradation: EDAS provides throttling and graceful service degradation 

to ensure the high availability of your applications.

• Monitoring: EDAS integrates some monitoring features of Application Real-Time 

Monitoring Service (ARMS). In addition to instance information query, EDAS also provides

 advanced monitoring features such as microservice trace query, service call topology 

query, and slow SQL query.

1.3.2.2 Use Spring Boot to develop Dubbo applications
Spring Boot simplifies the configuration and deployment of microservice-oriented

applications. Nacos provides the service registration and discovery as well as configuration

management features. Using Spring Boot and Nacos together can help you improve

development efficiency. This topic describes how to use Spring Boot annotations to develop

a sample Dubbo microservice-oriented application based on Nacos.

Prerequisites

Before using Spring Boot to develop microservice-oriented Dubbo applications, complete

the following tasks:

• Download Maven and set the environment variables.

• Download the latest version of Nacos Server.

Issue: 20200513 47

https://aliware-images.oss-cn-hangzhou.aliyuncs.com/EDAS/App-develop/apache-maven-3.6.0-bin.tar.gz
https://github.com/alibaba/nacos/releases


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Start Nacos Server.

1. Decompress the downloaded Nacos Server package.

2. Go to the nacos/bin directory and start Nacos Server as follows:

- For Linux, UNIX, or MacOS: Run the sh startup.sh -m standalone command.

- For Windows: Double-click the startup.cmd file to run the file.

Sample project

You can follow the steps described in this topic to build the project. Alternatively, you can

directly download the sample project used in this topic, or clone the project by running the

Git command git clone https://github.com/aliyun/alibabacloud-microservice-demo.git.

This project contains many demos. The demo used in this topic can be found in alibabaclo

ud-microservice-demo/microservice-doc-demo/dubbo-samples-spring-boot.

Create a service provider

1. Create a Maven project named spring-boot-dubbo-provider.

2. Add required dependencies to the pom.xml file.

The following takes Spring Boot 2.0.6.RELEASE as an example.

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-dependencies</artifactId>
            <version>2.0.6.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter</artifactId>
    </dependency>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-actuator</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo-spring-boot-starter</artifactId>
        <version>2.7.3</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba.nacos</groupId>
        <artifactId>nacos-client</artifactId>
        <version>1.1.1</version>

48 Issue: 20200513

https://github.com/aliyun/alibabacloud-microservice-demo/archive/master.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

    </dependency>
</dependencies>                   

3. Develop a Dubbo service provider.

All services in Dubbo are provided as interfaces.

a) Create a package named com.alibaba.edas.boot in src/main/java.

b) Create an interface named IHelloService that contains a SayHello method in com.

alibaba.edas.boot.

package com.alibaba.edas.boot;
public interface IHelloService {
String sayHello(String str);
}                                

c) Create a class named IHelloServiceImpl to implement the interface in com.alibaba.

edas.boot.

package com.alibaba.edas.boot;
import com.alibaba.dubbo.config.annotation.Service;
@Service
public class IHelloServiceImpl implements IHelloService {
public String sayHello(String name) {
  return "Hello, " + name + " (from Dubbo with Spring Boot)";
 }
}                                

Note:

In Dubbo, the service annotation is com.alibaba.dubbo.config.annotation.Service.

4. Configure the Dubbo service.

a) In src/main/resources, create a file named application.properties or application.yaml

 and open it.

b) In application.properties or application.yaml, add the following configuration items.

# Base packages to scan Dubbo Components (e.g @Service , @Reference)
dubbo.scan.basePackages=com.alibaba.edas.boot
dubbo.application.name=dubbo-provider-demo
dubbo.registry.address=nacos://127.0.0.1:8848                                

Note:

• You must specify values for the preceding three configuration items because they 

have no defaults.

• The value of dubbo.scan.basePackages is the name of the package with code

containing annotations com.alibaba.dubbo.config.annotation.Service and com

Issue: 20200513 49



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

.alibaba.dubbo.config.annotation.Reference. Separate multiple packages with

commas (,).

• The value of dubbo.registry.address must start with nacos://, followed by the IP

address and port of Nacos Server. The IP address in the code example is a local

address. If your Nacos Server is deployed on another machine, change it to the

corresponding IP address.

5. Develop and start the Spring Boot main class DubboProvider.

    package com.alibaba.edas.boot;

    import org.springframework.boot.SpringApplication;
    import org.springframework.boot.autoconfigure.SpringBootApplication;

    @SpringBootApplication
    public class DubboProvider {

        public static void main(String[] args) {
            SpringApplication.run(DubboProvider.class, args);
        }

    }                        

6. Log on to the Nacos console at http://127.0.0.1:8848. In the left-side navigation pane,

click Services to view the list of providers.

You can see that com.alibaba.edas.boot.IHelloService is available in the list of providers.

In addition, you can query Service Group and Provider IP of the service.

Create a service consumer

1. Create a Maven project named spring-boot-dubbo-consumer.

2. Add required dependencies to the pom.xml file.

The following takes Spring Boot 2.0.6.RELEASE as an example.

    <dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-dependencies</artifactId>
            <version>2.0.6.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

<dependencies>
    <dependency>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <dependency>

50 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-actuator</artifactId>
    </dependency>
    <dependency>
        <groupId>org.apache.dubbo</groupId>
        <artifactId>dubbo-spring-boot-starter</artifactId>
        <version>2.7.3</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba.nacos</groupId>
        <artifactId>nacos-client</artifactId>
        <version>1.1.1</version>
    </dependency>

</dependencies>                        

If you want to use Spring Boot 1.x, select Spring Boot 1.5.x. The corresponding com.

alibaba.boot:dubbo-spring-boot-starter version is 0.1.0.

Note:

Spring Boot 1.x has reached the end of life in August 2019. We recommend that you use

a later version to develop applications.

3. Develop a Dubbo consumer.

a) Create a package named com.alibaba.edas.boot in src/main/java.

b) Create an interface named IHelloService that contains a SayHello method in com.

alibaba.edas.boot.

package com.alibaba.edas.boot;

public interface IHelloService {
 String sayHello(String str);
}                                

4. Develop a Dubbo service call.

For example, you need to call a remote Dubbo service once in a controller. The code is 

as follows.

package com.alibaba.edas.boot;

import com.alibaba.dubbo.config.annotation.Reference;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
    public class DemoConsumerController {

        @Reference
        private IHelloService demoService;

        @RequestMapping("/sayHello/{name}")
        public String sayHello(@PathVariable String name) {

Issue: 20200513 51



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

            return demoService.sayHello(name);
        }
    }                        

Note:

The Reference annotation is com.alibaba.dubbo.config.annotation.Reference.

5. Add the following configuration items to the application.properties or application.yaml

 file.

dubbo.application.name=dubbo-consumer-demo
dubbo.registry.address=nacos://127.0.0.1:8848                        

Note:

• You must specify values for the preceding two configuration items because they have

 no defaults.

• The value of dubbo.registry.address must start with nacos://, followed by the IP

address and port of Nacos Server. The IP address in the code example is a local

address. If your Nacos Server is deployed on another machine, change it to the

corresponding IP address.

6. Develop and start the Spring Boot main class DubboConsumer.

package com.alibaba.edas.boot;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class DubboConsumer {

    public static void main(String[] args) {
        SpringApplication.run(DubboConsumer.class, args);
    }

}                        

7. Log on to the Nacos console at http://127.0.0.1:8848. In the left-side navigation pane,

click Services. On the Services page, click the Callers tab to view the list of callers.

You can see that com.alibaba.edas.boot.IHelloService is available in the list. In addition,

you can view the group and caller IP address of the service.

Verify the result

`curl http://localhost:8080/sayHello/EDAS`

52 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

`Hello, EDAS (from Dubbo with Spring Boot)`            

Deploy applications to EDAS

You can deploy the application that uses local Nacos as the registry directly to Enterprise

 Distributed Application Service (EDAS) without making any changes. This registry will be 

automatically replaced with the registry in EDAS.

If you use the console for deployment, follow these steps in your local application before 

deploying it:

1. Add the following configuration of the packaging plug-in to the pom.xml file.

• Provider

<build>
 <plugins>
       <plugin>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-maven-plugin</artifactId>
           <executions>
               <execution>
                   <goals>
                       <goal>repackage</goal>
                   </goals>
                   <configuration>
                       <classifier>spring-boot</classifier>
                       <mainClass>com.alibaba.edas.boot.DubboProvider</mainClass>
                   </configuration>
               </execution>
           </executions>
       </plugin>
 </plugins>
</build>                                

• Consumer

<build>
 <plugins>
       <plugin>
           <groupId>org.springframework.boot</groupId>
           <artifactId>spring-boot-maven-plugin</artifactId>
           <executions>
               <execution>
                   <goals>
                       <goal>repackage</goal>
                   </goals>
                   <configuration>
                       <classifier>spring-boot</classifier>
                       <mainClass>com.alibaba.edas.boot.DubboConsumer</mainClass>
                   </configuration>
               </execution>
           </executions>
       </plugin>
 </plugins>
</build>                                

2. Run mvn clean package to package your local program into a JAR file.

Issue: 20200513 53



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3 Develop applications in HSF

1.3.3.1 HSF overview
High-speed Service Framework (HSF) is a distributed RPC service framework widely

used within the Alibaba Group. HSF connects different service systems, decoupling the

implementation of the systems from each other. HSF unifies service publishing and call

methods for distributed applications, helping you conveniently and quickly develop

distributed applications. It provides shared function modules, which free developers

from complex technical details in distributed systems, such as remote communication,

serialization, performance loss, and synchronous or asynchronous calls.

HSF architecture

As a client-side RPC framework, HSF has no server cluster. All HSF service calls are point-to

-point between consumers and providers, both of which can be regarded as HSF clients. 

However, HSF must work with the following external systems to implement the complete 

distributed service system.

Figure 1-1: HSF architecture

• Registry

HSF depends on the registry for service discovery. Without the registry, HSF can only

 make simple point-to-point calls. The service provider cannot publish its service 

information to others. The service consumer may know which services to call, but 

cannot obtain information about the instances providing these services. In this case, 

the registry serves as a medium for the discovery of service information. The role of the 

registry is played by ConfigServer.

• Persistent configuration center

The persistent configuration center is used to store the governance rules of HSF services

. Upon startup, the HSF consumer subscribes to required service governance rules, such

54 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 as routing rules, grouping rules, and weighting rules, from the persistent configuration 

center to intervene in the address selection logic of the call procedure based on the rules

. The role of the persistent configuration center is played by DiamondServer.

• Metadata storage center

Metadata refers to the methods, parameter structure, and other information related

 to HSF services. Metadata does not affect the call procedure of HSF. Therefore, the 

metadata storage center is optional. However, to ensure convenient service maintenanc

e, upon startup, the HSF provider and consumer report the metadata to the metadata

 storage center for further maintenance. The role of the metadata storage center is 

played by Redis.

Functions

As a distributed RPC framework, HSF supports the following service call methods:

• Synchronous calls

By default, an HSF consumer consumes services by synchronous calls, and the consumer

's codes must synchronously wait for the returned results of calls.

• Asynchronous calls

For a consumer that calls HSF services, it is not always necessary to synchronously wait

 for the returned results of calls. For such services, HSF supports asynchronous calls, so

 that consumers are not blocked synchronously in HSF call operations. You can make 

asynchronous HSF calls in either of the following two methods:

- Future: The consumer obtains the returned results of calls by HSFResponseFuture.

getResponse(int timeout) when needed.

- Callback: The calls are made by the Callback method provided by HSF. After the

specified HSF service is consumed and the results are returned, the HSF consumer

calls HSFResponseCallback to obtain the call results through callback notifications.

• Generic calls

For a typical HSF call, the HSF consumer has to perform a programming call with the 

API in the second-party package of the service to obtain the returned results. In contrast

, a generic call initiates an HSF call and obtains returned results, independent of the 

second-party package of the service. For some platform-based products, generic calls 

can effectively reduce dependencies on second-party packages and realize lightweight 

system operation.

Issue: 20200513 55



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• HTTP calls

HSF can expose services over HTTP. In this way, non-Java consumers can initiate service 

calls over HTTP.

• Trace filter extension

HSF, designed with a built-in call filter, can actively find and instrument the user's call 

filter extension into HSF call traces, enhancing the convenience of HSF request extension

.

Application development methods

Under HSF, you can use Ali-Tomcat and Pandora Boot to develop applications.

• Ali-Tomcat: Relying on Ali-Tomcat and Pandora, this method provides complete HSF

functions, including service registration and discovery, implicit parameter passing,

asynchronous calls, generic calls, and trace filter extension. In this method, applications

must be deployed with WAR packages.

• Pandora Boot: Relying on Pandora, this method provides complete HSF functions,

including service registration and discovery and asynchronous calls. Applications can be

packaged and deployed as JAR packages that run independently.

1.3.3.2 Configure the lightweight configuration center
The lightweight configuration center allows developers to discover, register, and query

services during development, debugging, and testing. Within a company, you generally

only need to install the lightweight configuration center on one server and bind specific

hosts on other development instances.

Prerequisites

Check that the environment requirements are met.

• Check that the environment variable JAVA_HOME points to JDK 1.6 or later.

• Check that port 8080 and port 9600 are not occupied.

Port 8080 and port 9600 are occupied for starting the EDAS lightweight configuration 

center. We recommend that you use a dedicated ECS instance, for example, a test ECS 

instance, to start the EDAS lightweight configuration center.

Procedure

1. Download the installation package of the EDAS lightweight configuration center edas-

config-center.zip and decompress it.

56 Issue: 20200513

https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/edas/0.0.11/assets/download/edas-config-center.zip
https://docs-aliyun.cn-hangzhou.oss.aliyun-inc.com/cn/edas/0.0.11/assets/download/edas-config-center.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. Go to the edas-config-center directory to start the configuration center.

• For a Windows system, double-click startup.bat.

• For a UNIX system, run the sh startup.sh command in the current directory.

3. On the local DNS server (or in the hosts file), point the jmenv.tbsite.net domain name to

the IP address of the ECS instance that starts the EDAS lightweight configuration center.

The path of the hosts file is as follows:

• Windows system: C:\Windows\System32\drivers\etc\hosts

• UNIX system: /etc/hosts

If you start the EDAS lightweight configuration center on the ECS instance whose IP 

address is 192.168.1.100, all developers only need to add the following line to the hosts 

files on their local instances:

192.168.1.100 jmenv.tbsite.net

1.3.3.3 Use Ali-Tomcat to develop applications

1.3.3.3.1 Ali-Tomcat overview
Ali-Tomcat is a container on which EDAS depends to run services. It integrates such core

functions as service publishing, subscription, and service call tracing. You can publish

applications in this container in both development and runtime environments.

Pandora is a lightweight isolation container, namely taobao-hsf.sar. This container is 

used to isolate dependencies between applications and middleware products, as well 

as dependencies between middleware products. EDAS Pandora integrates plug-ins that 

implement service discovery, configuration push, service call tracing, and other middleware

 products. By using these plug-ins, you can monitor, process, trace, analyze, maintain, and 

manage EDAS applications.

Note:

In EDAS, Ali-Tomcat is only available for HSF applications in WAR format.

1.3.3.3.2 Install Ali-Tomcat and Pandora
Ali-Tomcat and Pandora are containers on which EDAS depends to run services. They

integrate such core functions as service publishing, subscription, and service call tracing.

Issue: 20200513 57



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Applications must be published in such containers in both development and runtime

environments.

Procedure

1. Download the Ali-Tomcat package and decompress the downloaded package to a

directory, such as d:\work\tomcat\.

Note:

Use JDK 1.7 or later.

2. Download the Pandora package, save it, and decompress the downloaded package to

the deploy directory (d:\work\tomcat\deploy\) where Ali-Tomcat is saved.

The directory is structured as follows:

• In a Linux system, run the tree -L 2 deploy/ command in the relevant path to view the

directory structure.

d:\work\tomcat >  tree -L 2 deploy/

                       deploy/

                               └── taobao-hsf.sar

                                       ├── META-INF

                                       ├── lib

                                       ├── log.properties

                                       ├── plugins

                                       ├── sharedlib

                                       └── version.properties

• In a Windows system, directly navigate to the target path to view the directory 

structure.

58 Issue: 20200513

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/tomcat/taobao-tomcat-7.0.59.tgz
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/pandora/unauth/taobao-hsf.tgz


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3.3.3 Perform startup configuration for an IDE runtime
environment
Startup configuration for an IDE runtime environment includes configuration of the Eclipse

development environment and IntelliJ IDEA development environment.

1.3.3.3.3.1 Configure the Eclipse development
environment
To configure Eclipse, you must download the Tomcat4E plug-in and save it to the directory

of the Pandora container that you downloaded from Install Ali-Tomcat and Pandora. After

configuring Eclipse, you can directly publish and debug local code in Eclipse.

Procedure

1. Download the package of the Tomcat4E plug-in and decompress it to a local directory,

such as d:\work\tomcat4e\. The package contains the following items:

2. Open Eclipse. From the toolbar, choose Menu > HelpOn the page that appears, click

Install New Software. In the dialog box that appears, choose Add > Local. Select the

directory (d:\work\tomcat4e\) to which Tomcat4E is decompressed, and then click OK.

3. Click Select All and then Next. Tomcat4E is installed.

4. Restart Eclipse.

5. Configure the Eclipse project to activate Tomcat4E. Right-click the target Eclipse project

and choose Run As  > Run Configurationsfrom the shortcut menu.

6. In the left-side navigation pane, click Ali-Tomcat Webapp, and click the New launch

configuration icon at the top.

7. On the page that appears, click the Ali-Tomcat tab. In the Pandora (taobao-hsf.sar

location) section, select Use local taobao-hsf.sar, and click Browse. Select the local path

for Pandora, such as d:\work\tomcat\deploy\taobao-hsf.sar.

8. Click Apply or Run. Next time, you can directly start this project without the need to

configure it again.

1.3.3.3.3.2 Configure the IntelliJ IDEA development
environment
The configuration of an integrated development environment (IDEA) does not depend on

any additional plug-ins. You can use the JVM startup parameter Dpandora.location. Now,

the IntelliJ IDEA commercial edition, but not the community edition, is supported.

Procedure

1. From the menu or toolbar, choose Run > Edit Configuration.

Issue: 20200513 59

http://edas-public.oss-cn-hangzhou.aliyuncs.com/tomcat4e.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. Click + and choose Tomcat Server > Local to add the local Tomcat startup configuration.

3. Configure Ali-Tomcat: On the right of the page, click the Server tab. Click Configure on

the right of the Application server field. On the page that appears, select the path of Ali-

Tomcat that you downloaded from Install Ali-Tomcat and Pandora, for example, d:\work

\tomcat\.

4. Select the Ali-Tomcat instance you configured from the Application server drop-down

list.

5. In the VM Options field, enter the JVM startup parameter that points to the Pandora path,

such as -Dpandora.location=d:\work\tomcat\deploy\taobao-hsf.sar.

6. Click Apply or OK.

1.3.3.3.4 Develop HSF applications (EDAS-SDK)

1.3.3.3.4.1 Download demo projects
A demo project is provided for users as a code sample. This topic describes how to

download the demo project.

Context

Note:

Use JDK 1.7 or later.

Procedure

1. Download the compressed demo project package.

All the following codes are available in the official demos. You can click Here to

download official demos.

2. Decompress the downloaded package.

Three Maven projects are available: itemcenter-api, itemcenter, and detail. Among the 

demo projects:

• The itemcenter-api project provides the interface definition.

• The detail project is the service consumer application.

• The itemcenter project is a service provider application.

60 Issue: 20200513

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package%2Fedas-app-demo%2Fedas-app-demo.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3.3.4.2 Define service interfaces
HSF services are implemented based on interfaces. After an interface is defined, the

provider can implement a specific service through this interface. The consumer also

subscribes to the service over this interface.

Context

Notice:

This topic only describes how to define a service interface. However, in actual application

scenarios, you need to add routes in an interface and implement them through an

instance because definition alone is inadequate.

Procedure

1. In the demo project, locate the itemcenter-api folder, and locate and open the 

ItemService.java file.

In the file, the service interface com.alibaba.edas.carshop.itemcenter.ItemService is 

defined and has the following content:

public interface ItemService {
 public Item getItemById( long id );
 public Item getItemByName( String name );
}

The interface provides two methods: getItemById and getItemByName, indicating that 

the com.alibaba.edas.carshop.itemcenter.ItemService service provides the getItemById 

and getItemByName methods.

2. Define new service interfaces based on planning or actual implementation.

1.3.3.3.4.3 Implement services as a provider
The provider implements an interface to provide specific services. Besides code

implementation, you must define the XML file used for service publishing because HSF is

implemented based on the Spring framework.
1.3.3.3.4.3.1 Implement service interfaces by code

The sample code of itemcenter in the demo project is as follows:

package com.alibaba.edas.carshop.itemcenter;
public class ItemServiceImpl implements ItemService {

 @Override
 public Item getItemById( long id ) {
  Item car = new Item();
  car.setItemId( 1l );
  car.setItemName( "Mercedes Benz" );
  return car;

Issue: 20200513 61



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 }
 @Override
 public Item getItemByName( String name ) {
  Item car = new Item();
  car.setItemId( 1l );
  car.setItemName( "Mercedes Benz" );
  return car;
 }
}

1.3.3.3.4.3.2 Configure services

Context

Implement service interfaces by codeThe preceding example implements the service

API com.alibaba.edas.carshop.itemcenter.ItemService and returns an Item object to

both methods. After developing code, configure the required general Spring items and

add Maven dependencies in the web.xml file. Then, use the <hsf /> tag in the Spring

configuration file to register and publish the service.

Procedure

1. Add the following Maven dependencies to the pom.xml file:

<dependencies> 
<dependency> 
<groupId>javax.servlet</groupId>
<artifactId>servlet-api</artifactId>
<version>2.5</version>
<scope>provided</scope> 
</dependency> 
<dependency> 
<groupId>com.alibaba.edas.carshop</groupId> 
<artifactId>itemcenter-api</artifactId> 
<version>1.0.0-SNAPSHOT</version> 
</dependency> 
<dependency> 
<groupId>org.springframework</groupId> 
<artifactId>spring-web</artifactId> 
<version>2.5.6 (or later)</version>
</dependency> 
<dependency> 
<groupId>com.alibaba.edas</groupId> 
<artifactId>edas-sdk</artifactId> 
<version>1.5.0</version> 
</dependency> 
</dependencies> 

2. Add the HSF-specific Spring configurations. The content of the HSF configuration file (/

resources/hsf-provider-beans.xml) of the demo project is as follows:

<? xml version="1.0" encoding="UTF-8"? >
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:hsf="http://www.taobao.com/hsf"
xmlns="http://www.springframework.org/schema/beans"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
http://www.taobao.com/hsf

62 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

http://www.taobao.com/hsf/hsf.xsd" default-autowire="byName"> 
<! -- Define the implementation of the service. -->
<bean id="itemService" class="com.alibaba.edas.carshop.itemcenter.ItemServiceImpl
" /> 
<! -- Use the hsf:provider tag to define a service provider. -->
<hsf:provider id="itemServiceProvider" 
<! -- Use the interface property to indicate that the service is an implementation of the
 class. -->
interface="com.alibaba.edas.carshop.itemcenter.ItemService"
<! -- The Spring object that is implemented by the service -->
ref="itemService"
<! -- The version of the published service, which is user-defined and is 1.0.0 by default
. -->
version="1.0.0"
</hsf:provider> 
</beans>

1.3.3.3.4.3.3 Provider configuration properties
In addition to the properties shown in the preceding sample, you can use the following

properties of the HSF provider configuration:

Property Description

interface A required string-type property. It is the interface for providing the target 
service.

version An optional string-type property. It is the version of the target service. The 
default value is 1.0.0.

clientTime
out

This property applies to all methods in the interface. However, if the 
consumer sets a timeout period for a method by using the MethodSpecials
 property, the timeout period configured on the consumer prevails for the 
method. Other methods are not affected by this property and still use the 
timeout period configured on the provider.

serializeT
ype

Optional. It indicates the serialization type. Its value is in string format and 
can be Hessian or Java. The default value is Hessian.

corePoolSi
ze

This property is used to set part of the public thread pool as the core thread 
pool dedicated to this service.

maxPoolSiz
e

This property is used to set part of the public thread pool as the maximum 
thread pool dedicated to this service.

enableTXC This property enables the distributed transaction middleware GTS.

ref A required ref-style property. It indicates the ID of the Spring bean that you 
want to publish as an HSF service.

methodSpec
ials

Optional. It is used to configure a timeout period (unit: ms) for each method
. With this property, methods in an interface can apply to different timeout 
periods.This timeout property takes precedence over clientTimeout but defers 
to methodSpecials on the consumer.

Issue: 20200513 63



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Tag configuration example:

<bean id="impl" class="com.taobao.edas.service.impl.SimpleServiceImpl" />
    <hsf:provider id="simpleService" interface="com.taobao.edas.service.SimpleService"
        ref="impl" version="1.0.1"  clientTimeout="3000" enableTXC="true"
        serializeType="hessian">
        <hsf:methodSpecials>
            <hsf:methodSpecial name="sum" timeout="2000" />
        </hsf:methodSpecials>
    </hsf:provider>

1.3.3.3.4.3.4 Publish services in the development environment
After coding and configuration, you can directly publish the service in Eclipse or IntelliJ

IDEA.

Procedure

1. You can directly run the service by using Ali-Tomcat in Eclipse or IntelliJ IDEA. For more

information, see Startup configurations during IDE operation.

2. After the service runs properly, you can query the service you published in the

configuration center. For more information, see Query services.

1.3.3.3.4.3.5 Other JVM startup parameters
This topic describes additional JVM startup parameters.

The following table lists additional startup parameters in the service provider that change 

the behavior of HSF.

Property Description

-Dhsf.server.port Specifies a port bound to the HSF startup 
service. The default value is 12200.

-Dhsf.serializer Specifies the serialization method of HSF, 
which is Hessian by default.

-Dhsf.server.max.poolsize Specifies the maximum size of the thread 
pool of the HSF provider. The default value 
is 600.

-Dhsf.server.min.poolsize Specifies minimum size of the thread pool 
of the HSF provider. The default value is 50.

1.3.3.3.4.4 Subscribe to services as a consumer
Service subscription for consumers is coded in two steps: First, use the <hsf:consumer/>

tag in the Spring configuration file to define a bean. Second, retrieve the bean from the

Spring context. In the demo project, detail shows a consumer-specific example.
1.3.3.3.4.4.1 Configure consumers

64 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Similar to that of providers, the configuration file of consumers consists of the Maven

dependency configuration and Spring configuration. The Maven dependency configuration

of consumers is the same as that of providers. For more information, see Configure

services.

In addition to required Spring configurations, you must add the consumer definition in

the Spring configuration file. Then, the HSF framework subscribes to the target services in

the service center based on the configuration file. The content of the configuration file /

resource/hsf-consumer-beans.xml and the meaning are as follows:

<? xml version="1.0" encoding="UTF-8"? >
<beans xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
       xmlns:hsf="http://www.taobao.com/hsf"
       xmlns="http://www.springframework.org/schema/beans"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
       http://www.taobao.com/hsf
       http://www.taobao.com/hsf/hsf.xsd" default-autowire="byName"> 
    <! -- Example of service consumption -->
    <hsf:consumer
  <! -- The Bean ID that is used to retrieve the consumer object by code injection  -->
            id="item"
  <! -- The name of the service, which corresponds to the service name of the service 
provider. HSF queries and subscribes to services according to the combined criteria of 
interface and version.  -->
            interface="com.alibaba.edas.carshop.itemcenter.ItemService"
  <! -- The version that corresponds to the version of the service provider. HSF queries 
and subscribes to services according to the combined criteria of interface and version.  --
>
            version="1.0.0"
    </hsf:consumer>
</beans>

1.3.3.3.4.4.2 Use services as a consumer
This topic provides sample code for using services as a consumer.

The sample code in the demo project is as follows:

public class StartListener implements ServletContextListener{

 @Override
 public void contextInitialized( ServletContextEvent sce ) {
  ApplicationContext ctx = WebApplicationContextUtils.getWebApplicationContext( sce.
getServletContext() );
  // Retrieve subscribed services according to the bean ID "item" in the Spring configurat
ion.
  final ItemService itemService = ( ItemService ) ctx.getBean( "item" );
  ……
  // Call the getItemById method of ItermService.
  System.out.println( itemService.getItemById( 1111 ) );
  // Call the getItemByName method of ItemService.
  System.out.println( itemService.getItemByName( "myname is le" ) );
  ……
 }

Issue: 20200513 65



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

}

1.3.3.3.4.4.3 Consumer configuration properties
This topic describes consumer configuration properties.

In addition to the properties in the sample code, such as interface and version, you can use 

other properties listed in the following table.

Property Description

interface A required string-type property. It is the interface for calling the 
target service.

version An optional string-type property. It is the version of the target 
service. The default value is 1.0.0.

methodSpecials Optional. It is used to configure the timeout period (unit: millisecon
ds) for each method separately. In this way, methods in an interface 
can apply different timeout periods. The timeout period specified by 
this property takes precedence over that of the provider.

target This property is used in the unit testing environment and 
development environment where hsf.runmode is set to 0. In the 
runtime environment, this property is invalid, and the target service 
address pushed by the configuration center is used instead.

connectionNum Optional. It is the maximum number of connections to the provider
. The default value is 1. If you transmit a small amount of data and 
require a shorter delay, set this property to a larger value to improve
 TPS.

clientTimeout It indicates that the consumer sets the same timeout period (unit
: milliseconds) for all methods in an interface. Timeout settings 
are sorted in descending order of priority as follows: consumer 
MethodSpecial, consumer interface level, provider MethodSpecial, 
and provider interface level.

asyncallMethods An optional list-type property. It indicates that the asynchronously

 called method name list and asynchronous calls are required for 

calling the service.

This property is an empty set by default, which indicates that all 

methods are called synchronously.

66 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Property Description

maxWaitTim
eForCsAddress

This property indicates the time during which the thread is blocked
 to wait for address push when a service is subscribed. Otherwise, 
the address may not be found due to an empty address when the
 service is called. If the address is not pushed before the blocking 
time expires, the thread no longer waits and proceeds with initializa
tion.

Tag configuration example:

<hsf:consumer id="service" interface="com.taobao.edas.service.SimpleService"
        version="1.1.0" clientTimeout="3000"
        target="10.1.6.57:12200? _TIMEOUT=1000" maxWaitTimeForCsAddress="5000"> 
               <hsf:methodSpecials>
            <hsf:methodSpecial name="sum" timeout="2000" />
        </hsf:methodSpecials>
    </hsf:consumer>

1.3.3.3.4.4.4 Consume services in the development environment
After coding and configuration, you can directly consume a service in Eclipse or IntelliJ IDEA.

Procedure

1. You can directly run the service by using Ali-Tomcat in Eclipse or IntelliJ IDEA. For more

information, see Startup configurations during IDE operation.

2. After the service starts running properly, query it in the configuration center. For more

information, see the chapter about building a development environment.

1.3.3.3.4.5 Use HSF features
This topic describes the usage instructions and important notes for HSF features. You can

download the demos for using all features in demo.
1.3.3.3.4.5.1 Prerequisites

To use HSF features, you must add the following edas-sdk dependency to the pom.xml file:

<dependency> 
 <groupId>com.alibaba.edas</groupId> 
 <artifactId>edas-sdk</artifactId> 
 <version>1.5.1</version>
</dependency> 

1.3.3.3.4.5.2 Implicit parameter passing (currently, only string parameter passing is supported)
Implicit parameter passing is generally used to replace the interface mode for passing

simple KV data and it is similar to cookies.

You can pass either a single parameter or multiple parameters in implicit mode.

Issue: 20200513 67

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/edas-app-demo/hsf-feature-demo.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Pass a single parameter

- Service consumer:

RpcContext.getContext().setAttachment("key", "args test");

- Service provider:

String keyVal=RpcContext.getContext().getAttachment("key");

• Pass multiple parameters

- Service consumer:

Map<String,String> map=new HashMap<String,String>();
map.put("param1", "param1 test");
map.put("param2", "param2 test");
map.put("param3", "param3 test");
map.put("param4", "param4 test");
map.put("param5", "param5 test");
RpcContext rpcContext = RpcContext.getContext();
rpcContext.setAttachments(map);

- Service provider:

Map<String,String> map=rpcContext.getAttachments();
Set<String> set=map.keySet();
for (String key : set) {
System.out.println("map value:"+map.get(key));
}

1.3.3.3.4.5.3 Asynchronous calls
Asynchronous calls can be implemented by the Callback and Future methods.

• Callback method

If the Callback method is configured for the service consumer, you must configure a 

listener that implements HSFResponseCallback. After the result is returned, HSF calls the 

method in HSFResponseCallback.

Notice:

The listener of HSFResponseCallback must not be an internal class. Otherwise, an error

is reported when the Pandora classloader is loaded.

XML configuration:

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi"
 version="1.1.2">
 <hsf:asyncallMethods> 
 <hsf:method name="ayncTest" type="callback" 
 listener="com.alibaba.ifree.hsf.consumer.AsynABTestCallbackHandler" /> 
 </hsf:asyncallMethods>

68 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

</hsf:consumer>

The AsynABTestCallbackHandler class implements HSFResponseCallback. DemoApi has 

the ayncTest method .

Sample code:

public void onAppResponse(Object appResponse) {
//Retrieve the value after the asynchronous call.
String msg = (String)appResponse;
System.out.println("msg:"+msg);
}

Note:

- Method names are used to identify methods. Therefore, repeatedly loaded methods

 are not differentiated. Methods that have the same name are set with the same call 

method.

- HSF calls cannot be initiated in a call. Otherwise, the I/O thread is suspended and 

cannot be recovered.

• Future method

If the Future method is configured for the service consumer, after a call is initiated, the

 return result is obtained through public static Object getResponse(long timeout) in 

HSFResponseFuture.

XML configuration:

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi" version="1
.1.2">
<hsf:asyncallMethods>
  <hsf:method name="ayncTest" type="future"  />
</hsf:asyncallMethods>
</hsf:consumer>

Sample code:

- Asynchronous processing of a single call:

//Initiate a call.
demoApi.ayncTest();
// Process the service.
...
//Directly obtain the message. If the result is not required, you can skip this step.

Issue: 20200513 69



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

String msg=(String) HSFResponseFuture.getResponse(3000);

- Concurrent processing of multiple calls:

To process multiple tasks concurrently, retrieve and store the future object and then 

reuse it after the call.

//Define a set.
List<HSFFuture> futures = new ArrayList<HSFFuture>();

- Concurrent call within a method:

//Initiate a call.
demoApi.ayncTest();
//Retrieve the future object.
HSFFuture future=HSFResponseFuture.getFuture();
futures.add(future);
//Continue calling other services in asynchronous call mode.
HSFFuture future=HSFResponseFuture.getFuture();
futures.add(future);

// Process the service.
...

//Retrieve and process the data.
for (HSFFuture hsfFuture : futures) {
String msg=(String) hsfFuture.getResponse(3000);
//Process corresponding data.
...
}

1.3.3.3.4.5.4 Generic calls
Generic calls can combine interfaces, methods, and parameters for RPCs, without

depending on any service interface.

Procedure

1. Add the generic property to the service consumer configuration.

<hsf:consumer id="demoApi" interface="com.alibaba.demo.api.DemoApi" generic="
true"/> 

Note:

The property generic indicates generic parameters, the value true indicates that generic

 parameters are supported, and the value false indicates that generic parameters are 

not supported. The default value is false.

DemoApi method:

public String dealMsg(String msg);

70 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

public GenericTestDO dealGenericTestDO(GenericTestDO testDO);

2. Retrieve demoApi to enforce conversion to a generic service.

a) Import the generic service interface.

import com.alibaba.dubbo.rpc.service.GenericService

b) Retrieve generic objects.

//In a web project, you can enforce service conversion after injection using a Spring
 bean. This example is a unit test and therefore you must load the configuration file.
ClassPathXmlApplicationContext consumerContext = new ClassPathXmlApplicat
ionContext("hsf-generic-consumer-beans.xml");
GenericService svc = (GenericService) consumerContext.getBean("demoApi");

3. Perform generic operations.

Object $invoke(String methodName, String[] parameterTypes, Object[] args) throws

GenericException;

Note:

• methodName: The name of the method you want to call.

• parameterTypes: The type of the parameters of the method you want to call.

• args: The parameter value you want to transmit.

4. Make generic calls.

• String-type parameters

svc.$invoke("dealMsg", new String[] { "java.lang.String" }, new Object[] { "hello" })

• Object parameters

// Construct the entity object GenericTestDO, which has the ID and name properties.
GenericTestDO genericTestDO = new GenericTestDO();
genericTestDO.setId(1980l);
genericTestDO.setName("genericTestDO-tst");
// Use PojoUtils to generate the pojo description of the second-party package.
Object comp = PojoUtils.generalize(genericTestDO);
// Call the service in generic mode.
svc.$invoke("dealGenericTestDO",new String[] { "com.alibaba.demo.generic.
domain.GenericTestDO" }, new Object[] { comp });

1.3.3.3.4.6 Query services
Currently, EDAS supports the registration of Dubbo and HSF services. This topic only

describes how to query HSF services. If your Dubbo services are published to the original

registry (for example, ZooKeeper), you cannot query the services in the EDAS background.
1.3.3.3.4.6.1 Query HSF services in the development environment

Issue: 20200513 71



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

During development and debugging, if your service is registered and discovered by using

the lightweight configuration center, you can query the services provided or called by an

application in the background of the lightweight configuration center.

Context

The following assumes that you start the EDAS configuration center on an ECS instance 

whose IP address is 192.168.1.100. To query HSF services, perform the following steps:

Procedure

1. Open your browser and enter http://192.168.1.100:8080/ in the address bar to log on to

the EDAS configuration center.

2. In the left-side navigation pane, choose Services. Set the service name, service group 

name, or IP address and then click Search.

Notice:

After the configuration center is started, the address of the first network interface card

(NIC) is the service discovery address by default. If the ECS instance of the developer

has multiple NICs, set the SERVER_IP variable in the startup script to explicitly bind an

address.

3. View the service provider and service caller.

• Providers tab page

- In the search bar, enter the IP address, and click Search to query the services that

are provided by the instance with the IP address you entered.

- In the search bar, enter the service name or service group, and click Search to 

query which IP addresses provide the service.

• Callers tab page

- In the search bar, enter the IP address, and click Search to query the services that

are called by the instance with the IP address you entered.

- In the search bar, enter the service name or service group, and click Search to 

query which IP addresses call the service.

1.3.3.3.4.6.2 Query HSF services in the online environment
After developed services are packaged and deployed in the EDAS background and you

confirm that applications start properly, you can query the corresponding service list in the

EDAS background.

Context

72 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

To query HSF services in the online environment, perform the following steps:

Procedure

1. Log on to the EDAS console. In the left-side navigation pane, choose Application

Management.

2. On the Applications page, click a deployed application to go to the Application Details

page.

3. In the left-side navigation pane, choose Services. The Services page that appears has

the Published Services and Services Consumed tabs. On the Published Services tab

page, the service provider that you configured for the application is displayed. On

the Services Consumed tab page, the service consumer that you configured for the

application is displayed.

Notice:

If you log on to the console by using a sub-account, check whether the sub-account has

the permission to view the Services tab page. In the left-side navigation pane, choose

Account Management > All Permissions. On the Permissions page, click Application

Management. On the page that appears, check whether the service appears in the list.

What's next

If the target service does not appear in the service list, perform the following steps to 

troubleshoot the problem:

• Check whether the service configurations in code are correct.

• Check whether the Tomcat process of the service is started and whether an error

message is contained in the logs TOMCAT_HOME/logs/catalina.out and $TOMCAT_HOME

/logs/localhost.log. $DATE_FORMAT.

• Check whether the software version is the latest. To view the software version,

choose Software Version from the left-side navigation pane on the corresponding

service information page. If the software version is not the latest, check whether the

corresponding HSF group is created.

• Check whether the host of the ECS instance has special network binding. In normal cases

, the online ECS instances are not bound to any hosts.

• Check whether the ECS instance network and ECS security group configuration have 

restrictions.

Issue: 20200513 73



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3.3.5 Migrate Dubbo applications to HSF (not
recommended)

1.3.3.3.5.1 Precautions for developing Dubbo applications
This topic describes precautions for developing Dubbo applications.

1. A single Dubbo configuration file allows you to define multiple groups of consumers. 

However, EDAS allows you to specify only one group by using the group property.

2. In Dubbo, service consumers need to specify the version, for example, version = "1.0.0

". In EDAS, service consumers may skip the version field, and the version is "1.0.0" by 

default.

3. Dubbo's RPC framework supports various protocols, such as RMI and Hessian. However

, EDAS now only supports the Dubbo protocol, for example, <dubbo:protocol name="

dubbo" port="20880">. Otherwise, an error like the following is reported: "com.alibaba.

dubbo.config.ServiceConfig service [xx.xx.xxx] contain xx protocol, HSF not supported".

4. The methods for obtaining the RPC context information are different. Dubbo uses the 

method RpcContext.getContext() to obtain the RPC context information. HSF in EDAS uses

 the method com.taobao.hsf.util.RequestCtxUtil to obtain the RPC context information

. After a Dubbo application is migrated to HSF, if HSF still calls RpcContext.getContext

() to obtain the RPC context information, the error "Caused by: java.lang.Unsupporte

dOperationException: not support getInvocation method in HSF" is reported.

1.3.3.3.5.2 Modify Dubbo application configurations
You can migrate applications developed by using Dubbo to HSF by modifying the

application configuration, configuring multiple registries, or converting JAR to WAR.

However, we recommend that beginners do not use this method because EDAS already

supports applications in the native Dubbo framework.

For more information about how to develop applications in the native Dubbo framework,

see Use Spring Boot to develop Dubbo applications.

Currently, you can configure Dubbo applications, including service providers and 

consumers, in either of the two methods in EDAS, namely, creating XML configuration files 

and adding annotations. This topic describes the two configuration methods with examples

.

• Configure a service producer in an XML file

<? xml version="1.0" encoding="UTF-8"? > 
<beans xmlns="http://www.springframework.org/schema/beans"

74 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dubbo="http://
code.alibabatech.com/schema/dubbo"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www
.springframework.org/schema/beans/spring-beans.xsd
    http://code.alibabatech.com/schema/dubbo http://code.alibabatech.com/schema
/dubbo/dubbo.xsd">
    <dubbo:application name="edas-dubbo-demo-provider" ></dubbo:application>
    <bean id="demoProvider" class="com.alibaba.edas.dubbo.demo.provider.
DemoProvider" ></bean>
    <dubbo:registry address="zookeeper://127.0.0.1:2181" ></dubbo:registry>
    <dubbo:protocol name="dubbo" port="20880" threadpool="cached"
        threads="100" ></dubbo:protocol>
    <dubbo:service delay="-1" interface="com.alibaba.edas.dubbo.demo.api.DemoApi
"
        ref="demoProvider" version="1.0.0" group="dubbogroup" retries="3" timeout="
3000"></dubbo:service>
</beans>

Note:

These parameters are optional: threadpool, threads, delay, version, retries, and

timeout. Others are required. You can change the parameter locations in the XML file as

needed.

• Configure a service consumer in an XML file

<? xml version="1.0" encoding="UTF-8"? >
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dubbo="http://
code.alibabatech.com/schema/dubbo"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www
.springframework.org/schema/beans/spring-beans-2.5.xsd
    http://code.alibabatech.com/schema/dubbo http://code.alibabatech.com/schema
/dubbo/dubbo.xsd">
    <dubbo:application name="edas-dubbo-consumer" />
    <dubbo:registry address="zookeeper://127.0.0.1:2181" />
    <dubbo:reference id="demoProviderApi"
        interface="com.alibaba.edas.dubbo.demo.api.DemoApi" version="1.0.0" group="
dubbogroup" lazy="true" loadbalance="random">
        <! -- Define a method that does not wait for the return value -->
        <dubbo:method name="sayMsg" async="true" return="false" /> 
    </dubbo:reference> 
    <bean id="demoConsumer" class="com.alibaba.edas.dubbo.demo.consumer.
DemoConsumer" 
        init-method="reviceMsg"> 
        <property name="demoApi" ref="demoProviderApi"></property> 
    </bean> 
</beans> 

Note:

- These parameters are optional: version, group, lazy, loadbalance, async, and return

. Others are required. You can change the parameter locations in the XML file as 

needed.

Issue: 20200513 75



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

- The registry does not take effect in EDAS. All Dubbo services are automatically 

registered in the EDAS configuration center. You do not have to concern yourself with

 this.

1.3.3.3.5.3 Convert the format of a package from JAR to
WAR
Currently, EDAS only supports web projects in WAR format. Therefore, if your project was

released as a JAR package, you must convert it to WAR first.

Context

Note:

This topic uses a Maven project as an example.

Procedure

1. Convert packaging of the pom.xml file from JAR to WAR.

2. Add a web.xml file configuration, if it is unavailable.

3. Configure the web.xml file to load the configuration file.

1.3.3.3.5.4 Run programs
• Right-click to start Tomcat4E and then start a web project. This method is typically used

in test environments, where the project directly runs in IDE. It does not require much

configuration work. If you have multiple projects, make sure their Tomcat ports are

unique. For more information about how to configure Tomcat4E, see Install Ali-Tomcat

and Pandora.

• Access the EDAS console to release the WAR project.

1.3.3.3.5.5 Compatibility between Dubbo and HSF
See the following table to check the compatibility between properties in Dubbo and HSF

configuration files.

Feature Dubbo 

parameter

Compatibil

ity

Error message Supported 

by EDAS

Timeout timeout Yes

Delayed 
exposure

delay Yes

76 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Feature Dubbo 

parameter

Compatibil

ity

Error message Supported 

by EDAS

Thread 
model

dispatcher="

all"

threadpool="

fixed"

threads="100"

Yes

Echo 
testing

Yes

Delayed 
connection

lazy="true" It is enabled 
by default.

Yes

Local call protocol="
injvm"

Yes

Implicit 
parameter 
passing

Yes

Concurrenc
y control

actives="10"

/executes="10

"

The 
parameter 
is visible in
 the EDAS 
console. You
 do not need
 to configure
 it.

Yes

Connection
 control

accepts="10"

/ connections

="2"

The 
parameter 
is visible in
 the EDAS 
console. You
 do not need
 to configure
 it.

Yes

Issue: 20200513 77



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Feature Dubbo 

parameter

Compatibil

ity

Error message Supported 

by EDAS

Service 
degradatio
n

The 
parameter 
is visible in
 the EDAS 
console. You
 do not need
 to configure
 it.

Yes

Cluster
 fault 
tolerance

retries/cluster Retries are 
supported.

None Partially 
supported

Load 
balancing

loadbalance The default
 value is 
random.

None Partially 
supported

Service 
grouping

group Wildcard 
configurat
ion is not 
supported.

java.lang.IllegalStateException:
The consumption of multiple
groups at the same time is not
supported by HSF2.

Partially 
supported

Multi-
version

version Wildcard 
configurat
ion is not 
supported.

[HSF-Consumer] cannot find the 
target address of the service you
 want to call.

Partially 
supported

Asynchrono
us calls

async="true"

return="false"

The return 
parameter is 
invalid.

None Partially 
supported

Check
 upon 
startup

check Check upon
 startup is 
disabled by
 default in 
EDAS.

None Check upon
 startup is 
disabled by
 default in 
EDAS.

Multi-
protocol

Only the
 Dubbo 
protocol is 
supported.

com.alibaba.dubbo.config.
ServiceConfig [com.alibaba.
demo.api.DemoApi] RMI protocol
 is configured, which is not 
supported by HSF2.

Partially 
supported

78 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Feature Dubbo 

parameter

Compatibil

ity

Error message Supported 

by EDAS

Routing 
rule

The 
parameter 
is visible in
 the EDAS 
console. You
 do not need
 to configure
 it.

Yes

Configurat
ion rule

The 
parameter 
is visible in
 the EDAS 
console. You
 do not need
 to configure
 it.

Yes

Multi-
registry

Not 
supported

Group 
aggregatio
n

group="aaa,

bbb"

merger="true"

Error java.lang.IllegalStateException:
The consumption of multiple
groups at the same time is not
supported by HSF2.

Not 
supported

Contextual
 informatio
n

Error Caused by:
java.lang.UnsupportedOperationException:
not support getInvocation
method in hsf2

Not 
supported

After checking the configuration compatibility, you can start to debug and publish the 

application according to preceding steps.

1.3.3.4 Use Pandora Boot to develop applications
Derived from Pandora, Pandora Booth is more lightweight.

• Based on Pandora and FatJar technologies, Pandora Boot allows you to directly start

 a Pandora environment in IDE, greatly improving the development and debugging 

efficiency.

• Pandora Boot deeply integrates with Spring Boot AutoConfigure, letting you enjoy the 

convenience of the Spring Boot framework.

Issue: 20200513 79



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Spring Boot users who need to use HSF and users who already use Pandora Boot can use 

Pandora Boot to develop EDAS applications.

1.3.3.4.1 Pandora Boot overview
Derived from Pandora, Pandora Booth is more lightweight.

• Based on Pandora and FatJar technologies, Pandora Boot allows you to directly start

 a Pandora environment in IDE, greatly improving the development and debugging 

efficiency.

• Pandora Boot deeply integrates with Spring Boot AutoConfigure, letting you enjoy the 

convenience of the Spring Boot framework.

Spring Boot users who need to use HSF and users who already use Pandora Boot can use 

Pandora Boot to develop EDAS applications.

1.3.3.4.2 Configure the local repository path and
lightweight configuration center of EDAS
Before using Pandora Boot to develop HSF applications, you must configure the local

repository path and lightweight configuration center of EDAS.

• Currently, third-party packages of Spring Cloud for Aliware are only released in the local 

repository of EDAS. You need to add the local repository path of EDAS in Maven.

• The lightweight configuration center must be started for local code development and 

debugging. The lightweight configuration center provides a lightweight version of EDAS 

service registry.

Configure the local repository path of EDAS in Maven

Note:

Maven 3.x or later is required. Add the local repository path of EDAS in the Maven

configuration file settings.xml.

1. In the Maven configuration file, whose path is generally ~/.m2/settings.xml, add the

local repository path of EDAS. The following provides a configuration example:

<profiles>
 <profile>
     <id>nexus</id>
     <repositories> 
         <repository> 
             <id>central</id>
             <url>http://repo1.maven.org/maven2</url>
             <releases> 
                 <enabled>true</enabled> 
             </releases> 

80 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

             <snapshots> 
                 <enabled>true</enabled> 
             </snapshots> 
         </repository> 
     </repositories> 
     <pluginRepositories>
         <pluginRepository>
             <id>central</id>
             <url>http://repo1.maven.org/maven2</url>
             <releases> 
                 <enabled>true</enabled> 
             </releases> 
             <snapshots> 
                 <enabled>true</enabled> 
             </snapshots> 
         </pluginRepository>
     </pluginRepositories>
 </profile>
 <profile>
     <id>edas.oss.repo</id>
     <repositories> 
         <repository> 
             <id>edas-oss-central</id>
             <name>taobao mirror central</name>
             <url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
             <snapshots> 
                 <enabled>true</enabled> 
             </snapshots> 
             <releases> 
                 <enabled>true</enabled> 
             </releases> 
         </repository> 
         </repositories> 
     <pluginRepositories>
         <pluginRepository>
             <id>edas-oss-plugin-central</id>
             <url>http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository</url>
             <snapshots> 
                 <enabled>true</enabled> 
             </snapshots> 
             <releases> 
                 <enabled>true</enabled> 
             </releases> 
         </pluginRepository> 
     </pluginRepositories>
 </profile>
</profiles>
<activeProfiles>
 <activeProfile>nexus</activeProfile>
 <activeProfile>edas.oss.repo</activeProfile>

Issue: 20200513 81



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

</activeProfiles>

2. In the CLI, run the mvn help:effective-settings command to check whether the settings

are added.

Pay attention to the following information during verification:

• If no error exists, the file format of setting.xml is correct.

• If edas.oss.repo is included in profiles, the local repository settings have been added 

to profiles.

• If edas.oss.repo is included in activeProfiles, the edas.oss.repo local repository has 

been activated.

Note:

If no error is returned when you run the Maven packaging command in the CLI, but IDE

still cannot download the dependencies, close IDE and start it again or search for a

solution in the documentation for configuring Maven in IDE.

Configure the lightweight configuration center

For more information about how to configure the lightweight configuration center, see

1.3.3.4.3 Develop HSF applications (Pandora Boot)
Currently, EDAS fully supports Spring Cloud applications and they can be deployed directly

in EDAS.

• The concept behind Spring Boot is "Build Anything". It helps resolve complicated XML 

configuration problems.

• The concept behind Spring Cloud is "Coordinate Anything". It helps simplify the 

development of distributed microservices by providing large-scale spring-cloud-starters

 featuring convenient component access.

EDAS also implements its own Spring Cloud Starter HSF, allowing you to develop HSF 

applications by using Spring Cloud.

This topic describes how to use Spring Cloud to develop HSF applications.

1.3.3.4.3.1 Example of HSF application development
This topic provides an example to demonstrate how to develop an HSF application based

on Spring Cloud. To develop an HSF application, you must create a service provider and a

service consumer.
1.3.3.4.3.1.1 Create a service provider

82 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

This topic describes how to create a service provider and provide services through an

interface.

Procedure

1. Create a Spring Cloud project named sc-hsf-provider.

2. Add required dependencies to pom.xml.

 <parent>
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-parent</artifactId> 
     <version>1.5.8.RELEASE</version> 
     <relativePath/>
 </parent>
 <dependencies> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-hsf</artifactId>
         <version>1.1</version>
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-pandora</artifactId>
         <version>1.2</version>
     </dependency> 
     <dependency> 
         <groupId>org.springframework.boot</groupId> 
         <artifactId>spring-boot-starter-web</artifactId> 
     </dependency> 
 </dependencies> 
 <dependencyManagement>
     <dependencies> 
         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId>
             <version>Dalston.SR4</version>
             <type>pom</type> 
             <scope>import</scope> 
         </dependency> 
     </dependencies> 
 </dependencyManagement>

Although the HSF service framework is independent of the web environment, web-

related features are required when EDAS is used to manage the lifecycle of applications. 

Therefore, you must add the spring-boot-starter-web dependency.

If you do not want to configure the parent of the project as spring-boot-starter-parent

, you can add dependencyManagement and set scope=import as follows to manage 

dependency versions:

 <dependencyManagement>
     <dependencies> 
         <dependency>           
             <groupId>org.springframework.boot</groupId> 
             <artifactId>spring-boot-dependencies</artifactId>
             <version>1.5.8.RELEASE</version>

Issue: 20200513 83



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

             <type>pom</type> 
             <scope>import</scope>
         </dependency> 
     </dependencies> 
 </dependencyManagement>

3. Define a service interface, and create an interface class `com.aliware.edas.EchoService`.

 public interface EchoService {
     String echo(String string);
 }

The HSF service framework enables service communication over interfaces. When an

 interface is defined, providers implement and release specific services by using this 

interface, and consumers subscribe to and consume services also by using this interface.

The interface com.aliware.edas.EchoService provides an echo method, which also 

means that the service com.aliware.edas.EchoService provides an echo method.

4. Add the implementation class `EchoServiceImpl` of the service provider, and publish the

service by using annotations.

 @HSFProvider(serviceInterface = EchoService.class, serviceVersion = "1.0.0")
 public class EchoServiceImpl implements EchoService {
     @Override
     public String echo(String string) {
         return string;
     }
 }

In addition to the interface specified by serviceInterface, HSF also requires the

version specified by serviceVersion to uniquely identify a service. In this example, the

serviceVersion property in the HSFProvider annotation is set to "1.0.0". Then, the service

you want to publish can be identified by the combination of serviceInterface com.aliware

.edas.EchoService and serviceVersion 1.0.0 .

The configuration in the HSFProvider annotation has the highest priority. If it is not 

configured in the HSFProvider annotation, the global configuration of these properties 

is searched in the resources/application.properties file when the service is published. If 

neither is configured, the default values in the HSFProvider annotation are used.

5. Configure the application name and the listener port number in the

application.properties file in the resources directory.

 spring.application.name=hsf-provider
 server.port=18081
 spring.hsf.version=1.0.0

84 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 spring.hsf.timeout=3000

Best practices: We recommend that you configure both the service version and service 

timeout in the application.properties file .

6. Add the main function handler for starting the service.

 @SpringBootApplication
 public class HSFProviderApplication {
     public static void main(String[] args) {
         // Start Pandora Boot for loading the Pandora container.
         PandoraBootstrap.run(args);
         SpringApplication.run(ServerApplication.class, args);
         // Indicate that the service has been started, and a thread waiting time is set. This
 prevents the container from exiting due to users who exit after running the service 
code.
         PandoraBootstrap.markStartupAndWait();
     }
 }

1.3.3.4.3.1.2 Create a service consumer
In this example, we create a service consumer that calls the service provider by using the

interface provided by HSFProvider.

Procedure

1. Create a Spring Cloud project named sc-hsf-consumer.

2. Add required dependencies to pom.xml.

The Maven dependencies for HSFConsumer and HSFProvider are exactly the same.

 <parent>
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-parent</artifactId>
     <version>1.5.8.RELEASE</version>
     <relativePath/> 
 </parent> 
 <dependencies>
     <dependency>
         <groupId>org.springframework.cloud</groupId>
         <artifactId>spring-cloud-starter-hsf</artifactId> 
         <version>1.1</version>
     </dependency>
     <dependency>
         <groupId>org.springframework.cloud</groupId>
         <artifactId>spring-cloud-starter-pandora</artifactId> 
         <version>1.2</version> 
     </dependency> 
     <dependency> 
         <groupId>org.springframework.boot</groupId> 
         <artifactId>spring-boot-starter-web</artifactId> 
     </dependency> 
 </dependencies> 
 <dependencyManagement> 
     <dependencies> 
         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId> 

Issue: 20200513 85



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

             <version>Dalston.SR4</version> 
             <type>pom</type> 
             <scope>import</scope> 
         </dependency> 
     </dependencies> 
 </dependencyManagement>

3. Copy the service interface com.aliware.edas.EchoService, including the package name,

published by the service provider to a local instance.

 public interface EchoService {
     String echo(String string);
 }

4. Use annotations to inject the service consumer instance to the Spring context.

 @Configuration
 public class HsfConfig {
     @HSFConsumer(clientTimeout = 3000, serviceVersion = "1.0.0")
     private EchoService echoService;
 }

Best practices: Configure @HSFConsumer once in the Config class, and then inject and

use it in multiple steps through @Autowired. Usually, HSFConsumer is used in multiple

places, but you do not have to mark each place where it is used with @HSFConsumer.

You can write a unified Config class and directly inject it wherever it is needed through

@Autowired.

5. To facilitate testing, an HTTP method of /hsf-echo/* is exposed through

SimpleController. Calls to the HSF service provider are internally implemented in the API

/hsf-echo/*.

 @RestController
 public class SimpleController {    
     @Autowired
     private EchoService echoService;
     @RequestMapping(value = "/hsf-echo/{str}", method = RequestMethod.GET)
     public String echo(@PathVariable String str) {
         return echoService.echo(str);
     }
 }

6. Configure the application name and the listener port number in the

application.properties file in the resources directory.

 spring.application.name=hsf-consumer
 server.port=18082
 spring.hsf.version=1.0.0
 spring.hsf.timeout=1000

Best practices: We recommend that you configure both the service version and service 

timeout in the application.properties file .

86 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

7. Add the main function handler for starting the service.

 @SpringBootApplication
 public class HSFConsumerApplication {
     public static void main(String[] args) {
         PandoraBootstrap.run(args);
         SpringApplication.run(HSFConsumerApplication.class, args);
         PandoraBootstrap.markStartupAndWait();
     }
 }

1.3.3.4.3.2 Advanced HSF features
This topic describes how to use Pandora Boot to develop advanced HSF features, such as

unit testing and asynchronous calls.

Context

Download the demo source code sc-hsf-provider and sc-hsf-consumer.

Procedure

Unit testing

The implementation of spring-cloud-starter-hsf depends on Pandora Boot, and the unit 

testing of Pandora Boot is enabled through PandoraBootRunner and seamlessly integrated 

with SpringJUnit4ClassRunner.

1. Add the spring-boot-starter-test dependency in Maven.

 <dependency> 
     <groupId>org.springframework.boot</groupId> 
     <artifactId>spring-boot-starter-test</artifactId> 
 </dependency> 

2. Compile the test code.

 @RunWith(PandoraBootRunner.class)
 @DelegateTo(SpringJUnit4ClassRunner.class)
 // Add the test class. In this case, both the Spring Boot startup class and service test 
class are required.
 @SpringBootTest(classes = {HSFProviderApplication.class, EchoServiceTest.class })
 @Component
 public class EchoServiceTest {
     /**
      * If you are using @HSFConsumer, you must add the service class to @SpringBoot
Test and use it to inject objects to prevent abnormal class conversion during generic 
calls.
      */
     @HSFConsumer(generic = true)
     EchoService echoService;
     //Common calls
     @Test
     public void testInvoke() {
         TestCase.assertEquals("hello world", echoService.echo("hello world"));
     }
     //Generic calls

Issue: 20200513 87

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sc-hsf-provider.zip
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sc-hsf-consumer.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

     @Test
     public void testGenericInvoke() {
         GenericService service = (GenericService) echoService;
         Object result = service.$invoke("echo", new String[] {"java.lang.String"}, new 
Object[] {"hello world"});
         TestCase.assertEquals("hello world", result);
     }
     //Return the value Mock.
     @Test
     public void testMock() {
         EchoService mock = Mockito.mock(EchoService.class, AdditionalAnswers.
delegatesTo(echoService));
         Mockito.when(mock.echo("")).thenReturn("beta");
         TestCase.assertEquals("beta", mock.echo(""));
     }
 }

Asynchronous calls

HSF enables two types of asynchronous calls, Future and Callback.

3. To demonstrate asynchronous calls, you have to publish a new service:

com.aliware.edas.async.AsyncEchoService.

 public interface AsyncEchoService {
     String future(String string);
     String callback(String string);
 }

4. The service provider implements AsyncEchoService and uses annotations to publish it.

 @HSFProvider(serviceInterface = AsyncEchoService.class, serviceVersion = "1.0.0")
 public class AsyncEchoServiceImpl implements AsyncEchoService {
     @Override
     public String future(String string) {
         return string;
     }
     @Override
     public String callback(String string) {
         return string;
     }
 }

As shown above, it makes no difference whether you choose common release or

service provider-based release. The subsequent configurations and application startup

processes are all the same. For more information, see the section about how to create a

service provider in HSF development.

Note:

The logic of asynchronous calls is modified on the service consumer rather than the

service provider.

Future

88 Issue: 20200513

https://help.aliyun.com/document_detail/63867.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

5. To enable Future-type asynchronous calls for the service consumer, use annotations to

inject service consumer instances into the Spring context, and configure the method

name of asynchronous calls in futureMethods of @HSFConsumer.

In this example, the Future method of com.aliware.edas.async.AsyncEchoService is 

marked as Future-type asynchronous calls.

 @Configuration
 public class HsfConfig {
     @HSFConsumer(serviceVersion = "1.0.0", futureMethods = "future")
     private AsyncEchoService asyncEchoService;
 }

6. After the method is marked as Future-type asynchronous calls, the actual return value of

the method during synchronous execution is null, and the call result must be obtained

through HSFResponseFuture.

TestAsyncController is used for demonstration. The sample code is as follows:

 @RestController
 public class TestAsyncController {
     @Autowired
     private AsyncEchoService asyncEchoService;
     @RequestMapping(value = "/hsf-future/{str}", method = RequestMethod.GET)
     public String testFuture(@PathVariable String str) {
         String str1 = asyncEchoService.future(str);
         String str2;
         try {
             HSFFuture hsfFuture = HSFResponseFuture.getFuture();
             str2 = (String) hsfFuture.getResponse(3000);
         } catch (Throwable t) {
             t.printStackTrace();
             str2 = "future-exception";
         }
         return str1 + "  " + str2;
     }
 }

Call /hsf-future/123. The str1 value is null, and the str2 value is 123, which is the actual 

return value.

7. If a series of operation return values are needed for service processing, see the following

call method:

 @RequestMapping(value = "/hsf-future-list/{str}", method = RequestMethod.GET)
 public String testFutureList(@PathVariable String str) {
     try {
         int num = Integer.parseInt(str);
         List<String> params = new ArrayList<String>(); 
         for (int i = 1; i <= num; i++) {
             params.add(i + "");
         }
         List<HSFFuture> hsfFutures = new ArrayList<HSFFuture>();
         for (String param : params) {
             asyncEchoService.future(param);

Issue: 20200513 89



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

             hsfFutures.add(HSFResponseFuture.getFuture());
         }
         ArrayList<String> results = new ArrayList<String>();
         for (HSFFuture hsfFuture : hsfFutures) {
             results.add((String) hsfFuture.getResponse(3000));
         }
         return Arrays.toString(results.toArray());
     } catch (Throwable t) {
         return "exception";
     }
 }

Callback

8. To enable Callback-type asynchronous calls for the service consumer, create a class to

implement HSFResponseCallback and use @Async for configuration.

 @AsyncOn(interfaceName = AsyncEchoService.class,methodName = "callback")
 public class AsyncEchoResponseListener implements HSFResponseCallback{
     @Override
     public void onAppException(Throwable t) {
         t.printStackTrace();
     }
     @Override
     public void onAppResponse(Object appResponse) {
         System.out.println(appResponse);
     }
     @Override
     public void onHSFException(HSFException hsfEx) {
         hsfEx.printStackTrace();
     }
 }

AsyncEchoResponseListener implements HSFResponseCallback. Set interfaceName to 

AsyncEchoService.class and methodName to callback in @Async.

The Callback method of com.aliware.edas.async.AsyncEchoService is marked as 

Callback-type asynchronous calls.

9. Similarly, TestAsyncController is used for demonstration. The sample code is as follows:

 @RequestMapping(value = "/hsf-callback/{str}", method = RequestMethod.GET)
 public String testCallback(@PathVariable String str) {
     String timestamp = System.currentTimeMillis() + "";
     String str1 = asyncEchoService.callback(str);
     return str1 + "  " + timestamp;
 }

After the service consumer sets the Callback method to Callback-type asynchronous calls

, the synchronous execution return value is actually null.

After the result is returned, HSF calls the method in AsyncEchoResponseListener, and the 

actual return value of the call can be obtained by using the onAppResponse method.

90 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

10.Use CallbackInvocationContext to transmit the contextual information of the call to the

Callback method.

The call sample code is as follows:

 CallbackInvocationContext.setContext(timestamp);
 String str1 = asyncEchoService.callback(str);
 CallbackInvocationContext.setContext(null);

The sample code of AsyncEchoResponseListener is as follows:

 @Override
 public void onAppResponse(Object appResponse) {
     Object timestamp = CallbackInvocationContext.getContext();
     System.out.println(timestamp + "   " +appResponse);
 }

The output in the console is 1513068791916 123. This indicates that the onAppResponse

method of AsyncEchoResponseListener has used CallbackInvocationContext to receive

the timestamp content transmitted before the call.

1.3.3.4.3.3 Local debugging
After an HSF application is developed, you need to debug its code locally before publishing

it.

Procedure

1. Start the lightweight configuration center.

The lightweight configuration center must be started for local code development

and debugging, which includes a lightweight version of EDAS service registry for

service providers. For more information about the lightweight configuration center, see

Lightweight configuration center.

2. Start the application.

You can locally start the application in either of the following two methods:

• Start the application in IDE

To start the application in IDE, configure the startup parameter -Djmenv.tbsite.net={$

IP} in VM options and directly start the application by calling the main method. {$IP}

is the address of the instance on which the lightweight configuration center is started.

Issue: 20200513 91



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

For example, if the lightweight configuration center is started on the current instance,

{$IP} is 127.0.0.1.

If you do not want to configure JVM parameters, you can modify the hosts file and

bind jmenv.tbsite.net to the IP address of the instance on which the configuration

center is started. For more information, see Lightweight configuration center.

• Start the application by using FatJar

a. Add a FatJar packaging plug-in.

To package the pandora-boot project into a FatJar file by using Maven, add the 

following plug-in in pom.xml.

Note:

To avoid conflicts with other packaging plug-ins, do not add any other FatJar

plug-ins to the plugin field in build.

  <build> 
       <plugin> 
           <groupId>com.taobao.pandora</groupId>
           <artifactId>pandora-boot-maven-plugin</artifactId>
           <version>2.1.7.8</version>
           <executions> 
               <execution> 
                   <phase>package</phase> 
                   <goals> 
                       <goal>repackage</goal>
                   </goals>
               </execution>
           </executions> 
       </plugin> 
  </build> 

3. After adding the plug-in, run the mvn clean package command in the home directory of

the project to create a package. The created FatJar file is placed in the target directory.

4. Start the application by running the following Java command:

 java -Djmenv.tbsite.net=127.0.0.1 -Dpandora.location=/Users/{$username}/.m2/
repository/com/taobao/pandora/taobao-hsf.sar/dev-SNAPSHOT/taobao-hsf.sar-dev
-SNAPSHOT.jar  -jar sc-hsf-provider-0.0.1-SNAPSHOT.jar

Note:

The path specified by -Dpandora.location must be a full path placed before sc-hsf-

provider-0.0.1-SNAPSHOT.jar.

Result

Start the service, call the service, and check whether the service can be called.

92 Issue: 20200513

https://help.aliyun.com/document_detail/44163.html?spm=5176.doc63867.2.29.LS4Iwo


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3.4.3.4 Deploy applications to EDAS
After the code for service discovery and calling is debugged on a local instance, it can be

published to EDAS.

Procedure

1. When creating the applications, choose the container of the latest version.

For more information about how to create applications, see Application management in

the User Guide.

2. In the directory of the project, run the mvn clean package command and pack it into a

FatJar package. Add the FatJar package.

3. Upload the FatJar package in the target directory to deploy the application to EDAS.

For more information about how to deploy applications, see Application management

 in the User Guide.

1.3.3.4.4 Develop RESTful applications (not
recommended)
This topic describes how to develop RESTful applications in EDAS by using Spring Cloud.

1.3.3.4.4.1 Terms
This topic defines and explains terms you may encounter when developing applications

based on Spring Cloud.

Pandora Pandora is a lightweight container isolation service used in Alibaba, which

is utilized in Aliware to isolate and load classes. Pandora is a required

 dependency for Spring Cloud for Aliware.

VIPServer VIPServer is the server used for service registry for RESTful applications in

EDAS, whose corresponding client is VIPClient.

Lightweight

configuration

center

The EDAS lightweight configuration center can run on a local instance and

provides service discovery and configuration management features.

FatJar FatJar (also known as the executable JARs) is an archive of compiled classes

and dependent JARs for running code. You can run the java -jar command to

use this program.

EagleEye EagleEye is a distributed tracing system for Alibaba, developed based on 

Google Dapper.

Issue: 20200513 93



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

EagleEye EagleEye processes trillions of distributed trace data each day, and

 implements instrumentation in various network calls through collection and

 analysis to acquire call relationships between systems in the same request. 

This helps sort out the application request portals and service call sources and

 dependencies, analyze system call bottlenecks, estimate the link capacities, 

and quickly locate exceptions.

HSF HSF is a distributed service framework for Alibaba. HSF provides support for 

developers on distributed applications and unified publish and call methods

. In this way, developers can easily develop distributed applications and 

provide or use public functional modules, without considering the technical 

details in distributed systems, such as remote communication, performance 

loss, call transparency, synchronous calls, and asynchronous calls.

1.3.3.4.4.2 Service registration and discovery
This topic describes how to implement service registration and discovery by using Spring

Cloud.
1.3.3.4.4.2.1 Preparation

Before using Spring Cloud to implement service registration and discovery, you need to

make the relevant preparations.

Configure the EDAS local repository path in Maven

Currently, third-party packages of Spring Cloud for Aliware are only released in the

local repository of EDAS. You need to add the local repository path of EDAS. For more

information about how to configure Maven and the Maven local repository path, see official

 documentation.

The local repository path of EDAS is http://edas-public.oss-cn-hangzhou.aliyuncs.com/

repository.

Note:

You must use Maven 3.x or later, and add the local repository path of EDAS in the Maven

configuration file settings.xml. Download the sample file.

Start the lightweight configuration center

The lightweight configuration center must be started for local code development and

debugging. The lightweight configuration center provides a lightweight version of EDAS

94 Issue: 20200513

https://maven.apache.org/settings.html
https://maven.apache.org/settings.html
http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository
http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository
http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository/settings_aliware.xml?spm=5176.doc55601.2.31.QtWmLm&file=settings_aliware.xml


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

service registry. For more information about the lightweight configuration center and its

download URLs, see Lightweight configuration center.

1.3.3.4.4.2.2 Implement service registration and discovery
This topic uses a simple example to describe how to discover and call services.

Context

The following two roles are involved in this process:

• Service provider: It provides a simple echo service and registers itself with the service 

registry.

• Service consumer: It calls services through RestTemplate, AsyncRestTemplate, and 

FeignClient.

Procedure

Service providers implement services and register them with the service registry.

1. Create a Spring Cloud project named sc-vip-client.

2. Add required dependencies to pom.xml.

 <parent>
     <groupId>org.springframework.boot</groupId>
     <artifactId>spring-boot-starter-parent</artifactId>
     <version>1.5.8.RELEASE</version>
     <relativePath/>
 </parent>
 <dependencies> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-vipclient</artifactId>
         <version>1.1</version>
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-pandora</artifactId>
         <version>1.2</version>
     </dependency> 
 </dependencies> 
 <dependencyManagement>
     <dependencies> 
         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId>
             <version>Dalston.SR4</version>
             <type>pom</type>
             <scope>import</scope> 
         </dependency> 
     </dependencies> 

Issue: 20200513 95



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 </dependencyManagement>

If you do not want to configure the parent of the project as spring-boot-starter-parent

, you can add dependencyManagement and set scope=import as follows to manage 

dependencies:

 <dependencyManagement> 
     <dependencies> 
         <dependency>           
             <groupId>org.springframework.boot</groupId> 
             <artifactId>spring-boot-dependencies</artifactId>
             <version>1.5.8.RELEASE</version> 
             <type>pom</type> 
             <scope>import</scope> 
         </dependency> 
     </dependencies> 
 </dependencyManagement>

3. Add the code of the service provider, in which the annotation @EnableDiscoveryClient

indicates that service registration and discovery are enabled for the application.

 @SpringBootApplication
 @EnableDiscoveryClient
 public class ServerApplication {
     public static void main(String[] args) {
         PandoraBootstrap.run(args);
         SpringApplication.run(ServerApplication.class, args);
         PandoraBootstrap.markStartupAndWait();
     }
 }

4. Create an EchoController to provide simple echo services.

@RestController
 public class EchoController {
     @RequestMapping(value = "/echo/{string}", method = RequestMethod.GET)
     public String echo(@PathVariable String string) {
         return string;
     }
 }

5. Configure the application name and the listener port number in the

application.properties file in resources.

 spring.application.name=service-provider
 server.port=18081

Service consumers call services through RestTemplate, AsyncRestTemplate, and

FeignClient.

6. Create a Spring Cloud project named sc-vip-client.

7. Add required dependencies to pom.xml.

 <parent>
     <groupId>org.springframework.boot</groupId> 

96 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

     <artifactId>spring-boot-starter-parent</artifactId>
     <version>1.5.8.RELEASE</version>
     <relativePath/>
 </parent>
 <dependencies> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-vipclient</artifactId> 
         <version>1.1</version>
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-pandora</artifactId>
         <version>1.2</version>
     </dependency> 
     <dependency> 
         <groupId>org.springframework.cloud</groupId> 
         <artifactId>spring-cloud-starter-feign</artifactId>
     </dependency> 
 </dependencies> 
 <dependencyManagement>
     <dependencies> 
         <dependency> 
             <groupId>org.springframework.cloud</groupId> 
             <artifactId>spring-cloud-dependencies</artifactId>
             <version>Dalston.SR4</version> 
             <type>pom</type> 
             <scope>import</scope>
         </dependency> 
     </dependencies> 
 </dependencyManagement>

To demonstrate the use of FeignClient, an additional dependency of spring-cloud-starter

-feign is added to the pom.xml file compared to that of the service provider.

8. Different from the service provider, in addition to service enabling and registration, two

more configurations must be added to the service consumer for using RestTemplate,

AsyncRestTemplate, and FeignClient.

a) Add the annotation @LoadBalanced to combine RestTemplate, AsyncRestTemplate,

and service discovery.

b) Activate FeignClient by using the annotation @EnableFeignClients.

@SpringBootApplication
@EnableDiscoveryClient
@EnableFeignClients
public class ConsumerApplication {
   @LoadBalanced
   @Bean
   public RestTemplate restTemplate() {
       return new RestTemplate();
   }
   @LoadBalanced
   @Bean
   public AsyncRestTemplate asyncRestTemplate(){
       return new AsyncRestTemplate();
   }
   public static void main(String[] args) {
       PandoraBootstrap.run(args);

Issue: 20200513 97



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

       SpringApplication.run(ConsumerApplication.class, args);
       PandoraBootstrap.markStartupAndWait();
   }
}

9. Complete the configuration of FeignClient of EchoService before using it.

Configure the service name and the HTTP request corresponding to the method. The

service name is service-provider configured in the sc-vip-server project. The code is as

follows:

 @FeignClient(name = "service-provider")
 public interface EchoService {
     @RequestMapping(value = "/echo/{str}", method = RequestMethod.GET)
     String echo(@PathVariable("str") String str);
 }

10.Create a Controller for call test.

• /echo-rest/* calls the service from the service provider through RestTemplate.

• /echo-async-rest/* calls the service from the service provider through AsyncRestT

emplate.

• /echo-feign/* calls the service from the service provider through FeignClient.

@RestController
public class Controller {
   @Autowired
   private RestTemplate restTemplate;
   @Autowired
   private AsyncRestTemplate asyncRestTemplate;
   @Autowired
   private  EchoService echoService;
   @RequestMapping(value = "/echo-rest/{str}", method = RequestMethod.GET)
   public String rest(@PathVariable String str) {
       return restTemplate.getForObject("http://service-provider/echo/" + str, String.
class);
   }
   @RequestMapping(value = "/echo-async-rest/{str}", method = RequestMethod.GET)
   public String asyncRest(@PathVariable String str) throws Exception{
       ListenableFuture<ResponseEntity<String>> future = asyncRestTemplate.
               getForEntity("http://service-provider/echo/"+str, String.class);
       return future.get().getBody();
   }
   @RequestMapping(value = "/echo-feign/{str}", method = RequestMethod.GET)
   public String feign(@PathVariable String str) {
       return echoService.echo(str);
   }
}

11.Configure the application name and the listener port number.

 spring.application.name=service-consumer
 server.port=18082

1.3.3.4.4.2.3 Local debugging

98 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

After service discovery and calling are enabled, you need to debug the code on a local

instance before deploying it to EDAS.

Procedure

1. Start the lightweight configuration center.

The lightweight configuration center must be started for local code development

and debugging, which includes a lightweight version of EDAS service registry for

service providers. For more information about the lightweight configuration center, see

Lightweight configuration center.

2. Start the application.

You can locally start the application in either of the following two methods:

• Start the application in IDE

To start the application in IDE, configure the startup parameter -Dvipserver.server

.port=8080 in VM options, and directly start the application by calling the main

method.

If your lightweight configuration center and application are deployed on different

instances, perform hosts binding. For more information, see Lightweight

configuration center.

• Start the application by using FatJar

a. Add a FatJar packaging plug-in.

To package the pandora-boot project into a FatJar file by using Maven, add the 

following plug-in in pom.xml. To avoid conflicts with other packaging plug-ins, do 

not add any other FatJar plug-ins to the plugin field in build.

  <build> 
       <plugin> 
           <groupId>com.taobao.pandora</groupId>
           <artifactId>pandora-boot-maven-plugin</artifactId>
           <version>2.1.7.8</version>
           <executions> 
               <execution> 
                   <phase>package</phase> 
                   <goals> 
                       <goal>repackage</goal>
                   </goals> 
               </execution> 
           </executions> 
       </plugin> 

Issue: 20200513 99



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

  </build> 

b. After adding the plug-in, run the mvn clean package command in the home

directory of the project to create a package. The created FatJar file is placed in the

target directory.

c. Start the application by running the following Java command:

 java -Dvipserver.server.port=8080 -Dpandora.location=/Users/{$username}/.
m2/repository/com/taobao/pandora/taobao-hsf.sar/dev-SNAPSHOT/taobao-
hsf.sar-dev-SNAPSHOT.jar  -jar sc-vip-server-0.0.1-SNAPSHOT.jar

Note:

The value of -Dpandora.location must be a full path placed before sc-vip-

server-0.0.1-SNAPSHOT.jar .

3. Start the service, run the curl command to call the consumer and provider respectively.

Each call is successful.

You can also paste the corresponding URL in the address bar of your browser and

observe response for verification.

1.3.3.4.4.2.4 Deploy applications to EDAS
After the code for service discovery and calling is debugged on a local instance, it can be

published to EDAS.

Procedure

1. When creating the applications, choose the container of the latest version.

For more information about how to create applications, see Application management in

the User Guide.

2. In the directory of the project, run the mvn clean package command and pack it into a

FatJar package. Add the FatJar package.

3. Upload the FatJar package in the target directory to deploy the application to EDAS.

For more information about how to deploy applications, see Application management

 in the User Guide.

1.3.3.4.4.2.5 Migrate from Eureka
An application connected with the Eureka service registry can be connected with the EDAS

service registry in two steps.

Procedure

100 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Modify the source code.

Add two lines in the main function. The original content of the main function is as 

follows:

 public static void main(String[] args) {
     SpringApplication.run(ServerApplication.class, args);
 }

The modified content of the main function is as follows:

 public static void main(String[] args) {
     PandoraBootstrap.run(args);
     SpringApplication.run(ServerApplication.class, args);
     PandoraBootstrap.markStartupAndWait();
 }

2. Modify the dependency of pom.xml.

Replace spring-cloud-starter-eureka with spring-cloud-starter-vipclient.

Before the replacement:

 <dependency> 
     <groupId>org.springframework.cloud</groupId> 
     <artifactId>spring-cloud-starter-eureka</artifactId>
 </dependency> 

After the replacement:

 <dependency> 
     <groupId>org.springframework.cloud</groupId>
     <artifactId>spring-cloud-starter-vipclient</artifactId>
     <version>1.1</version> 
 </dependency> 

1.3.3.4.4.2.6 FAQ
This topic describes possible problems during service registration and discovery based on

Spring Cloud and their solutions.

1. What can I do if I cannot enable service discovery for AsyncRestTemplate?

AsyncRestTemplate provides service discovery only in Spring Cloud Dalston and later 

versions.

2. What can I do when FatJar packaging plug-ins conflict with other plug-ins?

To avoid conflicts with other packaging plug-ins, do not add configurations of any other 

FatJar plug-ins to the plugin field in build.

Issue: 20200513 101



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

3. Can taobao-hsf.sar be included during packaging?

Yes, but this is not recommended.

You can modify pandora-boot-maven-plugin and set excludeSar to false to automatica

lly include taobao-hsf.sar during packaging.

   <plugin> 
     <groupId>com.taobao.pandora</groupId>
     <artifactId>pandora-boot-maven-plugin</artifactId>
     <version>2.1.7.8</version>
     <configuration> 
       <excludeSar>false</excludeSar> 
     </configuration> 
     <executions> 
         <execution> 
             <phase>package</phase> 
             <goals> 
                 <goal>repackage</goal>
             </goals> 
         </execution> 
     </executions> 
   </plugin> 

In this way, the package can be started even if the Pandora path is not configured.

java -jar  -Dvipserver.server.port=8080 sc-vip-server-0.0.1-SNAPSHOT.jar 

Restore the configuration to exclude the SAR package before deploying an application in

 EDAS.

1.3.3.4.4.3 Distributed tracing
To reduce development costs and improve development efficiency, EDAS provides

EagleEye, a component for distributed tracing. After EagleEye instrumentation is

implemented in the code, you can use the distributed tracing function of EDAS, without

considering other processes such as log collection, analysis, and storage. This topic

describes how to enable the distributed tracing function for your applications.
1.3.3.4.4.3.1 Access EagleEye

Before enabling distributed tracing, you must access EagleEye first.

Prerequisites

Before accessing EagleEye, add the local repository path of EDAS in the Maven

configuration file.

Currently, third-party packages of Spring Cloud for Aliware are only released in the

local repository of EDAS. You need to add the local repository path of EDAS. For more

information about how to configure Maven and the Maven local repository path, see official

 documentation. Download the sample file.

102 Issue: 20200513

https://maven.apache.org/settings.html?spm=5176.doc63092.2.26.2PVabK
https://maven.apache.org/settings.html?spm=5176.doc63092.2.26.2PVabK
http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository/settings_aliware.xml?spm=5176.doc63092.2.28.2PVabK&file=settings_aliware.xml


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

The local repository path of EDAS is http://edas-public.oss-cn-hangzhou.aliyuncs.com/

repository.

Note:

Maven 3.x or later is required.

Procedure

1. Add the following public dependency configuration in the pom.xml file:

 <dependency> 
     <groupId>org.springframework.cloud</groupId> 
     <artifactId>spring-cloud-starter-eagleeye</artifactId> 
     <version>1.1</version> 
 </dependency> 
 <dependency> 
     <groupId>org.springframework.cloud</groupId> 
     <artifactId>spring-cloud-starter-pandora</artifactId> 
     <version>1.2</version>
 </dependency> 

2. Add two lines of code to the main function.

The original content of the main function is as follows:

 public static void main(String[] args) {
     SpringApplication.run(ServerApplication.class, args);
 }

The modified content of the main function is as follows:

 public static void main(String[] args) {
     PandoraBootstrap.run(args);
     SpringApplication.run(ServerApplication.class, args);
     PandoraBootstrap.markStartupAndWait();
 }

3. Add a FatJar packaging plug-in.

To package the pandora-boot project into FatJar by using Maven, add the following plug

-ins in pom.xml.

To avoid conflicts with other packaging plug-ins, do not add configurations of any other 

FatJar plug-ins to the plugin field in build.

 <build> 
     <plugins> 
         <plugin> 
             <groupId>com.taobao.pandora</groupId> 
             <artifactId>pandora-boot-maven-plugin</artifactId>
             <version>2.1.7.8</version> 
             <executions> 
                 <execution> 
                     <phase>package</phase> 

Issue: 20200513 103

http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository?spm=5176.doc63092.2.27.2PVabK
http://edas-public.oss-cn-hangzhou.aliyuncs.com/repository?spm=5176.doc63092.2.27.2PVabK


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

                     <goals> 
                         <goal>repackage</goal> 
                     </goals> 
                 </execution> 
             </executions> 
         </plugin> 
     </plugins> 
 </build> 

Result

After finishing the preceding steps, you can use the EDAS distributed tracing function 

without setting up any collection and analysis systems.

1.3.3.4.4.3.2 Distributed tracing example
This topic provides an example to describe how to perform distributed tracing for

applications.

Context

To demonstrate how to perform distributed tracing, two code demos service1 and service2

 are used in this example.

service1 provides portals to three demonstration scenarios.

• /rest/ok for normal calls

• /rest/delay for calls with a large delay

• /rest/error for calls with errors

Procedure

Deploy applications

The collection and analysis functions of EagleEye are set up in EDAS. To demonstrate the 

trace query function, deploy the two applications service1 and service2 in EDAS.

1. When creating the applications, choose the container of the latest version.

For more information about how to create applications, see Application management in

the User Guide .

2. Add a FatJar packaging plug-in, and run the mvn clean package command in the

directory of the project to create a FatJar package.

3. Upload the FatJar application in the target directory to deploy the application to EDAS.

For more information about how to deploy applications, see Application management

 in the User Guide .

104 Issue: 20200513

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sc-eagleeye-service1.zip
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sc-eagleeye-service2.zip
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sc-eagleeye-service2.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Call EagleEye

To view the trace information after the application is deployed, you have to know the call 

methods corresponding to the portals of three demonstration scenarios of service1.

4. You can run the curl http://{$ip:$port}/rest/ok command. You can also use tools such as

Postman or directly call the methods in your browser.

To observe the response, we recommend that you call the methods in script mode 

multiple times.

View traces

5. Log on to the EDAS console and access the application you deployed.

6. In the left-side navigation pane on the Application Details page, choose Application

Monitoring > Service Monitoring .

7. On the Service Monitoring page, click the RPC Services Provided tab and then click View

Trace.

For more information about how to use this function, see Service Monitoring.

For more information about service monitoring, see Application management in the

User Guide .

• Trace details of a normal call

You can see how many times the service is called and that it takes 2 ms, 1 ms, and 0 

ms respectively to call the service in steps 1, 2, and 3.

• Trace details of a call with a large delay

You can see that 453 ms, 353 ms, and 151 ms are respectively spent on calls with 

delay 1, delay 2, and delay 3.

By resting the pointer on the call with delay 3, you can see more details about the 

trace. The provider spends 150 ms processing the request, and the consumer receives 

a response 1 ms after the provider finishes processing the request.

• Trace details of a call with an error

You can see that the request with errors is /rest/error3, which helps you locate the 

problem.

Instrumentation of EagleEye for RestTemplate, AsyncRestTemplate, and FeignClient is 

demonstrated separately in /echo-rest/{str}, /echo-async-rest/{str}, and /echo-feign/{str

} of service1. You can view the trace information in the same way after calling them.

Issue: 20200513 105



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.3.3.4.4.3.3 FAQ
This topic describes possible problems during distributed tracing and their solutions.

Instrumentation

Currently, EagleEye of EDAS supports automatic tracking for requests of RestTemplate,

AsyncRestTemplate, and FeignClient. We will provide instrumentation of more 

components.

AsyncRestTemplate

As AsyncRestTemplate must modify instrumentation during class instantiation, injection 

of the object eagleEyeAsyncRestTemplate, which supports service discovery by default, is 

required to enable distributed tracing.

@Autowired
private AsyncRestTemplate eagleEyeAsyncRestTemplate;

FatJar packaging plug-in

To use Maven to package the pandora-boot project into FatJar, add pandora-boot-maven-

plugin in pom.xml. To avoid conflicts with other packaging plug-ins, do not add configurat

ions of any other FatJar plug-ins to the plugin field in build.

1.3.3.4.5 Migrate Dubbo applications to HSF (not
recommended)
You can migrate applications developed with Dubbo to HSF by adding Maven

dependencies or adding or modifying the Maven packaging plug-in and modifying the

configuration. However, we recommend that beginners do not use this method because

EDAS already supports applications in the native Dubbo framework.

For more information about how to develop applications in the native Dubbo framework,

see Use Spring Boot to develop Dubbo applications.

Note:

This topic describes how to modify the configuration. The application development

process is not described in detail in this topic. For more information about how to develop

applications, download these Demos for converting Dubbo applications to HSF applicatio

ns.

106 Issue: 20200513

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/edas-dubbo-spring-boot-demo.zip?spm=a2c4g.11186623.2.15.5cbe4b30GyTZdL&file=edas-dubbo-spring-boot-demo.zip
http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/edas-dubbo-spring-boot-demo.zip?spm=a2c4g.11186623.2.15.5cbe4b30GyTZdL&file=edas-dubbo-spring-boot-demo.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Add Maven dependencies

In the project configuration file pom.xml, add the spring-cloud-starter-pandora

 dependency.

<dependency> 

    <groupId>org.springframework.cloud</groupId> 

    <artifactId>spring-cloud-starter-pandora</artifactId>

    <version>1.3</version>

</dependency> 

Add or modify the Maven packaging plug-in

In the project configuration file pom.xml, add or modify the Maven packaging plug-in.

Note:

To avoid conflicts with other packaging plug-ins, do not add configurations of any other

FatJar plug-ins to the plugin field in build.

<build> 

    <plugins> 

        <plugin> 

            <groupId>com.taobao.pandora</groupId> 

            <artifactId>pandora-boot-maven-plugin</artifactId>

            <version>2.1.9.1</version>

            <executions> 

                <execution> 

                    <phase>package</phase> 

                    <goals> 

                        <goal>repackage</goal> 

                    </goals> 

                </execution> 

            </executions> 

        </plugin> 

    </plugins> 

Issue: 20200513 107



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

</build> 

Modify the configuration

In the Spring Boot startup class, add the following two lines for loading Pandora:

import com.taobao.pandora.boot.PandoraBootstrap;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication

public class ServerApplication {

    public static void main(String[] args) {

        PandoraBootstrap.run(args);

        SpringApplication.run(ServerApplication.class, args);

        PandoraBootstrap.markStartupAndWait();

    }

}

1.4 Deploy applications

1.4.1 Deploy applications in the console

1.4.1.1 Deploy web applications in ECS clusters
In an ECS cluster, an ECS instance can only deploy one application. This topic describes

how to create a Java web application that only contains a welcome page, and use a WAR

package to deploy, update, view, and manage the application in the Enterprise Distributed

Application Service (EDAS) console.

Prerequisites

Prerequisites

• You have activated EDAS.

• You have created a VPC.

• (Optional) You have created a namespace.

• You have created an ECS cluster.

Procedure

108 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management > Applications.

3. On the Applications page, select a region and a namespace (optional). Click Create

Application.

4. On the Application Information page that appears, enter the application information.

After setting the parameters, click Create an Empty Application. This creates an

application without any instance. Click Next. On the Application Configuration page, set

the required parameters.

• Namespace: Select a region from the left-side drop-down list and select a 

namespace from the right-side drop-down list. If you do not select a namespace, the 

default one is used.

• Cluster Type: Select ECS Cluster from the left-side drop-down list, and select a

specific ECS cluster from the right-side drop-down list.

• Application Name: The name of the application.

• Deployment Method: After selecting an ECS cluster, you can deploy the application

through a WAR package or a JAR package.

• Application Runtime Environment:

- Deploy applications by using a WAR package:

■ If you want to create a native Spring Cloud or Dubbo application, select apache-

tomcat.

■ If you want to create an HSF application, select EDAS-Container.

- Deploy applications by using a JAR package:

■ If you want to create a native Spring Cloud or Dubbo application, select Default

Environment.

■ If you want to create an HSF application, select EDAS-Container.

• Java Environment: Select Open JDK 8 or Open JDK 7.

• Application Description: Enter the basic information of the application. The

maximum length of the description is 128 characters.

5. On the Application Configuration page, add an instance and configure the instance as

instructed. After configuring the instance, click Create.

• Instance Source: In ECS clusters, you can add an instance in any of the following

three methods. If you do not select any instance, click Create an Empty Application

Issue: 20200513 109



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

to create an application that contains no instances. Then, add instances to the

application through application scale-out and deploy the application.

- Select an instance from the cluster: Click Add next to Available Instances. On the

Instances page, select an idle instance from the cluster of the application, click > to

add the instance to the Selected Instances area, and then click OK.

- Create an instance based on the existing instance specifications:

a. Click Host Selection next to Template Host.

b. In the Template Host dialog box, select any instance in the cluster and use it as

the template. Click Recycling Mode, and then click OK in the lower-right corner.

c. On the Application Configuration tab page, configure the password and

purchase quantity. Then, select ECS Service Terms | Image Service Terms.

- Create an instance from a template:

a. Click Select Template next to Launch Template.

b. In the Select Template to Be Launched dialog box, select the template based on

which the instance is created and the template version, select Recycling Mode,

and then click OK in the lower-right corner.

c. On the Application Configuration tab page, configure the purchase quantity of

the instance, and select ECS Service Terms | Image Service Terms.

• Deploy Now: This option is available only after you have selected an instance. Turn

on Deploy Now and configure the instance as instructed.

• File Uploading Method: Select Upload WAR Package or WAR Package Location.

- Upload WAR Package: Click Select File and select the target WAR package.

- WAR Package Location: Copy the storage path of the WAR package and paste the

path to the WAR package location bar.

Note:

The name of the application deployment package can only contain letters,

numbers, hyphens (-), and underscores (_). The JAR package can be uploaded

110 Issue: 20200513

https://help.aliyun.com/document_detail/73039.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

only when the JAR package deployment method is selected. Otherwise, you can

only deploy the application by using the WAR package.

• Version: Specify the version, for example, 1.1.0. We recommend that you do not use

the timestamp as the version number.

• Application Health Check: (Optional) Specify a URL for application health check. The

system checks the health of the application after the container is started or is running.

Then, it performs a service routing task based on the health check result. A sample

URL is http://127.0.0.1:8080/_etc.html.

• Batch: Specify the number of batches. You can specify the number of batches and

publish the application to the selected instances in batches only when two or more

instances are selected.

• Batch Mode: Select Automatic or Manual. When you select Automatic, you need

to specify Batch Wait Time, which is the interval between different application

deployment batches.

Result

Wait several minutes until the application is created. After the application is created, you

can view the application information on the Application Details page. On the Application

Details page, click the Instance Information tab. On the Instance Information tab page,

view the instance running status. If Running Status/Time is Running, the application is

published.

1.4.1.2 Deploy applications in Container Service
Kubernetes clusters by using images
You can deploy applications in Container Service Kubernetes clusters by using images. For

this purpose, you must prepare images in advance, create a Container Service Kubernetes

cluster in the Container Service for Kubernetes console, import the cluster to the EDAS

console, and then create and deploy applications in the cluster.

Prerequisites

Prerequisites

• Your Alibaba Cloud account has activated EDAS and Container Service for Kubernetes.

• You have granted the required permissions for Container Service for Kubernetes.

• You have prepared the application images (the Container Service Kubernetes cluster).

Context

Issue: 20200513 111

http://127.0.0.1:8080/_etc.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Container Service for Kubernetes provides enterprise-level, high-performance scaling

 management for Kubernetes containerized applications throughout the application 

lifecycle. This service simplifies cluster creation and scale-out and integrates Alibaba Cloud 

capabilities in virtualization, storage, networking, and security. It provides an ideal runtime 

environment for Kubernetes containerized applications.

Procedure

Step 1: Create a Container Service Kubernetes cluster.

1. Log on to the Container Service for Kubernetes console.

2. In the left-side navigation pane, choose Clusters. On the Cluster List page, click Create

Kubernetes Cluster.

Container Service allows you to create three types of clusters, namely, Kubernetes 

clusters, managed Kubernetes clusters, and multi-zone Kubernetes clusters.

• Create Kubernetes clusters: Three of the instances that you buy and add must be used

 as master nodes. Applications cannot be deployed on these three instances. You can 

only deploy applications on other instances (workers).

• Create managed Kubernetes clusters: All the instances that you buy and add are 

workers and can be used to deploy applications.

• Create multi-zone Kubernetes clusters: Unlike Kubernetes clusters, in multi-zone 

Kubernetes clusters, nodes are deployed in different zones. When one zone becomes

 unavailable, services fail over to nodes in other zones. Three of the instances that 

you buy and add must be used as master nodes. Applications cannot be deployed on 

these three instances. You can only deploy applications on other instances (workers).

Step 2: Import the Container Service Kubernetes cluster to the EDAS console

3. Log on to the EDAS console.

4. In the left-side navigation pane, choose  Resource Management > Clusters.

5. On the Clusters page, click Container Service K8S Cluster. In the cluster list, locate the

row that contains the Container Service Kubernetes cluster you created and click Import

in the Actions column. In the Import Kubernetes Cluster dialog box, click Import.

When the button in the Actions column of the target cluster changes to Delete and the

cluster status is Running, the cluster is imported to EDAS.

Step 3: Create applications in the Container Service Kubernetes cluster.

6. In the left-side navigation pane, choose Application Management.

112 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

7. On the Applications page, set Region and Namespace, and then click Create

Application in the upper-right corner.

8. On the Application Information page, set the basic application information and

parameters, and click Next Step: Application Configurations.

• Namespace: Select a region from the left-side drop-down list. Select a namespace

from the right-side drop-down list. If no namespace is set, Default is selected.

• Cluster Type: Select Container Service K8S Cluster from the left-side drop-down list

and select a specific cluster from the right-side drop-down list.

• K8S Namespace: Internal system objects are allocated to different namespaces to

form logically isolated projects, groups, or user groups. In this way, different groups

can share resources of the whole cluster while being managed separately.

- default: When the object is not set with a namespace, "default" is used.

- kube-system: The namespace used by objects that are created by the system.

- kube-public: The namespace that is automatically created by the system. It can be

read by all users, including users that are not authenticated.

• Application Name: The name of the application.

• Application Description: The basic information of the application.

9. Go to the Application Configuration page and configure an image. By default, Image is

selected for Deployment Method. Select an image inMy Image.

10.Set pods.

a) Set Total Pods.

When a pod fails to run or encounters a fault, it can automatically restart or services

 on the pod seamlessly fail over to other pods, ensuring a high availability for 

applications. For stateful applications that use persistent storage, instance data is 

retained when the applications are redeployed. For stateless applications, instance 

data is not retained when the applications are redeployed. You can set Total Pods to a

 maximum value of 50.

b) Set Single Pod Resource Quota.

No quota is set by default. Therefore, both the CPU Cores and Memory values of a 

single pod are 0. To set the quota, enter a number.

c) Optional: Set the startup command and parameters.

Note:

Issue: 20200513 113



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

If you do not know the CMD and ENTRYPOINT content of the original Dockerfile

image, do not modify the custom startup command and parameters. Otherwise, you

cannot create applications due to an incorrect custom command.

• Startup Command: Enter the startup command. To run the CMD ["/usr/sbin/sshd

","-D"] command, enter /usr/sbin/sshd –D in the text box.

• Startup Parameters: Enter one parameter per line. For example, args:["-c"; "while

 sleep 2"; "do echo date"; "done"] contains four parameters. In this case, enter the

parameters in four lines.

11.Set environment variables.

When creating the application, inject the environment variables you have entered to the 

container to be generated. This saves you from repeatedly adding common environmen

t variables.

If you are using a MySQL image, refer to the following environment variables:

• MYSQL_ROOT_PASSWORD: (required) allows you to set a root password for MySQL.

• MYSQL_USER and MYSQL_PASSWORD: (optional) allow you to add an account besides

 the root account and set a password.

• MYSQL_DATABASE (optional): allows you to set the database that you want to create 

when the container is generated.

If you are using another type of image, configure the environment variables as needed.

12.Set persistent storage.

In the Container Service Kubernetes cluster of Alibaba Cloud, the physical storage of the

native volume object is not persistent. That is to say, the volume object is a temporary

storage object and has the same lifecycle as the Kubernetes pods. You can use Network

 Attached Storage (NAS), a persistent storage service of Alibaba Cloud, to store instance

114 Issue: 20200513

https://docs.docker.com/engine/reference/builder/?spm=a2c4g.11186623.2.32.57303011KMO7vT#cmd
https://docs.docker.com/engine/reference/builder/?spm=a2c4g.11186623.2.33.57303011KMO7vT#entrypoint
https://help.aliyun.com/product/27516.html?spm=a2c4g.11186623.2.36.57303011KMO7vT
https://help.aliyun.com/product/27516.html?spm=a2c4g.11186623.2.36.57303011KMO7vT


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

data persistently. The instance data is retained when the instance is upgraded or

migrated.

Note: Before enabling persistent storage, ensure that you have activated NAS for your

EDAS account. The billing method of NAS is Pay-As-You-Go. Ensure that your account

has a sufficient balance or is billed in Pay-As-You-Go mode.

• Storage Type: The default value is NAS, which cannot be changed.

• Storage Service Type: Currently, only SSD (Performance Type) is supported, which

cannot be changed.

• Select NAS:

- Buy New NAS: Select a NAS mount directory and a local mount directory. A single

region supports up to 10 NAS instances. Once you have 10, you cannot create any

more. If you must create more instances, open a ticket.

- Use Existing NAS: Select an existing NAS instance. You can create up to two mount

points. Only compliant NAS instances appear in the drop-down list.

• Mount Directory: Set the mount directory command.

13.Set local storage.

You can map part of the file system of the host to the container as needed. Before using

this function, read hostpath and consider the rationality of the solution.

Table 1-3: File types

Parameter Value Description

Default Null string The file is directly mounted
, without checking the file 
type.

(New) File directory DirectoryOrCreate The file directory. A new 
directory is created if it does
 not exist.

File Directory Directory The file directory. Container
 startup fails if it does not 
exist.

(New) File FileOrCreate The file. A new file is 
created if it does not exist.

File File The file. Container startup 
fails if it does not exist.

Issue: 20200513 115

https://www.aliyun.com/product/nas?spm=a2c4g.11186623.2.37.57303011KMO7vT
https://help.aliyun.com/document_detail/27523.html?spm=a2c4g.11186623.2.38.57303011KMO7vT
https://kubernetes.io/docs/concepts/storage/volumes/?spm=a2c4g.11186623.2.40.57303011KMO7vT#hostpath


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Parameter Value Description

Socket Socket The standard UNIX Socket 
file. Container startup fails 
if it does not exist.

CharDevice CharDevice The character device file. 
Container startup fails if it 
does not exist.

BlockDevice BlockDevice The block storage device 
file. Container startup fails 
if it does not exist.

Note:

You do not need to concern yourself with the Value column in this step. However, the

Value column may be used by APIs after the application is created.

14.Configure the application lifecycle management.

The Container Service Kubernetes cluster supports stateless applications and stateful 

applications.

• Stateless: A stateless application supports multi-replica deployment. When a

 stateless application is redeployed, instance data is not retained. A stateless 

application can be either of the following applications:

- A web application that does not retain instance data during upgrade or migration.

- An application that can be scaled out to address changing service volumes.

• Stateful: A stateful application stores data that requires persistent storage and retains

 instance data during upgrade or migration. A stateful application can be either of the

 following applications:

- An application that frequently operates on containers through SSH.

- An application that requires persistent data storage (such as applications using

 MySQL) or that supports inter-cluster election and service discovery, such as 

ZooKeeper and etcd.

You can set lifecycle management for a stateful application as needed.

Lifecycle management scripts:

• Poststart script: This is a container hook, which is triggered immediately after a

container is created to notify the container of its creation. The hook does not pass any

116 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

parameters to the corresponding hook handler. If the corresponding hook handler

fails to run, the container is killed and the system determines whether to restart the

container according to the restart policy of the container. For more information, see 

Container Lifecycle Hooks

• PreStop script: This is a container hook, which is triggered before a container is

deleted. The corresponding hook handler must be completed before the container

deletion request is sent to Docker daemon. Docker daemon sends an SGTERN

semaphore to itself to delete the container, regardless of the hook handler execution

result. For more information, see Container Lifecycle Hooks

• Liveness script: This is a container status probe, which monitors the health status

of applications. If an application is unhealthy, the container is deleted and created

again. For more information, see Pod Lifecycle

• Readiness script: This is a container status probe, which monitors whether

applications have started successfully and are running properly. If an application is

abnormal, the container status is updated. For more information, see Pod Lifecycle

15.Then, click Create.

Result

It takes several minutes to create an application. You can trace the creation process based

on the change record and change details. Kubernetes applications do not need to be

deployed because they are immediately deployed upon creation. After the application is

created, go to the Application Details page to check whether the pod status in the Instance

Information section is Running. If yes, the application is published.

1.4.2 Use CLI to deploy applications

1.4.2.1 Use toolkit-maven-plugin to automatically deploy
applications
Previously, EDAS applications had to be deployed according to the step-by-step

instructions in the console. To improve the developer experience, toolkit-maven-plugin

has been provided for auto application deployment. You can use toolkit-maven-plugin to

automatically deploy applications that are developed based on the HSF, Dubbo, or Spring

Cloud framework in ECS or Swarm clusters.

Issue: 20200513 117

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/?spm=a2c4g.11186623.2.43.57303011KMO7vT
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/?spm=a2c4g.11186623.2.43.57303011KMO7vT
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/?spm=a2c4g.11186623.2.44.57303011KMO7vT
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/?spm=a2c4g.11186623.2.45.57303011KMO7vT
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/?spm=a2c4g.11186623.2.46.57303011KMO7vT


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Automatically deploy applications

1. Add the following plug-in dependencies to the pom.xml file in your packaged project.

<build>
    <plugins>
        <plugin>
        <groupId>com.alibaba.cloud</groupId>
        <artifactId>toolkit-maven-plugin</artifactId>
        <version>1.0.2</version>
        </plugin>
    </plugins>
</build>

2. Create a file named .edas_config.yaml in the root directory of the packaged project. If

the packaged project is a Maven submodule, create the file in the submodule directory.

env:  region_id: cn-beijingapp:  app_id: eb20****-e6ee-4f6d-a36f-5f6a5455****   
endpoint: xxxxx

In the preceding configuration, region_id indicates the ID of the region where the ECS

instance that hosts the application is located. app_id indicates the ID of the application. 

endpoint indicates the point of presence (POP) of EDAS in Apsara Stack. The preceding

parameter values are for reference only. Replace them with your actual application

parameters. For example, to obtain an endpoint, contact EDAS Customer Services. For

more information about configuration items, see More configuration items.

To obtain the values of these configuration items, perform the following steps:

a. Log on to the EDAS console.

b. In the left-side navigation pane, choose Application Management. On the

Applications page, locate the row that contains the target application and click

the name of the application. On the Application Management page, click Deploy

Application.

c. On the Deploy Application page, click Generate Maven Plug-in Configuration to

obtain the parameter values.

3. Create an account file and configure the AccessKey ID and AccessKey Secret in yaml

format. Obtain the AccessKey ID and AccessKey Secret on the User Info page in the

Alibaba Cloud console. We recommend that you use a RAM user that has been granted

118 Issue: 20200513

https://ak-console.aliyun.com/#/accesskey
https://help.aliyun.com/document_detail/44023.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

application management permissions to improve the application security. The following

provides a configuration example:

access_key_id: abcaccess_key_secret: 1234567890

Note:

In the preceding configuration, abc and 1234567890 are for reference only. Replace

them with your actual AccessKey ID and AccessKey Secret. In this configuration, the

AccessKey ID and AccessKey Secret are only used to generate request signatures and

not for any other purposes, such as network transfers.

4. Go to the root directory (or the submodule directory if multiple Maven modules exist) 

and run the following packaging command:

mvn clean package toolkit:deploy -Daccess_key_file={account file path}

The preceding parameters are described as follows:

• toolkit:deploy: Use toolkit-maven-plugin to deploy the application after it is

packaged successfully. The application is deployed only when this parameter is

configured.

• access_key_file: The file of the Alibaba Cloud account. For more information about

how to specify a key pair, see Account configuration.

5. After you run the preceding command, you have successfully deployed the application 

with toolkit-maven-plugin.

More configuration items

Configuration items for deploying applications are classified as follows:

• Basic environment variables (env)

• Application configuration items (app)

• Storage configuration items (oss)

The configuration items currently supported are listed in the following table.

Type Parameter Required Note

region_id Yes The ID of the region 
where the applicatio
n is located.

env

endpoint No The POP of the 
application.

Issue: 20200513 119



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Type Parameter Required Note

app_id Yes The ID of the 
application.

package_version No The version of the 
deployment package
. The default value is 
the string of the pom
.xml file version plus 
the instance creation
 time, for example, "1
.0 (2018-09-27 19:00
:00)".

desc No The deployment 
description.

group_id No The ID of the 
group to which 
the application 
is deployed. The 
default value is All 
Groups.

batch No The number of 
deployment batches
. The default value is 
1 and the maximum 
value is 5.

app

batch_wait_time No The waiting time (in
 minutes) between 
deployment batches
. The default value is
 0.

120 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Type Parameter Required Note

stage_timeout No The timeout period (
in minutes) for each
 change stage. The 
default value is 5. If
 batch_wait_time is 
set, it is automatica
lly counted with this
 parameter during 
calculation. During
 runtime, if a stage
 waits for a time 
longer than this 
threshold value, the
 plug-in automatica
lly exits.

region_id No The ID of the region
 where the target 
bucket is located. 
The default value is 
the ID of the region 
where the applicatio
n is located.

oss

bucket No The name of the 
target bucket. The 
default value is the
 free OSS bucket 
provided by EDAS. 
If OSS configuration
 items are specified
, you must specify 
the bucket parameter
. Otherwise, the 
instances use the
 free OSS bucket
 automatically 
allocated by EDAS.

Issue: 20200513 121



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Type Parameter Required Note

key No The custom path
 used to upload 
the application 
package to OSS. 
The instances use 
the free OSS bucket 
provided by EDAS by
 default. If you use a 
specified OSS bucket
, specify the package
 storage path in this
 parameter and use
 the {region_id}, {
app_id}, and {version
} variables to set 
the path through
 parameters, for
 example, pkgs/
petstore/{version
}/store.war. The 
default value is {
region_id}/{app_id}/{
version}.

access_key_id No The custom account
 ID that is used
 to upload the 
application package
 to OSS.

access_key_secret No The custom account
 key that is used
 to upload the 
application package
 to OSS.

Configuration example 1: Specify the group and the deployment package version

122 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Assume that you want to deploy application eb20dc8a-e6ee-4f6d-a36f-5f6a545**** to

group 06923bb9-8c5f-4508-94d8-517b692f**** in China (Beijing). The version of the

deployment package is 1.2. In this case, the configuration is as follows:

env:  region_id: cn-beijingapp:  app_id: eb20dc8a-e6ee-4f6d-a36f-5f6a5455****  
package_version: 1.2  group_id: 06923bb9-8c5f-4508-94d8-517b692f****

Configuration example 2: Specify an OSS bucket

Assume you want to deploy an application whose ID is eb20dc8a-e6ee-4f6d-a36f-5f6a5455

**** and upload the deployment package to your own bucket named release-pkg in China

(Beijing). The file object name is my.war, the ID of the OSS account is ABC, and the key of

the OSS account is 1234567890. In this case, the configuration is as follows:

env:  region_id: cn-beijingapp:  app_id: eb20dc8a-e6ee-4f6d-a36f-5f6a5455****oss:  
region_id: cn-beijing  bucket: release-pkg  key: my.war    access_key_id: ABC  access_key
_secret: 1234567890

Configuration file

• When no configuration file is specified, the plug-in uses the .edas_config.yaml file in

the root directory of the packaged project as the configuration file by default. If the

packaged project is a submodule of the Maven project, the configuration file is in the

root directory of the submodule by default but not the root directory of the entire Maven

project.

• You can also specify a configuration file by setting the -Dedas_config=xxx parameter.

• If the default configuration file exists but another configuration file is specified using the 

parameter, the plug-in uses the latter.

Account configurations and priorities

When using this plug-in to deploy applications, you must provide the AccessKey ID and

 AccessKey Secret of an Alibaba Cloud account for application deployment. Currently, 

the plug-in supports multiple configuration methods. If duplicate configurations exist, 

the configuration method with the higher priority overrides that with the lower priority. 

Configuration methods are listed as follows in descending order of priority:

Issue: 20200513 123



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Specify the AccessKey ID and AccessKey Secret in the CLI: You can specify the

AccessKey ID and AccessKey Secret in either of the following ways:

- If you package the project by running Maven commands, specify both parameters

with -Daccess_key_id=xx -Daccess_key_secret=xx.

- When you configure this plug-in in the pom.xml file, configure both parameters as 

follows:

<plugin>     <groupId>com.alibaba.cloud</groupId>     <artifactId>toolkit-maven-
plugin</artifactId>     <version>1.0.2</version><configuration>    <accessKeyId>abc
</accessKeyId>    <accessKeySecret>1234567890</accessKeySecret></configurat
ion></plugin>

• Specify the account file in the CLI (recommended): When you package the project by

running Maven commands, specify the account file in yaml format with -Daccess_ke

y_file={account file path. For example:

access_key_id: abcaccess_key_secret: 1234567890

• Use the default Alibaba Cloud account file: If you choose not to specify an account

in either of the preceding ways, the plug-in uses the Alibaba Cloud account you set

previously to deploy the application.

- aliyuncli: If you have used the latest Alibaba Cloud CLI and configured your Alibaba

Cloud account, Alibaba Cloud generates the .aliyuncli directory in the current Home

directory and creates the credentials file in the .aliyuncli directory to store your

account information. Here, the MacOS system is used as an example. Assume that

the system user is jack. Then, the following information is stored in the /Users/jack/.

aliyuncli/credentials file:

[default]aliyun_access_key_secret = 1234567890aliyun_access_key_id = abc

This plug-in uses this account file as the account for deploying the application.

• aliyun: If you have used a legacy Alibaba Cloud CLI and configured the Alibaba Cloud

account, the Alibaba Cloud CLI generates the .aliyun directory in the current Home

directory and creates the config.json file in the .aliyun directory. Here, the MacOS

system is used as an example. Assume that the system user is jack. Then, the following

information is stored in the /Users/jack/.aliyun/config.json file:

{  "current": "",  "profiles": [{      "name": "default",      "mode": "AK",      "access_key
_id": "",      "access_key_secret": "",      "sts_token": "",      "ram_role_name": "",      "
ram_role_arn": "",      "ram_session_name": "",      "private_key": "",      "key_pair_name
": "",      "expired_seconds": 0,      "verified": "",      "region_id": "",      "output_format":
 "json",      "language": "en",      "site": "",      "retry_timeout": 0,      "retry_count": 0  }, {
      "name": "",      "mode": "AK",      "access_key_id": "abc",      "access_key_secret": "

124 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

xxx",      "sts_token": "",      "ram_role_name": "",      "ram_role_arn": "",      "ram_sessio
n_name": "",      "private_key": "",      "key_pair_name": "",      "expired_seconds": 0,      "
verified": "",      "region_id": "cn-hangzhou",      "output_format": "json",      "language":
 "en",      "site": "",      "retry_timeout": 0,      "retry_count": 0  }],  "meta_path": ""}

• System environment variables: Then, the plug-in attempts to retrieve the values of

access_key_id and access_key_secret from system environment variables. In other

words, the plug-in retrieves the values from System.getenv("access_key_id") and System

.getenv("access_key_secret").

1.4.2.2 Use CLI to deploy applications in EDAS
The command line interface (CLI) was the most widely used type of user interface before

graphical user interfaces (GUIs) become popular. CLIs usually do not support the use of a

mouse. Instead, you enter instructions through a keyboard, and the computer receives and

runs the instructions. By using the CLI, you can accurately control the system and efficiently

and reliably perform complex operations.

Prerequisites

Before performing the steps in this tutorial, you must have done the following:Import ECS

instances

Context

Alibaba Cloud CLI is an open source tool built on the Go SDK provided by Alibaba Cloud.

Alibaba Cloud CLI can directly call the EDAS API. Make sure that you have activated EDAS

and know how to use SDKs to call operations in EDAS. For more information about how

to call operations, see Developer Guide . You can use Alibaba Cloud CLI to deploy all

applications developed based on the HSF, Dubbo, or Spring Cloud framework in ECS or

Swarm clusters in EDAS.

Procedure

1. Install CLI

Alibaba Cloud CLI is available after you download and decompress it. It is supported 

on MacOS, Linux, and Windows (64-bit) clients. Download the appropriate installation 

package:

• MacOS

• Linux

• Windows (64-bit)

After decompressing the installation package, move the aliyun file to the /usr/local/bin

 directory or add it to the $PATH environment variable.

Issue: 20200513 125

https://github.com/aliyun/aliyun-cli/releases/download/v3.0.6/aliyun-cli-darwin-amd64.tar.gz
https://github.com/aliyun/aliyun-cli/releases/download/v3.0.6/aliyun-cli-linux-amd64.tar.gz
https://github.com/aliyun/aliyun-cli/releases/download/v3.0.6/aliyun-cli-windows-amd64.exe.zip


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. Configure CLI

Before using Alibaba Cloud CLI, run the aliyun configure command to configure the

AccessKey, region, and language for calling your Alibaba Cloud account.

You can create and view your AccessKey on the Security Management page, or obtain

the AccessKey from your system administrator.

$ aliyun configureConfiguring profile 'default' ...Aliyun Access Key ID [None]: <Your 
AccessKey ID>Aliyun Access Key Secret [None]: <Your AccessKey Secret>Default Region
 Id [None]: cn-hangzhouDefault output format [json]: jsonDefault Language [zh]: zh

3. Use CLI to create applications

Run the following script to create an application:

  #! /bin/bash  # Region for deployment  REGION="cn-beijing"  # ID of the ECS instance
  ECS_ID="i-2z************b6"  # ID of the VPC where the ECS instance is located  VPC_ID
="vpc-t**********c"  # Name of a namespace (which is automatically created if it does
 not exists)  NAMESPACE="myNamespace"  # Name of a cluster (which is automatica
lly created)  CLUSTER_NAME="myCluster"  # Name of an application  APP_NAME
="myApp"  # Step 1: Create a namespace.  aliyun edas InsertOrUpdateRegion --
RegionTag $REGION:$NAMESPACE --RegionName $NAMESPACE --region $REGION --
endpoint "edas.cn-beijing.aliyuncs.com" >> /dev/null  # Step 2: Create a cluster.  
CLUSTER_ID=`aliyun edas InsertCluster --ClusterName $CLUSTER_NAME --ClusterTyp
e 2 --NetworkMode 2 --VpcId $VPC_ID --logicalRegionId $REGION:$NAMESPACE --
region $REGION --endpoint "edas.cn-beijing.aliyuncs.com" | sed -E 's/. *"ClusterId
":"([a-z0-9-]*)".*/\1/g'`  # Step 3: Convert the ECS instance (which takes some time
).  aliyun edas TransformClusterMember --InstanceIds $ECS_ID --TargetClusterId $
CLUSTER_ID --Password Hello1234 >> /dev/nullfor i in `seq 300`  do      OUT=`aliyun
 edas ListClusterMembers --ClusterId $CLUSTER_ID | grep EcuId` && break      sleep
 1  done  ECU_ID=`echo $OUT | sed -E 's/. *"EcuId":"([a-z0-9-]*)".*/\1/g'`  # Step 4: 
Create an application.  APP_ID=`aliyun edas InsertApplication --ApplicationName $
APP_NAME --BuildPackId 51 --EcuInfo $ECU_ID --ClusterId $CLUSTER_ID --logicalReg
ionId $REGION:$NAMESPACE | sed -E 's/. *"AppId":"([a-z0-9-]*)".*/\1/g'`  printf "An 
application is created by CLI, App ID:"$APP_ID"\n"

4. Use CLI to deploy applications

Run the following code to use Alibaba Cloud CLI to deploy an application:

  #! /bin/bash  # ID of the application to be deployed (which must be created in 
advance)  APP_ID="87a6*********************4d1"  # ID of the group to which the 
application belongs  GROUP_ID="54b*********************f27"  # Name of the OSS 
bucket for uploading (the bucket must support public read)  OSS_BUCKET="eda*****
mo"  # Installation package file (created by your CI system)  PACKAGE="hello-edas.war
"  # Step 1: Upload the deployment package to OSS.  aliyun oss cp -f $PACKAGE oss://
$OSS_BUCKET/$PACKAGE >> /dev/null  PKG_URL=`aliyun oss sign oss://$OSS_BUCKET
/$PACKAGE|head -1`  # Step 2: Initiate a deployment request.  CO_ID=`aliyun edas 
DeployApplication --AppId $APP_ID --PackageVersion $VERSION  --DeployType url
 --WarUrl "${PKG_URL}" --GroupId $GROUP_ID | sed -E 's/. *"ChangeOrderId":"([a-z0-
9-]*)".*/\1/g'`  # Step 3: Wait until the application is deployed.  for i in `seq 300`  do 

126 Issue: 20200513

https://usercenter.console.aliyun.com/#/manage/ak


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

     STATUS=`aliyun edas GetChangeOrderInfo --ChangeOrderId $CO_ID | sed -E 's/. *"
Status":(.).*/\1/g'`      [ 2 = ${STATUS} ] && break      sleep 1  done

In the preceding configuration items, APP_ID and GROUP_ID are two configuration 

parameters of the application. All parameters in the preceding code are for reference 

only. Replace them with the actual values.

To obtain the values of these configuration items, perform the following steps:

a) Log on to the EDAS console.

b) In the left-side navigation pane, choose Application Management. On the

Applications page, locate the row that contains the target application and click

the name of the application. On the Application Management page, click Deploy

Application.

c) On the Deploy Application page, click Generate Maven Plug-in Configuration to

retrieve the parameter values.

1.4.2.3 Use Alibaba Cloud Toolkit for Eclipse to deploy
applications
Alibaba Cloud Toolkit (hereinafter referred to as "Cloud Toolkit") is a free IDE plug-in that

helps users use Alibaba Cloud more efficiently. You only need to register or use an existing

Alibaba Cloud account to download Cloud Toolkit for free. After the plug-in is downloaded,

you can install it to Eclipse. You can use Cloud Toolkit to automatically deploy applications

that are developed based on the HSF, Dubbo, or Spring Cloud framework in ECS or Swarm

clusters. This topic describes how to install Cloud Toolkit to Eclipse and use Cloud Toolkit to

deploy an application in EDAS.

Prerequisites

• You have downloaded and installed JDK 1.8 or later.

• You have downloaded and installed Eclipse IDE 4.5.0 (code: Mars) or later. The program

must be suitable for Java EE developers.

Install Cloud Toolkit

1. Start Eclipse.

2. In the top navigation bar, choose Help > Install New Software.

3. In the Available Software dialog box, set Work with to the URL http://toolkit.aliyun.com

/eclipse/ of Cloud Toolkit for Eclipse.

Issue: 20200513 127

http://java.com/zh_CN/download/
http://www.eclipse.org/downloads/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. In the Name section, select Alibaba Cloud Toolkit Core and Alibaba Cloud Toolkit

Deployment Tools. In the Details section, clear Connect all update sites during install to

find required software. Then, click Next.

5. Perform the subsequent steps as instructed on the Install page of Eclipse.

Note:

During the installation process, a dialog box indicating no digital signature may appear.

In this case, click Install anyway.

6. After Cloud Toolkit is installed, restart Eclipse. Then, the Alibaba Cloud Toolkit icon 

appears in the toolbar.

Configure Cloud Toolkit

1. Start Eclipse.

2. Set the AccessKey ID and AccessKey Secret.

a. In the toolbar, click the drop-down arrow of the Alibaba Cloud Toolkit icon. In the

drop-down list, select Alibaba Cloud Preference....

b. In the Preference (Filtered) dialog box, choose Accounts from the left-side navigation

pane.

c. On the Accounts page, set Access Key ID and Access Key Secret, and click OK.

Note:

If you use the AccessKey ID and AccessKey Secret of a RAM user, make sure that the

RAM user has the permission to deploy applications. For more information about

how to grant permissions to RAM users, see RAM account authorization.

• If you already have an Alibaba Cloud account, on the Accounts page, click Manage

existing Account to go to the logon page of Alibaba Cloud. After you log on to the

system with an existing account, you are redirected to the Security Management

page. On this page, obtain the AccessKeyId and AccessKeySecret of the account.

• If you do not have an Alibaba Cloud account, on the Accounts page, click Sign

up. You are redirected to the Register account page of Alibaba Cloud. On this

page, register an Alibaba Cloud account. Then, obtain the AccessKeyId and

AccessKeySecret of the account.

128 Issue: 20200513

https://help.aliyun.com/document_detail/44023.html#h2-ram-4


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

3. Set an endpoint.

a. In the Preference (Filtered) dialog box, choose Appearance & Behavior > Endpoint

from the left-side navigation pane.

b. On the Endpoint page, set an endpoint and click Apply and Close.

Note:

To obtain an endpoint, contact EDAS Customer Services.

Deploy applications to EDAS

Currently, you can use Cloud Toolkit to deploy applications to EDAS by using WAR or JAR 

packages.

1. In the Package Explorer left-side navigation pane of Eclipse, right-click your application

project and choose Alibaba Cloud > Deploy to EDAS from the shortcut menu.

2. In the Deploy to EDAS dialog box, select Region, Namespace, Application, Group, and

Deploy File as needed. Then, click Deploy.

Parameters for deploying an application to EDAS:

• Region: The region where the application is located.

• Namespace: The namespace where the application is located.

• Application: The name of the application.

• Group: The group of the application.

Note:

If you have not created an application in EDAS, click Create application on EDAS

console in the upper-right corner of the dialog box to go to the EDAS console and

create an application. For more information about how to create an application, see 

Deploy Java applications in ECS clusters.

3. When the deployment process starts, the deployment logs are printed on the Console 

tab of Eclipse. You can view the deployment result based on the logs.

Stop Cloud Toolkit

If you want to stop Cloud Toolkit, end the EDAS-deploy process on the Progress tab.

Issue: 20200513 129

https://help.aliyun.com/document_detail/88020.html
https://help.aliyun.com/document_detail/88020.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.4.2.4 Use Alibaba Cloud Toolkit for IntelliJ IDEA to deploy
applications
Alibaba Cloud Toolkit for IntelliJ IDEA (hereinafter referred to as "Cloud Toolkit") is a free

IDE plug-in that helps users use Alibaba Cloud more efficiently. You only need to register

or use an existing Alibaba Cloud account to download Cloud Toolkit for free. After the

plug-in is downloaded, you can install it to IntelliJ IDEA. You can use Cloud Toolkit to

automatically deploy applications that are developed based on the HSF, Dubbo, or Spring

Cloud framework in ECS or Swarm clusters. This topic describes how to install Cloud Toolkit

in IntelliJ IDEA and how to use Cloud Toolkit to deploy an application in EDAS.

Prerequisites

• You have downloaded and installed JDK 1.8 or later.

• You have downloaded and installed IntelliJ IDEA (2018.3 or later).

Note:

The official server of the JetBrains plug-in is deployed outside China. If you cannot

download IntelliJ IDEA due to a slow network response, join the discussion group

provided at the end of this topic to obtain the offline installation package for IntelliJ

IDEA from Cloud Toolkit Customer Services.

Install Cloud Toolkit

1. Start IntelliJ IDEA.

2. Install Cloud Toolkit to IntelliJ IDEA.

• MacOS system: On the Preferences page, choose Plugins from the left-side

navigation pane. Search for Alibaba Cloud Toolkit and then click Install.

• Windows system: Go to the Plugins page. Search for Alibaba Cloud Toolkit and then

click Install.

3. After Cloud Toolkit is installed to IntelliJ IDEA, restart IntelliJ IDEA. The Alibaba Cloud 

Toolkit icon appears in the toolbar.

Configure Cloud Toolkit

After Alibaba Cloud Toolkit is installed, use the AccessKey ID and AccessKey Secret to 

configure the Cloud Toolkit account.

1. Start IntelliJ IDEA.

130 Issue: 20200513

https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
https://www.jetbrains.com/idea/download/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. Set the AccessKey ID and AccessKey Secret.

a. Click the Alibaba Cloud Toolkit icon and select Preferences from the drop-down list.

On the Settings page, choose Alibaba Cloud Toolkit > Accounts from the left-side

navigation pane.

b. On the Accounts page, set Access Key ID and Access Key Secret, and click OK.

Note:

If you use the AccessKey ID and AccessKey Secret of a RAM user, make sure that the

RAM user has the permission to deploy applications. For more information about

how to grant permissions to RAM users, see RAM account authorization.

• If you already have an Alibaba Cloud account, on the Accounts page, click Get

existing AK/SK to go to the logon page of Alibaba Cloud. After you log on to the

system with an existing account, you are redirected to the Security Management

page. On this page, obtain the AccessKeyId and AccessKeySecret of the account.

• If you do not have an Alibaba Cloud account, on the Accounts page, click Sign

up. You are redirected to the Register account page of Alibaba Cloud. On this

page, register an Alibaba Cloud account. Then, obtain the AccessKeyId and

AccessKeySecret of the account.

3. Set an endpoint.

a. On IntelliJ IDEA, click the Cloud Toolkit icon and select Preferences from the drop-

down list.

b. In the Preferences dialog box, choose Appearance & Behavior > Endpoint from the

left-side navigation pane.

c. On the Endpoint page, set the endpoint of EDAS and click Apply.

Note:

To obtain an endpoint, contact EDAS Customer Services.

Deploy applications to EDAS

Currently, you can use Cloud Toolkit to deploy applications to EDAS by using WAR or JAR 

packages.

1. On IntelliJ IDEA, click the Alibaba Cloud Toolkit icon and select EDAS on Alibaba Cloud

from the drop-down list.

Issue: 20200513 131

https://help.aliyun.com/document_detail/44023.html#h2-ram-4


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. In the Deploy to EDAS dialog box, configure the application deployment parameters.

Then, click Apply to save the configurations.

a. In the Deploy to EDAS dialog box, select Region, Namespace, Application, and Group

in the Application section as needed.

• Region: The region where the application is located.

• Namespace: The namespace where the application is located.

• Application: The name of the application.

• Group: The group of the application.

b. Set the build mode.

• Maven Build: If this option is selected for building the application, the system adds

a Maven task by default to build the deployment package.

• Upload File: If this option is selected for building the application, upload the WAR

package or JAR package, and then deploy the application.

Note:

If you have not created an application in EDAS, click Create application on EDAS

console in the upper-right corner of the dialog box to go to the EDAS console and

create an application. For more information about how to create an application, see 

Deploy Java applications in ECS clusters.

3. Click Run to run the configurations you made in the preceding step. The deployment logs

are printed on the Console tab of IntelliJ IDEA. You can view the deployment result based

on the logs.

Manage Maven tasks

In Cloud Toolkit installed in IntelliJ IDEA, you can deploy Maven tasks. In the Deploy to EDAS

dialog box, you can also add, delete, modify, or move Maven tasks in the Before launch

section.

In the Select Maven Goal dialog box, click the folder icon on the right of the Working

directory field and select all available modules for the current project. Enter the building

command in the Command line field.

132 Issue: 20200513

https://help.aliyun.com/document_detail/88020.html
https://help.aliyun.com/document_detail/88020.html


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Deploy multi-module projects

Most Maven projects involve multiple modules. These modules can be separately 

developed and some of them may use the functions of other modules. This type of project 

is a multi-module project.

If your project is a Maven multi-module project and you want to deploy a submodule in the

project, make sure that the last Maven task in the Before launch section in the Deploy to

EDAS dialog box is built for the submodule. For more information about how to manage

Maven tasks, see Manage Maven tasks.

For example, the CarShop project has the following submodules:

• carshop

- itemcenter-api

- itemcenter

- detail

Itemcenter and detail are submodules and depend on the itemcenter-api module. In this

case, how is the itemcenter submodule deployed? In the Before launch section of the

Deploy to EDAS dialog box, add the following two Maven tasks:

1. Add a Maven task to run the mvn clean install command in the carshop parent project.

2. Add a Maven task to run the mvn clean package command in the itemcenter submodule.

1.4.3 Deploy applications in hybrid clouds
EDAS provides complete solutions for scaling, networking, and central management in

hybrid clouds, allowing you to deploy applications in hybrid cloud environments. You can

connect instances from Alibaba Cloud, on-premises IDCs, and other cloud service providers

(CSPs) through leased lines, and add the instances to hybrid cloud (non-Alibaba Cloud)

ECS clusters in EDAS. Then, you can deploy and manage HSF, Dubbo, and Spring Cloud

applications in the EDAS console in a unified manner. EDAS supports the auto scaling of ECS

instances in Alibaba Cloud.

Prerequisites

• You have created a VPC.

• You have activated Express Connect.

• You have applied for a physical connection to connect your on-premises IDC to Alibaba 

Cloud VPC.

Issue: 20200513 133



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• The instances in your on-premises IDC meet the following requirements:

- Operating system: CentOS 7

- Docker not supported

- Hardware: no special requirements for CPU and memory

Context

Your application system may have the following requirements or problems:

• The Alibaba Cloud traffic has a certain degree of volatility and you may face traffic spikes

 in special scenarios, such as flash sales. You can predict the traffic volumes in such 

scenarios, but deviations may exist. Since you need to buy ECS instances in advance

, it is hard to control the number of needed ECS instances. Knowing when to add ECS 

instances is also a challenge.

• Some core business systems have high security requirements and you may want to 

deploy such applications in your own IDC. However, you cannot deploy and manage

 applications in different environments in a unified manner because instances from 

Alibaba Cloud, on-premises IDCs, and other CSPs cannot communicate with each other.

• Considering your business needs and availability requirements, you may want to deploy

 your applications on instances from multiple CSPs, that is, in multi-cloud mode. In this

 mode, manual processing is required because you cannot centrally manage these 

applications. This often leads to misoperations.

• Connect Alibaba Cloud to on-premises IDCs or to the clouds of other CSPs through 

Express Connect.

• Create a hybrid cloud cluster. Then, add ECS instances from Alibaba Cloud and instances

 from on-premises IDCs and other CSPs to the cluster.

• Deploy your applications to instances in this cluster.

In hybrid clouds, EDAS is used in the following scenarios:

• Manage applications deployed on instances in on-premises IDCs through Alibaba Cloud

. After connecting your IDC to the Alibaba Cloud VPC through a leased line, you can 

manage your applications in the IDC by using Alibaba Cloud EDAS.

• Scale applications deployed on instances from Alibaba Cloud in or out. EDAS supports

 auto scaling and helps you automatically purchase and release instances in Alibaba 

Cloud. You only need to associate EDAS with your billing account and do not need to buy

 instances in advance.

134 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Deploy and manage instances from other CSPs. EDAS allows you to deploy applicatio

ns to instances from CSPs other than Alibaba Cloud and manage these instances in a 

unified manner.

This topic describes how to use Alibaba Cloud to manage applications deployed on

instances in on-premises IDCs. To deploy and manage instances from other CSPs, you only

need to connect the target instances to the Alibaba Cloud VPC of EDAS through a leased

line. Then, you can operate and manage these instances in the same way as instances in

on-premises IDCs. For more information about how to scale out applications deployed on

ECS instances from Alibaba Cloud, see Scaling (applicable to ECS clusters).

Note:

Currently, only EDAS Professional Edition and EDAS Enterprise Platinum Edition allow you

to deploy applications in hybrid cloud environments.

Procedure

1. Create a cluster.

a) Log on to the EDAS console. For more information, see Log on to the EDAS console.

b) In the left-side navigation pane, choose Resource Management > Clusters.

c) On the Clusters page, select the region and namespace, and click Create Cluster.

d) In the Create Cluster dialog box, enter the cluster information and click Create.

Parameters for creating a cluster:

• Cluster Name: Enter a name for the cluster. The name can only contain letters,

numbers, underscores (_), and periods (.), with a length up to 64 characters.

• Cluster: Select Non-Alibaba Cloud.

• Cluster Type: The default value is ECS, which cannot be changed.

• Network Type: The default value is VPC, which cannot be changed.

• VPC: From the drop-down list, select the VPC where you want to create the cluster.

• Namespace: The namespace you selected for the hybrid cluster on the Clusters

page, which cannot be edited.

After the cluster is created, Created successfully appears in the upper-right corner of

the page, and the cluster appears in the cluster list.

Issue: 20200513 135



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. Add instances to the cluster.

To add ECS instances from Alibaba Cloud and instances from on-premises IDCs and 

other CSPs, perform the following steps:

a) On the Clusters page, click the name of the cluster you just created.

b) On the Cluster Details page, click Add ECS Instance.

c) In the Add ECS Instance dialog box, copy the command for installing EDAS Agent.

d) Use the root account to log on to your Alibaba Cloud ECS instance or the instance in 

the on-premises IDC.

e) Paste the EDAS Agent installation command and run it.

3. Open the required ports.

To ensure that your applications in the hybrid cloud cluster can use EDAS normally, you 

must open the following ports after adding the instances:

• 8182: This port is used to capture infrastructure monitoring and trace monitoring logs.

• 12200 to 12300: These ports are used for Remote Procedure Calls (RPCs).

• 65000 to 65535: These are web ports.

You must open the ports based on the instance type.

• ECS instances from Alibaba Cloud: Open the ports by referring to relevant documents.

• Instances from on-premises IDCs and other CSPs: Open the ports by referring to 

relevant solutions.

4. Check the cluster and instance statuses.

a. Return to the Clusters page. In the cluster list, locate the cluster you just created and

check the values of Status and Instances.

If the cluster status is Normal, the cluster is created. If the value of Instances is same

as the number of instances you added, the instances are added successfully.

b. Click the cluster name. On the Cluster Details page, check the values of Instance

Name and Status in the cluster information section.

If the cluster status is Running, the instance is running properly.

136 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

5. Deploy an application.

Currently, the hybrid cloud cluster type can only be ECS cluster. Therefore, you can 

deploy applications only in hybrid cloud ECS clusters.

The method for deploying applications in hybrid cloud clusters is the same as that for 

deploying applications in ECS clusters. See relevant topics to deploy applications.

Result

Wait several minutes until the application is created. After the application is created, you

can view the application information on the Application Details page. On the Application

Details page, click the Instance Information tab. On the Instance Information tab, view the

instance running status. If Running Status/Time is Running, the application is published.

1.5 Console user guide

1.5.1 Overview page
The Overview page of the EDAS console displays the subscription type, runtime status,

and number of application instances under the current account, allowing you to intuitively

know the resource status of the account.

• Applications: the number of applications that you publish in EDAS.

• Application Instances: the number of instances on which your applications are

deployed.

• Services: the number of services included in your applications.

• Deployments in the Last 7 Days: the number of times applications were deployed

during the past seven days.

1.5.2 Resource management
This topic describes EDAS resources and how to use and manage the resources.

In the EDAS console, you can view and use resources, such as ECS and Server Load 

Balancer (SLB) instances. The EDAS resource management function allows you to use the 

resources by application. EDAS also supports resource group management. When EDAS is 

used by multiple users or departments, the permissions to use resources can be controlled 

by using a primary Alibaba account and its RAM users.

Issue: 20200513 137



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.5.2.1 Import ECS instances
Before deploying applications by using EDAS, import ECS instances to the specified cluster

and install EDAS Agent.

Prerequisites

EDAS Agent must be installed on each target ECS instance. Before installing EDAS Agent,

ensure that the RAM user is authorized. For the authorization procedure, see the Apsara

Stack Console User Guide and read the  RAM management topic

Procedure

1. Log on to the EDAS console.

2. In the EDAS console, choose Resource Management > ECS from the left-side navigation

pane.

3. On the ECS page, click Import ECS in the upper-right corner.

4. On the Select Cluster and ECS page, select a namespace and click Select Cluster to

Import. In the instance list, select ECS instances and click Next.

5. On the Ready to import page, select I agree to convert the above instances, and fully

understand that the data in the original systems will be lost after conversion. Then,

enter a new password for the root user and confirm the new password, and click Next.

6. On the Import page, view the import status.

On the Import page, the statuses of the imported instances become Converting. It may

take 5 minutes. If you click "Click to return to the Cluster Details page" before the import

is complete, the health check status shows Converting and the conversion progress is

shown as a percentage. When the import is complete, the health check statuses become

Running, indicating that the instances are successfully imported.

Result

Click Click to return to the Cluster Details page to go to the Cluster Details page. In the ECS

Instances and Applications section, view the import status and progress.

1.5.2.2 View a VPC
VPCs are created in the VPC console. After synchronizing resources in the EDAS console, you

can view VPC information.

Context

138 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

VPCs are virtual private clouds that allow custom isolation settings. You can define

the custom VPC topology and IP address. VPCs are suitable for customers with high

cybersecurity requirements and network management capability.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Resource Management > VPC to go to the VPC

page and view the VPC information and status.

Table 1-4: Instance information

Name Description

VPC ID The ID that is automatically generated when a VPC is created.

Name The name that you set when creating a VPC.

CIDR VPC statuses include Running and Stopped. Expired VPCs do not 
appear.

Status The status of an SLB instance, which may be Running or Stopped
. Expired SLB instances do not appear.

ECS Instance The number of ECS instances created in this VPC. Click the 
number to go to the ECS page, where you can view all the ECS 
instances in this VPC.

What's next

In the VPC, ECS instances are isolated from the EDAS server. You need to install a log

collector to collect ECS instance information. Locate the row that contains the target

instance, and click Install Log Collector in the Actions column.

1.5.2.3 Manage clusters
A cluster is a set of ECS instances necessary to deploy applications. Cluster management

mainly includes creating clusters, viewing clusters, and managing cluster hosts.

1.5.2.3.1 Create an ECS cluster
Create a cluster before publishing applications.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Resource Management > Clusters.

Issue: 20200513 139



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

3. On the Clusters page, click EDAS Cluster. On the EDAS Cluster tab page, click Create

Cluster in the upper-right corner.

4. In the Create Cluster dialog box, set the cluster parameters and click Create.

Table 1-5: Cluster parameters

Name Description

Cluster Name Enter a name for the cluster. The name can
 only contain letters, numbers, underscore
s (_), and periods (.), with a length up to 
64 characters.

Cluster The options are Alibaba Cloud and Non-
Alibaba Cloud. Select Alibaba Cloud in
this case. Select Non-Alibaba Cloud when
creating a hybrid cloud cluster.

Cluster Type Currently, only ECS clusters are supported.

Network Type Only VPC is supported.

VPC Select a specific VPC.

Namespace A namespace has been selected on the
Clusters page, so this parameter cannot
be set here.

Result

After the cluster is created, the message Cluster created successfully appears in the upper-

right corner of the page, and the cluster appears in the cluster list and is in the Normal

state.

What's next

Add ECS instances after the cluster is created.

1. On the Cluster Details page, click Add ECS Instance in the upper-right corner.

2. On the Add ECS Instance page, click Import ECS or From Existing Cluster to add ECS

instances.

• Import ECS: See Import ECS instances.

• From Existing Cluster: In the current region, select a namespace and source cluster.

In the ECS instance list, select ECS instances and click > to add them to the field on the

right. Then, click Next. The subsequent procedure is the same as that for importing

ECS instances.

140 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

3. After ECS instances are added, return to the Cluster Details page to view the health

status of the ECS instances. The ECS instances are successfully added if the health status

is Normal.

1.5.2.4 Manage resource groups
Resource groups are groups of EDAS resources, which can be ECS instances and SLB

instances, but not VPCs. You can control account permissions through resource groups. You

can grant resource group access permissions to the RAM users, and each RAM user has the

permission to operate on all the resources in the specified group.

Typical scenarios

• Assume that your company publishes its application systems through EDAS. Department 

A is responsible for user-related applications and Department B for goods-related ones.

• The company registers an EDAS account (the primary account) to activate EDAS and 

creates one RAM user each for Departments A and B.

• Departments A and B have dedicated ECS and SLB instances for deploying user-related 

applications and goods-related applications, respectively.

• You have created two resource groups in EDAS and bound them to the ECS and SLB

 instances of Departments A and B, respectively. Then, you grant the RAM users of 

Departments A and B the permissions to access the two resource groups, respectively.

• Department A uses its RAM user only to operate the ECS and SLB instances in the 

authorized resource group. Department B does the same for its resource group. There is 

no conflict between Departments A and B during resource management.

Create a resource group

1. In the left-side navigation pane, choose Resource Management > Resource Groups.

2. On the Resource Groups page, click Create Resource Group in the upper-right corner.

3. In the Create Resource Group dialog box, enter Resource Group Name and Resource

Group Description, and click OK.

After the resource group is created, you can edit or delete it as needed.

Bind resources to resource groups

You can bind ECS instances, SLB instances, and clusters to resource groups. The procedures

 for binding different types of resources are similar. This topic describes how to bind Elastic 

Compute Service (ECS) instances.

Issue: 20200513 141



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. On the Resource Groups page, locate the row that contains the target resource group,

and click Bind ECS in the Actions column.

2. In the Bind ECS dialog box, select one or more ECS instances and click OK.

Grant RAM users the permissions to access resource groups

You can grant RAM users the permissions to access specified resource groups.

1. Log on to the EDAS console with your primary account.

2. In the left-side navigation pane, choose Account Management > Sub-accounts.

3. Locate the row that contains the target user, and click Resource Group Permission in the

Actions column.

4. In the Resource Group Permission dialog box, select a resource group and click OK.

1.5.3 Manage applications
In the EDAS console, you can perform application lifecycle management, O&M, monitoring,

and service governance.

1.5.3.1 Namespace
With namespaces, you can completely isolate the resources in different environments and

use the same account to centrally manage them.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Namespace.

3. On the Namespace page, select a region and click Create Namespace in the upper-right

corner.

4. In the Create Namespace dialog box, enter Namespace Name, Namespace ID, and

Description (optional). Then, click OK.

Result

On the Namespace page, view the created namespace.

1.5.3.2 Lifecycle management for applications in ECS
clusters
Applications are the basic units for EDAS management. A single application contains

a group of instances on which the same application is deployed. EDAS provides a

comprehensive application lifecycle management mechanism, covering the entire process

142 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

from application publishing to operation, including application creation, deployment,

startup, rollback, scaling, stop, and deletion.

Application lifecycle management includes application publishing, management, and 

configuration.

• Application publishing includes application creation, deployment, start, and stop.

• Application management includes application rollback, scale-out, scale-in, and deletion

 and instance reset and deletion.

• Application configuration includes container, JVM parameter, SLB, and health check 

configuration.

Note:

• You can deploy, scale out, roll back, reset, and configure an application no matter if the

 application is running or stopped.

• After the parameters of the Tomcat container and JVM are set and saved, the related

 configuration files are modified. The changes take effect only after you restart the 

application.

1.5.3.2.1 Publish an application
This topic describes how to publish an application in the EDAS console, helping you quickly

familiarize yourself with EDAS operations and application publishing.

Note:

• If your EDAS service is deployed in Sugon, you can create an application in the Apsara

Stack console or EDAS console.

- If you create an application in the Apsara Stack console, your RAM user is authorized

 by default.

- If you create an application in the EDAS console, you need to authorize your RAM

user manually. For more information, see Use a primary account for RAM user

operation.

If required authorization is not performed in the EDAS console, an exception may occur 

when you manage applications in the Apsara Stack console.

• Applications must be managed in the EDAS console.

• If you publish an HSF application, create a service group before starting the application.

Otherwise, application publishing may fail due to failed authentication. In the EDAS

Issue: 20200513 143



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

console, choose Service Market > Service Groups from the left-side navigation pane.

On the page that appears, click Create Service Group in the upper-right corner to create

a service group. The service group name must be globally unique. After the service

group is created, restart the application to allow the service group to take effect.

1.5.3.2.1.1 Create an empty application (applicable to ECS
clusters)
You can create an empty application during the planning phase and then deploy packages

on the application subsequently.

Prerequisites

An Elastic Compute Service (ECS) cluster has been created. For more information, see

Create an ECS cluster.

Context

You can create an empty application in either of the following two states:

• Empty application without instances: an empty application that is configured only 

with basic information, including a region, namespace, cluster, application name, 

deployment method, and runtime environment.

• Empty application with instances: an empty application that is configured with basic 

information (including a region, namespace, cluster, application name, deployment 

method, and runtime environment) and with ECS instances added.

This topic describes how to create an empty application with ECS instances.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management > Applications.

3. On the Applications page, click Create Application in the upper-right corner.

4. On the Application Information page, set the parameters of the application. Then, click

Next.

Table 1-6: Basic information and parameters of the application

Parameter Description

Namespace Select a namespace from the drop-down list.

Cluster Type From the first drop-down list, select ECS Cluster. From the second
drop-down list, select a specific cluster.

144 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Parameter Description

Application Name Enter an application name, which must be 1 to 36 characters in 
length.

Deployment
Method

Select WAR or JAR based on the application.

Application
Runtime
Environment

Select the application runtime environment based on the
application framework.

• For High-Speed Service Framework (HSF) applications, select
EDAS-Container.

• For Spring Cloud or Dubbo applications,

- WAR: Select Apache Tomcat.
- JAR: Select Standard Java application runtime

environment.

Java Environment Select Open JDK 8.

Application
Description

Enter remarks for the application.

5. Optional: At the bottom of the page, click Create an Empty Application to create an

empty application without instances.

6. On the Application Configuration page, click Add to the right of Selected Instances.

Note:

If no instances are added, you can click Create an Empty Application to create an

empty application without instances.

7. In the Instances dialog box, select an ECS instance and click > to add the instance to the

right-side section. Then, click OK.

8. Return to the Application Configuration page and click Create.

Wait several minutes until the application is created.

Result

Return to the Application Details page to view the statuses of the application and instances.

• An application without instances is an application that contains basic information, 

including the application name, ID, namespace, and deployment package type, but it 

does not contain instance information.

Issue: 20200513 145



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• An application with instances is an application that contains basic information (

including the application name, ID, namespace, and deployment package type) and 

also contains instance information and status.

What's next

You can deploy the application after it is created. For more information, see Deploy an

application (applicable to ECS clusters).

1.5.3.2.1.2 Deploy an application (applicable to ECS
clusters)
You can deploy an empty application after it is created. After the application is deployed,

you can upgrade the application by redeploying the application.

Prerequisites

• You have created an empty application. For more information, see Create an empty

application (applicable to ECS clusters).

• You have created a Server Load Balancer (SLB) instance. For more information, see SLB

User Guide .

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management > Applications.

3. On the Applications page, click the name of the created empty application.

4. On the Application Details page, click Deploy Application in the upper-right corner.

5. On the Deploy Application page, set deployment parameters and click Deploy.

Deployment parameters:

Parameter Description

Deployment Method Select WAR or JAR.

Note:
Your deployment method has been determined and
cannot be changed.

The configuration processes for WAR package
deployment and JAR package deployment are similar.
Here, WAR package deployment is used as an
example.

146 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Parameter Description

File Uploading Method Select Upload WAR Package or WAR Package
Location.

• Upload WAR Package: Click Select File to the right
of Upload WAR Package, and select a local WAR
package for uploading.

• WAR Package Location: Enter the path of the WAR

package.

Note:
The name of the application deployment package
can only contain letters, digits, hyphens (-), and
underscores (_).

Version Enter a version number, for example, 1.1.0.

Note:
We do not recommend that you use a timestamp as
the version number.

Group Select the instance group where the application is 
deployed.

Batch Specify a number of deployment batches. Select
an option from the drop-down list. The options are
automatically generated based on the number of
instances for the application. If you select two or more
batches, you must set Batch Wait Time.

Batch Mode Select Automatic.

Java Environment (optional) Select the runtime environment of the application 
from the drop-down list.

Go to the Change Details page to view the task progress and logs of the application

deployment.

Result

1. On the Application Details page, check whether the deployment package is of the new 

version.

2. Click the Instance Information tab to check whether Running Status of the ECS instance

is Normal and whether Change Status is Successful.

Issue: 20200513 147



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.5.3.2.2 Manage applications
You can manage a published application in the EDAS console. This includes viewing

application information, upgrading, starting, stopping, scaling out, and scaling in the

application, creating branch versions, upgrading container versions, and rolling back

and deleting the application. If the application is deployed on ECS instances, you need to

manage those instances.

This topic briefly describes some simple management operations.

1.5.3.2.2.1 Scaling (applicable to ECS clusters)
If an application is overloaded, you can use the application scale-out function to manually

scale out the application and share its load.

Procedure

Scale-out

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. On the Application Details page, click Application Scale Out in the upper-right corner.

4. On the Scale-Out Method tab page of the Purchase Instances dialog box, select the

target group, the ECS instance, and the target instance for scale-out, and click Scale

Out.

Note:

The runtime status of the added ECS instance depends on the runtime status of the 

application on the instance.

• If the application is running during scale-out, the added ECS instance automatically 

deploys, starts, and runs the application.

• If the application is stopped during scale-out, the added ECS instance automatically 

deploys but does not start or run the application.

Scale-in

5. On the Application Details page, click the Instance Information tab.

6. Scale in the instance on the Instance Information tab page.

• If the ECS instance is running, click Stop and then Delete.

• If the ECS instance is stopped, click Delete.

148 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.5.3.2.2.2 Create an application branch version
When you create an application, EDAS automatically creates an application group named

"Default Group" for the application and adds the ECS instances of the application to this

group. You can create subgroups under the default group and add some instances to

the subgroups. If you deploy different versions of the application on the instances in the

subgroups, these versions of the application are the branch versions of the application.

Context

You can create branch versions if you have the following requirements for your application:

• To perform an online test before publishing a new version

• A/B testing

• Canary deployment

Procedure

1. Create a subgroup.

a) Log on to the EDAS console.

b) In the left-side navigation pane, choose Application Management. On the

Applications page, click the name of the target application.

c) On the Application Details page, click the Instance Information tab. On the tab page

that appears, click Create Group in the upper-right corner.

d) In the Create Group dialog box, enter a group name and click Create.

After the group is created, the message Group created appears in the upper-right corner

of the page.

2. Add instances to a new group.

After a group is created, you can add instances to the new group in two ways: Scale Out

 and Change Group. For more information about application scale-out methods, see

Issue: 20200513 149



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Scaling (applicable to ECS clusters). This topic describes how to add instances from the

default group to the new group by changing the group.

a) On the Instance Information tab page of the Application Details page, select the

instance whose group you want to change, and click Change Group on the right of

the list.

b) In the Change Group dialog box, select an option for Target Group.

c) Click Change Group.

Note:

• If no application is deployed in the new group while an application deployment 

package has been deployed on the added instance, this deployment package is 

deployed in the group.

• If an instance is added to an existing group rather than a new group, the versions of

the deployment package in the group and on the instance are different. When the

system displays the following messages, select the appropriate option as needed:

- Select Redeploy current instance for target group to redeploy the deployment

package on the instance using that in the group.

- Select Change group without redeployment to add the instance without

changing its deployment package.

3. Deploy the application in the new group.

a) On the Application Details page, click Deploy Application in the upper-right corner.

b) Based on Deploy an application (applicable to ECS clusters), set the target publish

group as the new group, set the deployment parameters, and click Deploy.

Result

On the Instance Information tab page of the Application Details page, you can view the

deployment package version and runtime status of the new group to check that the new

application version is successfully published.

1.5.3.2.2.3 Upgrade the container version
WAR and JAR packages are used for application deployment. The deployment involves

an application runtime environment and the EDAS container. You can upgrade the EDAS

container to the specified version.

Procedure

1. Log on to the EDAS console.

150 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. On the Application Details page, choose Container Version from the left-side navigation

pane.

4. On the Container Version page, view the current container version for the application.

The current version is marked with a tick (√) in the Actions column. The Actions column

also displays the availability status of other versions.

5. Click the corresponding button in the Actions column to upgrade the container to the

desired version.

1.5.3.2.2.4 Roll back an application
To roll back a published application to an earlier version, you can use the application

rollback function and select the target version.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management.

3. On the Applications page, click the name of the target application. On the Application

Details page, click Roll Back in the upper-right corner.

4. Based on the name of the published WAR package and the publishing time that appear

on the Roll Back page, select the target version and click Roll Back.

Note:

The rollback target option appears only when you have deployed a beta instance.

Otherwise, all instances under the application are rolled back by default. A maximum 

of five rollback versions appear.

1.5.3.2.2.5 Delete an application
After an application is deleted, all information related to the application is deleted, all

instances under the application are released, and all deployment packages and container

files on the instances are deleted.

Prerequisites

Before deleting an application, be sure to save the logs, WAR packages, and configurations

of all instances in the application.

Procedure

Issue: 20200513 151



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. Click Instance Information. On the Instance Information tab page, locate the row that

contains the instance for the application, and click Delete in the Actions column.

4. Click Delete Application.

After the application is deleted, the message Deleted successfully appears in the upper-

right corner of the page.

1.5.3.2.3 Application settings
On the Application Settings page, you can set the JVM parameters, Tomcat, SLB, and health

check of applications.

1.5.3.2.3.1 Set JVM parameters
By setting JVM parameters, you can enable the container parameter setting when an

application is started. Correctly setting JVM parameters helps reduce the overhead of

GC and thus shorten the server response time and improve throughput. If container

parameters are not set, JVM parameters are allocated by default.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. On the Application Details page, click Settings on the right of the Application Settings

section.

4. On the JVM Parameters tab page of the Application Settings dialog box, click Memory

Configuration, Applications, GC Policy, Tool, and Custom to set relevant parameters.

Then, click Save.

Note:

The JVM parameter settings are written in the bin/setenv.sh file in the container

directory. To apply the settings, restart the application.

Result

After setting, the message Setting JVM successfully appears in the upper-right corner.

152 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.5.3.2.3.2 Configure Tomcat
EDAS supports Tomcat container parameter settings. You can configure settings such as the

port number, application access path, and the number of connections in the connection

pool of the Tomcat container in the EDAS console.

Prerequisites

Note:

• After setting Tomcat container parameters, restart the container to apply the parameter

 settings.

• Tomcat container configuration is supported by EDAS Agent 2.8.0 and later.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. On the Application Details page, click Settings on the right of the Application Settings

section.

4. In the Application Setting dialog box, click the Tomcat tab and set Tomcat parameters.

Then, click Save.

Table 1-7: Tomcat configuration description

Name Description

Application Port The port range is (1024, 65535). The admin authority is needed 
for container configuration and the root authority is required to 
operate on ports with numbers less than 1024. Therefore, enter a
 port number greater than 1024. If this parameter is not set, the 
default value 8080 is used.

Tomcat Context The access path of an application.

• If you select Package Name, you do not need to set a custom
path. The default value is the WAR package name.

• If you select Root, you do not need to set a custom path. The
default value is a slash (/).

• If you select Custom, enter a custom path below, namely, the
access path. If this parameter is not set, the default value is
the WAR package name.

Issue: 20200513 153



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Name Description

Maximum Threads The maximum number of connections in a connection pool
. The parameter is maxThreads. The default value is 400. We
 recommend that this parameter be set under professional 
guidance.

Tomcat encoding Select an encoding format for Tomcat: UTF-8, ISO-8859-1, GBK,
or GB2312. The default format is ISO-8859-1. Select useBodyEnc
odingForURI as needed.

Note:

Click Advanced Settings to configure the full text of server.xml. The application groups

use the application configuration after the advanced settings are enabled.

1.5.3.2.3.3  Bind an SLB instance to EDAS
In an Elastic Compute Service (ECS) cluster, you can bind an application to a Server Load

Balancer (SLB) instance to implement load balancing.

Scenarios

Dedicated SLB instance for an application

You have an application that provides order query and contains multiple ECS instances. You

 want the application to provide a public IP address for external access. In this case, you 

can bind an SLB instance to the application to achieve this purpose.

The following diagram shows the simple mapping between the SLB instance and the 

application in the preceding scenario.

Dedicated listening port for an application to distribute traffic

You have application A that provides order query and application B that provides user 

logon. Both applications are accessed using the same public IP address and are bound to 

the same domain name. You can distribute traffic by binding different listening ports of the 

same SLB instance to the two applications.

The following diagram shows the simple mapping between the SLB instance and the 

application in the preceding scenario.

An SLB instance shared by different domain names

In the Internet scenario, port 80 is selected by default to provide the HTTP service externally

. If you want to use an SLB instance to distribute traffic, a common solution is to use domain

 names to route data to different applications. Assume that u.domain.com is the domain 

154 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

name that is bound to the user application, and o.domain.com is the domain name that is 

bound to the order application.

The following diagram shows the simple mapping between the SLB instance and the 

application in the preceding scenario.

Set SLB rules in an application group

For example, in the flash sales scenario, the number of visits to the URL (o.domain.com

/orders/queryitem) that queries product information in the order system is significantly 

higher than that to URLs that provide other services and functions. We hope to transfer the

 high service traffic of the same type to a separate group of instances, which provide the 

order query service while instances in other groups provide other services.

The following diagram shows the topology.

Prerequisites

• You have Create an empty application (applicable to ECS clusters) in the EDAS console.

• If you do not have an SLB instance, go to the SLB console to create an SLB instance.

• To configure forwarding rules for a deployed group, you have set an application group 

for the application.

Bind an SLB instance to an application in the EDAS console

1. In the Application Settings section of the Basic Information page, click Add on the right

of SLB (Internet).

Note:

If you have configured an SLB instance, the IP address and port number of the SLB

instance are displayed. You can click Modify to go to the configuration page and

modify the information of the SLB instance. You can also click Unbind to unbind the SLB

instance.

2. In the Bind SLB to Application dialog box, select the SLB instance, and then click Next.

3. On the Select configuration listener tab, select the configuration listener protocol and

listener port, and then click Next.

• You can select an existing listener from Select an existing listening port.

• You can also create a listener in Add a new listening port. For example, set the

listener protocol to HTTP and the frontend port number to 82.

Issue: 20200513 155



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. On the Configuring virtual grouping and forwarding policies tab, set the bound server

group. Click Next.

• You can choose Default server group to bind all the servers under this application to

the default server group of the SLB instance.

• You can also select a virtual server group from the Existing virtual server group list.

• You can also enter a virtual server group name in New virtual server group to create

a virtual server group as the bound server group.

5. On the Confirm change SLB tab, view the change information of the SLB instance, and

click Confirm change to complete the configuration.

Results

Copy the configured IP address and port number of the SLB instance such as 118.31.XXX.

XXX:81, paste it in your browser address bar, and press Enter to go to the homepage of the

 application.

If the IP address and port number do not appear on the right side of the SLB instance, the 

binding failed. Go to Change Logs to view the change details, and troubleshoot and fix the 

failure based on the change logs.

FAQ

After I bound an SLB instance with forwarding rules to an application Group and then

unbound the SLB instance from the application Group, the application cannot be

accessed through SLB traffic. What can I do if the HTTP Code 503 error is reported?

Cause: You entered the forwarding rules and bound the SLB instance to the application 

group, and then unbound the SLB instance in the EDAS console. In this case, EDAS did not

 delete the forwarding rules of the SLB instance. Since you unbound the SLB instance from

 the application group in the EDAS console, the servers in the virtual SLB group were also 

unbound. As a result, the SLB traffic forwarding failed and the HTTP 503 error was reported.

Solution: Manually delete the forwarding rules in the SLB console.

Why does an application bound to an SLB instance fail to be accessed through the IP

address of the SLB instance after traffic management is enabled?

Cause: In this scenario, traffic management was enabled and the application was bound to

 an SLB instance (over HTTP). At this time, there is a limitation. When the SLB instance used

 HTTP to detect whether the backend nodes were alive, the message HEAD/HTTP/1.0 was 

sent, and Tengine responded with HTTP 400, which caused the failure of SLB listener health

156 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 check. As a result, the error code 502 (bad gateway) was reported when you accessed the 

application.

Solution: Disable traffic management on the Application Information page of the EDAS 

console for applications that do not require traffic management. This will uninstall Tengine

, modify the application configurations, and restart the application. To retain this function, 

you can select Code 4xx returned by health check in Health Check of the SLB instance.

1.5.3.2.3.4 Set JVM -D startup parameters
This topic describes how to set JVM -D startup parameters when developing High-Speed

Service Framework (HSF) applications.

-Dhsf.server.port

Specifies the port for starting HSF services. The default value is 12200. Use another port 

than the default port if you start multiple HSF providers locally.

-Dhsf.server.max.poolsize

Specifies the maximum size of the thread pool of the HSF provider. The default value is 720.

-Dhsf.server.min.poolsize

Specifies the minimum size of the thread pool of the HSF provider. The default value is 60.

-Dhsf.client.localcall

Enables or disables the precedence of calling local HSF clients. The default value is true.

-Dpandora.qos.port

Specifies the Pandora monitoring port. The default value is 12201. Use another port than

the default port if you start multiple HSF providers locally.

-Dhsf.http.enable

Specifies whether to enable the HTTP port. The default value is true.

-Dhsf.http.port

Specifies the HTTP port used by the HSF application to provide services externally. The

default value is 12220. Use another port than the default port if you start multiple HSF

providers locally.

Issue: 20200513 157



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

-Dhsf.run.mode

Specifies whether the HSF consumer performs a targeted call, that is, bypassing Config

Server. The value 1 indicates that a targeted call is disallowed, and the value 0 indicates

a targeted call is allowed. The default value is 1. Do not set this parameter to 0 unless

necessary.

-Dhsf.shuthook.wait

The wait time for gracefully disconnecting an HSF application, in ms. The default value is 

10000.

-Dhsf.publish.delayed

Specifies whether to delay publishing all services. The default value is false, indicating not 

to delay service publishing.

-Dhsf.server.ip

Specifies the IP address to be bound. By default, the IP address of the first network interface

 controller (NIC) is bound when multiple NICs exist.

-DHsfBindHost

Specifies the host to be bound. By default, the HSF server binds the IP address of the first

NIC and reports it to the address registry when multiple NICs exist. If you set this parameter

to -DHsfBindHost=0.0.0.0, the HSF server port is bound to all NICs of the local device.

-Dhsf.publish.interval=400

Specifies the time interval between the publishing of two services. HSF services are 

instantly exposed when being published. You can set this parameter to mitigate the burden

 on starting applications during service exposure. The default value is 400, in ms.

-Dhsf.client.low.water.mark=32-Dhsf.client.high.water.mark=64-Dhsf.server.low.water.mark

=32-Dhsf.server.high.water.mark=64

Specifies the write buffer limit for each channel of the consumer or provider.

• The unit is KB. When the consumer exceeds the upper limit, the channel forbids writing 

new requests and returns an error. Writing is resumed when the write buffer drops below

 the lower limit.

• When the provider exceeds the upper limit, the channel forbids writing new responses, 

and the consumer times out because no response is received. Writing is resumed when 

the write buffer drops below the lower limit.

158 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• The upper and lower limits must be set as a pair, and the upper limit must be greater 

than the lower limit.

-Dhsf.generic.remove.class=true

Retrieves the result of a generic call, without output of the class field.

-DdefaultHsfClientTimeout

Specifies the global time-out period of the consumer.

-Dhsf.invocation.timeout.sensitive

Determines whether the HSF call duration includes the time consumption logic such as

connection creation and address selection. The default value of hsf.invocation.timeout.

sensitive is false.

1.5.3.3 Lifecycle management for Container Service
Kubernetes applications

1.5.3.3.1 Container Service Kubernetes clusters
Kubernetes is a popular orchestration technology for open source containers. Kubernetes-

published applications have unique management advantages. For more information, see

the Kubernetes official documentation.

A Container Service Kubernetes cluster is a Kubernetes cluster that is provided by Alibaba

Cloud and has passed the CNCF standardized test. It runs stably and integrates other

Alibaba Cloud services, such as SLB and Network Attached Storage (NAS). After creating

a Kubernetes cluster in Container Service and importing it to EDAS, you can deploy

applications to the Container Service Kubernetes cluster in EDAS.

1.5.3.3.2 Prepare an application image (a Container
Service Kubernetes cluster)
EDAS allows you to deploy RPC applications (HSF) in Container Service Kubernetes clusters

by using custom images (Dockerfile).

Observe the following specifications and limits when creating a custom image by using a 

Dockerfile:

Tenant and encryption information

The tenant and encryption information is used for user authentication and credential 

encryption of EDAS applications.

Issue: 20200513 159

https://kubernetes.io/docs/home/
https://cs.console.aliyun.com/#/k8s/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Table 1-8: Resources

Resource type Resource name Description

Secret edas-certs An encryption dictionary that stores 
EDAS tenant information.

Table 1-9: Environment variables

Environment variable 

key

Type Description

tenantId String The ID of an EDAS tenant.

accessKey String The AccessKeyId for authentication.

secretKey String The AccessKeySecret for authentication
.

Table 1-10: Local files

Path Type Description

/home/admin/.
spas_key/default

File The authentication information of an 
EDAS tenant, including the preceding 
environment variable information.

Service information

The service information includes the EDAS domain and port to be connected during runtime

.

Table 1-11: Resources

Resource type Resource name Description

ConfigMap edas-envs EDAS service information

Table 1-12: Environment variables

Environment variable key Type Description

EDAS_ADDRESS_SERVER_
DOMAIN

String The service domain or IP 
address of the configuration
 center.

EDAS_ADDRESS_SERVER_
PORT

String The service port of the 
configuration center.

160 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Environment variable key Type Description

EDAS_CONFIGSERVER_CL
IENT_PORT

String The port of ConfigServer.

(Mandatory) Environment variables during application runtime

The following environment variables are provided during EDAS deployment to ensure the 

proper running of applications. For this reason, do not overwrite the current configuration.

Table 1-13: Environment variables

Environment variable key Type Description

POD_IP String The IP address of a pod.

EDAS_APP_ID String The ID of an EDAS applicatio
n.

EDAS_ECC_ID String EDAS ECC ID

EDAS_PROJECT_NAME String Same as EDAS_APP_ID and 
used for trace parsing.

EDAS_JM_CONTAINER_ID String Same as EDAS_ECC_ID and 
used for trace parsing.

EDAS_CATALINA_OPTS String The CATALINA_OPTS 
parameter required during 
middleware runtime.

CATALINA_OPTS String The default startup 
parameter of Tomcat, which
 is the same as EDAS_CATAL
INA_OPTS.

Procedure

1. Define a standard Dockerfile.

A standard Dockerfile defines the EDAS application runtime environment, including the

definitions of download, installation, JDK startup, Tomcat, and WAR and JAR packages.

By modifying the Dockerfile, you can replace the JDK version, modify the Tomcat 

configuration, change the runtime environment, and make other changes.

The following example shows how to define an EDAS application.

Note:

Issue: 20200513 161

https://docs.docker.com/engine/reference/builder/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

The example will be occasionally updated to incorporate the latest EDAS features.

• Sample Dockerfile that uses Tomcat and a WAR package

FROM centos:7
MAINTAINER EDAS development team <edas-dev@list.alibaba-inc.com>
# Install and package the required software.
RUN yum -y install wget unzip
# Prepare JDK and Tomcat system variables.
ENV JAVA_HOME /usr/java/latest
ENV CATALINA_HOME /home/admin/taobao-tomcat
ENV PATH $PATH:$JAVA_HOME/bin:$CATALINA_HOME/bin
# Set the EDAS-Container version.
ENV EDAS_CONTAINER_VERSION V3.5.0
LABEL pandora V3.5.0
# Download and install JDK 8.
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/agent/prod/files/jdk-
8u65-linux-x64.rpm -O /tmp/jdk-8u65-linux-x64.rpm && \
    yum -y install /tmp/jdk-8u65-linux-x64.rpm && \
    rm -rf /tmp/jdk-8u65-linux-x64.rpm
# Download and install Ali-Tomcat 7.0.85 to the /home/admin/taobao-tomcat.
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/edas-container/7.0.85/
taobao-tomcat-production-7.0.85.tar.gz -O /tmp/taobao-tomcat.tar.gz && \
    mkdir -p ${CATALINA_HOME} && \
    tar -xvf /tmp/taobao-tomcat.tar.gz -C ${CATALINA_HOME} && \
    mv ${CATALINA_HOME}/taobao-tomcat-production-7.0.59.3/* ${CATALINA_HOME
}/ && \
    rm -rf /tmp/taobao-tomcat.tar.gz ${CATALINA_HOME}/taobao-tomcat-
production-7.0.59.3 && \
    chmod +x ${CATALINA_HOME}/bin/*sh
# Download and install an EDAS container based on environment variables.
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/edas-plugins/edas.sar.
 ${EDAS_CONTAINER_VERSION}/taobao-hsf.tgz -O /tmp/taobao-hsf.tgz && \
    tar -xvf /tmp/taobao-hsf.tgz -C ${CATALINA_HOME}/deploy/ && \
    rm -rf /tmp/taobao-hsf.tgz
# Downloads and deploys the EDAS demo WAR package.
RUN wget http://edas.oss-cn-hangzhou.aliyuncs.com/demo/hello-edas.war -O /
tmp/ROOT.war && \
    unzip /tmp/ROOT.war -d ${CATALINA_HOME}/deploy/ROOT/ && \
    rm -rf /tmp/ROOT.war
# Set the Tomcat installation directory as the container startup directory, start 
Tomcat in run mode, and output the catalina log in the standard CLI.
WORKDIR $CATALINA_HOME
CMD ["catalina.sh", "run"]

• Sample Dockerfile that uses a JAR package

FROM centos:7
MAINTAINER EDAS development team <edas-dev@list.alibaba-inc.com>
# Install and package the required software.
RUN yum -y install wget unzip
# Prepare JDK and Tomcat system variables.
ENV JAVA_HOME /usr/java/latest
ENV CATALINA_HOME /home/admin/taobao-tomcat
ENV PATH $PATH:$JAVA_HOME/bin
# Set the EDAS-Container version.
ENV EDAS_CONTAINER_VERSION V3.5.0
LABEL pandora V3.5.0
# Download and install JDK 8.
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/agent/prod/files/jdk-
8u65-linux-x64.rpm -O /tmp/jdk-8u65-linux-x64.rpm && \
    yum -y install /tmp/jdk-8u65-linux-x64.rpm && \

162 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

    rm -rf /tmp/jdk-8u65-linux-x64.rpm
# Download and install an EDAS container to /home/admin/taobao-tomcat based 
on environment variables.
RUN mkdir -p ${CATALINA_HOME}/deploy/
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/edas-plugins/edas.sar.
 ${EDAS_CONTAINER_VERSION}/taobao-hsf.tgz -O /tmp/taobao-hsf.tgz && \
    tar -xvf /tmp/taobao-hsf.tgz -C ${CATALINA_HOME}/deploy/ && \
    rm -rf /tmp/taobao-hsf.tgz
# Download and deploy the EDAS demo JAR package.
RUN mkdir -p /home/admin/app/ && wget http://edas.oss-cn-hangzhou.aliyuncs
.com/demoapp/fatjar-test-case-provider-0.0.1-SNAPSHOT.jar -O /home/admin/
app/provider.jar
# Include the startup command in the startup script start.sh.
RUN echo '$JAVA_HOME/bin/java -jar $CATALINA_OPTS -Djava.security.egd=file
:/dev/./urandom -Dcatalina.logs=$CATALINA_HOME/logs -Dpandora.location=$
CATALINA_HOME/deploy/taobao-hsf.sar   "/home/admin/app/provider.jar"    --
server.context-path=/ --server.port=8080 --server.tomcat.uri-encoding=ISO-8859-
1 --server.tomcat.max-threads=400' > /home/admin/start.sh && chmod +x /home/
admin/start.sh
WORKDIR $CATALINA_HOME
CMD ["/bin/bash", "/home/admin/start.sh"]

2. Customize settings in the Dockerfile.

The following describes how to customize settings in the standard Dockerfile prepared 

previously.

a) Upgrade JDK.

Change the download and installation methods in the standard Dockerfile. The 

following uses JDK 8 as an example.

# Download and install JDK 8.
RUN wget http://edas-hz.oss-cn-hangzhou.aliyuncs.com/agent/prod/files/jdk-
7u80-linux-x64.rpm -O /tmp/jdk-7u80-linux-x64.rpm && \
    yum -y install /tmp/jdk-7u80-linux-x64.rpm && \
    rm -rf /tmp/jdk-7u80-linux-x64.rpm

b) Upgrade EDAS Java Container.

When using a WAR package and Tomcat, upgrade the EDAS container to use new 

middleware features or fix known bugs. The upgrade procedure is as follows:

A. Locate the latest version (3.X.X) of the EDAS container.

B. Replace the version in the Dockerfile, such as 3.5.0.

C. Recreate and publish an application image.

# Prepare ENV
ENV EDAS_CONTAINER_VERSION V3.5.0

c) Add the EDAS runtime environment to Tomcat startup parameters.

See (Mandatory) Environment variables during application runtime. EDAS provides

the JVM environment variable EDAS_CATALINA_OPTS, which contains the minimum

Issue: 20200513 163



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

parameters required during runtime. Tomcat provides the custom JVM parameter

configuration option JAVA_OPTS for setting xmx, xms, and other parameters.

# Set the JVM parameters of the EDAS application.
ENV CATALINA_OPTS ${EDAS_CATALINA_OPTS}
# Set the JVM parameters.
ENV JAVA_OPTS="\
    -Xmx3550m \
    -Xms3550m \
    -Xmn2g \
    -Xss128k"

1.5.3.3.3 Deploy an application (applicable to Container
Service Kubernetes clusters)
You can deploy applications in a Container Service Kubernetes cluster.

Prerequisites

• Prepare an application image (a Container Service Kubernetes cluster) is complete, and

the image has been pushed to the container image repository.

• The Container Service Kubernetes cluster has been imported to EDAS.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click Create Application in the upper-right corner.

3. On the Application Information page, set the parameters of the application. Then, click

Next Step: Application Configurations.

Table 1-14: Basic parameters

Name Description

Namespace Select a namespace from the drop-down list.

Deploy Cluster Select a Container Service Kubernetes cluster from the drop-
down list.

Application Type The application type is determined by the cluster where the
 application is deployed. If you select a Container Service 
Kubernetes cluster, the application type is Kubernetes applicatio
n. This parameter cannot be set manually.

Application Name Enter a descriptive application name.

Application
Description

Enter remarks for the application.

164 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. On the Application Configuration page, select Image for Deployment Method, select an

image and a version, and click Select.

5. Set Total Pods and Single Pod Resource Quota (CPU cores and Memory).

6. Drag the slider on the right of Advanced Setting to the right to set advanced parameters.

Then, click Next Step: Application Access Settings.

a) Optional: Set the startup command and parameters.

Note:

If you do not know the CMD and ENTRYPOINT content of the original Dockerfile

image, do not modify the custom startup command and parameters. Otherwise, you

cannot create applications due to an incorrect custom command.

• Startup Command: Enter the content in [“”]. For example, set Startup Command

to /usr/sbin/sshd –D for CMD [“/usr/sbin/sshd”,”-D”].

• Startup Parameters: Enter one parameter per line. For example, args:[“-c”; “

while sleep 2”; “do echo date”; “done”] contains four parameters. In this

case, enter the parameters in four lines.

b) Optional: Set environment variables.

When creating the application, inject the environment variables you have entered 

to the container to be generated. This saves you from repeatedly adding common 

environment variables.

c) Optional: (Applicable to stateful applications) Set the application lifecycle

management script.

Lifecycle management scripts:

• PreStop script: This is a container hook, which is triggered before a container

is deleted. The corresponding hook handler must be completed before the

container deletion request is sent to Docker daemon. Docker daemon sends an

Issue: 20200513 165

https://docs.docker.com/engine/reference/builder/#cmd
https://docs.docker.com/engine/reference/builder/#entrypoint


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

SGTERN semaphore to itself to delete the container, regardless of the hook handler

execution result. For more information, see Container Lifecycle Hooks

• Liveness script: This is a container status probe, which monitors the health status

of applications. If an application is unhealthy, the container is deleted and created

again. For more information, see Pod Lifecycle

• Readiness script: This is a container status probe, which monitors whether

applications have started successfully and are running properly. If an application is

abnormal, the container status is updated. For more information, see Pod Lifecycle

• Poststart script: This is a container hook, which is triggered immediately after a

container is created to notify the container of its creation. The hook does not pass

any parameters to the corresponding hook handler. If the corresponding hook

handler fails to run, the container is killed and the system determines whether

to restart the container according to the restart policy of the container. For more

information, see Container Lifecycle Hooks

7. On the Application Access Settings page, set SLB and click Create.

SLB corresponds to TCP/UDP settings. You can configure multiple port mappings for 

multi-port listening.

• Intranet SLB: This option ensures that all the nodes in a VPC can access the applicatio

n.

• Public-facing SLB: After you enable this option, the system buys a public-facing SLB

 instance for the application to ensure that the application is accessible from the 

Internet.

SLB parameters:

• SLB Port: This parameter indicates the frontend port of the internal network or public-

facing SLB instance, which is used to access the application. For example, NGINX uses

port 80 by default.

• Container Port: This is the port that listens to processes. It is generally defined by

the program. For example, the web service uses port 80 or 8080 by default, while the

MySQL service uses port 3306 by default. The container port can be the same as the

port used by the SLB instance.

• Network Protocol: You can select TCP or UDP.

Result

166 Issue: 20200513

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/
https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Return to the Applications page and check whether the created application is running

properly.

1.5.3.3.4 Scaling (applicable to Container Service
Kubernetes clusters)
Compared with common applications, Kubernetes applications feature much greater

scalability due to the advantages of Kubernetes in container orchestration.

Procedure

1. Log on to the EDAS console and choose Application Management from the left-side

navigation pane.

2. On the Application Management page, click the target Container Service Kubernetes

application.

3. On the Application Details page, click Application Scaling in the upper-right corner.

4. In the Application Scaling dialog box, set Total Application Pods and click OK.

Result

A message that indicates successful operation appears after scaling is complete. Return

to the Application Details page and click Instance Information to view the instance

information and runtime status after scaling.

1.5.3.4 Log management
The EDAS console provides the runtime log function, allowing you to view the runtime logs

of applications without having to log on to the ECS instance. When an exception occurs in

an application, you can check logs to troubleshoot the problem.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Application Management. On the Applications

page, click the name of the target application.

3. On the Application Details page, choose Log Management > Log Directoriesfrom the

left-side navigation pane.

By default, the Log Directories page contains two log paths: the log path of the Tomcat

container (such as /home/admin/taobao-tomcat-production-2.0.59.4/logs) and the

log path of EDAS Agent (such as /home/admin/edas-agent/logs). Tomcat The path to

container logs varies depending on the actual version.

Issue: 20200513 167



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. Click the log folder or path to show all log files in the folder.

Note:

Only readable files but not folders are displayed.

5. Double-click a log file to view log details.

• Select an instance from the ECS Instance ID/Name/IP drop-down list to view its real-

time logs.

• Click Enable Real-time Additions in the lower-right corner of the page to ensure that

the latest additions to the file have been added (similar to the tail -f ).

6. Optional: Bookmark a log path.

a) On the Log Directories page, select a path or folder and click Bookmark Log Directory

in the upper-right corner of the page.

b) In the Add Application Log Path dialog box, enter an application log path and click

Add.

Notice:

• The path must be in the /home/admin directory and contain "log" or "logs".

• The file name must end with a slash (/) to indicate that it is a folder.

To cancel the bookmark status, click the name of a folder in the selected directory and

click Remove Directory from Bookmark in the upper-right corner of the page. When a

path is removed from favorites, it is no longer displayed on the logs page. This operation

does not delete or change any files on the server.

1.5.3.5 Throttling and degradation (only applicable to HSF
applications in ECS clusters)
Throttling and degradation are mainly used to solve slow system response or breakdown

due to excessive burden on backend core services. These features are generally used in

high-traffic scenarios, such as flash sales, shopping sprees, major promotions, and empty

box scam protection.

Throttling

This function controls the traffic threshold or adjusts the traffic ratio. It controls traffic when

 front-end websites are dealing with heavy access traffic to prevent service unavailability 

that results from damage to backend core systems. By adjusting the traffic threshold, the 

168 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

throttling function controls the maximum traffic volume of the system to make sure secure 

and stable system operation.

Principles

After the throttling code is configured for a provider and a throttling policy is configured 

in EDAS, the provider has the throttling function. When a consumer calls the provider, all 

access requests are calculated by the throttling module. If the call volume of the consumer 

exceeds the preset threshold in a specific period, the throttling policy is triggered.

Figure 1-2: Throttling

Degradation

In EDAS, degradation refers to the reduction of the call priority of downstream non-core 

providers that have timed out to make sure the availability of core consumers.

Principles

After degradation code is configured for a consumer and a degradation policy is configured

 in EDAS, the consumer has the degradation function. When the consumer calls a provider, 

Issue: 20200513 169



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

if the response time of the provider exceeds the preset threshold, the degradation policy is 

triggered, as shown in the following figure.

Figure 1-3: Degradation

1.5.3.5.1 Throttling management
One application provides multiple services. EDAS allows you to configure throttling rules

for the services, ensuring service stability and rejecting traffic that exceeds the service

capabilities. EDAS allows you to configure throttling rules based on the QPS and threads to

ensure the optimal operation stability of application systems during traffic peaks.

Context

• HSF rate limiting: When the traffic during a traffic spike exceeds the upper threshold

defined by the throttling rules, the BlockException error occurs for some consumers.

Based on the set threshold, the same number of services as the set threshold are

successfully called within 1s.

• HTTP rate limiting: When a traffic spike occurs, some consumers are redirected to an

error page. During actual access, the Taobao homepage appears. Based on the set

threshold, some requests can be successfully sent to the services.

Notice:

Throttling rules apply only to providers but cannot be configured for consumers. Before

configuration, make sure that the application serves as the provider.

Procedure

170 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Write the throttling rule code.

a) Log on to the EDAS console.

b) In the left-side navigation pane, choose Application Management. On the

Applications page, click a deployed provider application.

c) On the Application Details page, choose Service Degradation > Rate Limiting

Rulesfrom the left-side navigation pane.

d) On the Rate Limiting Rules page, click Application Configuration Guide in the upper-

right corner. Write throttling code based on the example.

2. Add the throttling rule code to the application and then compile the code and Publish an

application.

3. Return to the EDAS console. In the left-side navigation pane, choose Service

Degradation > Rate Limiting Rules. On the Rate Limiting Rules page, click Add Rate

Limiting Rules in the upper-right corner.

4. On the Add Rate Limiting Rules page, set the throttling rule parameters and then click

OK.

Table 1-15: Throttling rule parameters

Name Description

Rate Limiting
Type

Select HSF Rate Limiting or HTTP Rate Limiting based on the access 
type of the application.

Interface Select the interface to which the throttling rule applies from the 
listed interfaces as needed.

Method Select a specific method or all methods to which the throttling rule 
applies after all methods of the selected interface are automatically 
loaded.

Application Select the application to which the throttling rule applies from the 
application list as needed. The application list includes all applicatio
ns that may access the current application, excluding the current 
application itself.

Issue: 20200513 171



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Name Description

Rate Limiting
Granularity

Select QPS or Thread.

• QPS indicates limiting the number of requests per second.
• Thread indicates limiting the number of threads.

The QPS value is typically proportional to the number of threads.
However, the QPS of a thread is generally greater than 1 because a
thread keeps sending requests and the response time is dozens of
milliseconds.

Rate Limiting
Threshold

Throttling is triggered when the set threshold is exceeded.

What's next

On the Rate Limiting Rules page, locate the row that contains the target rule, and click Edit,

Stop, Enable, or Delete on the right.

1.5.3.5.2 Degradation management
Each application calls multiple external services. Service degradation can be configured

to pinpoint and block poor services. This feature ensures the stable operation of your

application and prevents the functionality of your application from being compromised by

dependency on poor services.

Context

EDAS allows you to configure degradation rules based on the response time, preventing 

your application from depending on poor services during traffic peaks. The consumer who

 triggers a degradation rule will not initiate an actual remote call within the specified time 

window and returns the DegradeException error. After the time window ends, the original 

remote service call is restored.

Note:

The degradation rules apply only to consumers and cannot be configured for providers.

Before configuration, make sure that the application serves as a consumer.

Procedure

172 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1. Write the degradation rule code.

a) Log on to the EDAS console.

b) In the left-side navigation pane, choose Application Management. On the

Applications page, select a deployed provider application.

c) On the Application Details page, choose Service Degradation > Degradation

Rulesfrom the left-side navigation pane. Click Application Configuration Guide in the

upper-right corner. Write degradation rule code based on the example.

2. Add the degradation rule code to the application and then compile the code and Publish

an application.

3. Return to the EDAS console. In the left-side navigation pane, choose Service

Degradation > Degradation Rules. On the Degradation Rules page, click Add

Degradation Rules in the upper-right corner.

4. On the Add Degradation Rules page, set degradation rule parameters and click OK.

Table 1-16: Degradation rule parameters

Name Description

Degradation Type Select HSF Degradation and HTTP Degradation as needed.

Interface All interfaces that the consumer is consuming are listed. Select 
the interface to be degraded as needed.

Method All methods are automatically loaded based on the selected 
interface. You can select whether to degrade all methods or a 
specific method as needed.

RT Threshold The threshold of the service response time that triggers 
degradation, in ms. If this threshold is exceeded, the selected 
interface or method is degraded.

Time Window The rule execution duration after degradation is triggered.

What's next

On the Degradation Rules page, locate the row that contains the target rule, and click Edit,

Stop, Enable, or Delete on the right.

Issue: 20200513 173



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.5.3.6 Container version management (only applicable to
HSF applications in ECS clusters)
EDAS allows you to view container versions and historical publishing details and perform

upgrade and downgrade.

Context

An EDAS container consists of Ali-Tomcat, Pandora, and custom Pandora plug-ins. In

addition to the support for existing Apache Tomcat core functions, EDAS provides a class

isolation mechanism, QoS, and Tomcat-Monitor. Highly custom plug-ins are added to EDAS

containers to implement complex and advanced functions, such as container monitoring,

service monitoring, and tracing. Applications deployed by using EDAS must run in EDAS

containers.

You must select a container version when creating an application in EDAS. EDAS containers

are maintained and published by the EDAS development team. Choose Application

Management > Container Version to view the container publishing history and the

description of each publishing operation. Generally, a container of a later version is

superior to a container of an earlier version in terms of stability and function variety.

EDAS container publishing does not affect deployed applications. Once a new container is 

available, you can immediately upgrade your container to the latest version.

Procedure

1. In the left-side navigation pane, choose Application Management to go to the

Applications page.

2. Click the name of the target application to go to the Application Details page.

3. In the left-side navigation pane, choose Container Version to go to the Container

Version page.

4. Locate the row that contains the target container version and click Upgrade to This

Version or Downgrade to This Version on the right to upgrade or downgrade the

container in one click.

1.5.4 Microservice management
Microservice management is an important function of EDAS. It allows you to view services

in applications and inter-service traces.

Microservice management provides the following main functions:

174 Issue: 20200513

http://tomcat.apache.org/


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Trace query

By setting filter criteria, you can accurately locate services with poor performance or 

exceptions.

• Trace details

Based on the trace query results, you can view details of slow or abnormal services and

 reorganize their dependencies. This information allows you to identify frequent failures

, performance bottlenecks, strong dependencies, and other problems. You can also 

evaluate service capacities based on trace call ratios and peak QPS.

• Service topology

The service topology intuitively presents the call between services and relevant 

performance data.

1.5.4.1 Trace details
On the Trace Details page, you can query the details about a trace based on the TraceId in

the selected region.

Prerequisites

The Trace Details page shows traces for which remote methods are called. It does not 

display local methods that are called.

Trace details are used to locate the elapsed time and exceptions in each step during a 

distributed call. Local calls are not the focus of traces. We recommend that you view service

 logs to check the elapsed time and exceptions for local calls. For example, the Trace Details

 page does not display the process where the local logic methodA() calls localMethodB() 

and localMethodC(). Therefore, sometimes the elapsed time on a parent node is greater 

than the total elapsed time on all subnodes.

You can search trace details on the Trace Details page. A more typical scenario is checking

 the slow or abnormal services in trace query results. The following uses an example to 

describe how to view details of a trace through trace query.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Microservice Management > Trace Details.

3. On the Trace Details page, view trace details.

Issue: 20200513 175



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. On the Trace Query Result page, locate the most time-consuming HSF method, database

request, or other remote calls.

• For database, Redis, MQ, or other simple calls, identify the cause of slow access to

these nodes and check whether slow SQL or network congestion occurs.

• For an HSF method, further analyze the reason why the method consumes so much

time.

5. Confirm the elapsed time on a local method. Place the pointer over the timeline of the

method. A pop-up window appears, showing the time it takes the consumer to send the

request, the time it takes the provider to process the request, and the time it takes the

consumer to receive the response.

• If the time it takes the provider to process the request is long, analyze the service.

• Otherwise, analyze the cause by using the method for analyzing call timeout.

6. Check whether the total elapsed time on subnodes is close to the elapsed time on this

method.

• If the time difference is small, most of the time is consumed by network calls. In this

case, reduce network calls as much as possible to shorten the elapsed time on each

method. The FOR statement cyclically calls the same method. The methods should be

called in one batch to retrieve the response whenever possible.

• If the time difference is large (for example, the elapsed time on the parent node is 607

ms while the total elapsed time on the subnodes does not reach 100 ms), the time is

consumed on the service logic of the provider, rather than the request of the remote

call.

7. Locate the time-consuming call. Inspect time-consuming calls by viewing the timelines

of nodes to first locate the call initiated before the excessive time consumption. This is

the local logic, for which further troubleshooting is required.

a. After locating the time-consuming logic, review the code or add a log method to the

code to locate the specific error.

If the code does not consume so much time, perform the following step:

b. Check whether GC occurred at that time. Therefore, the gc.log file is important.

176 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

8. Locate the timeout error. A timeout error occurred. Perform the following steps to

evaluate the time.

The time is divided into three parts:

• Consumer sends request (0 ms): indicates the elapsed time from when the consumer

 sends a request to its receipt by the provider, including the time for serialization, 

network transfer, and deserialization. If this process takes a long time, check whether

 consumer GC is triggered. A lot of time is consumed if the serialization or deserializ

ation object is large, the network is under a high transmission load, or provider GC 

occurs.

• Provider processes request (10,077 ms): indicates the elapsed time from the receipt 

of the request by the provider to its response to the consumer. During this period, the

 provider processes the request, and the time consumed by other operations are not 

included.

• Consumer receives the response (3,002 ms): indicates the elapsed time from when

 the provider sends the response to the receipt of the response by the consumer. 

With the 3-second timeout period, the provider directly returns a timeout error if the 

operation times out, but the provider continues processing the request. If this process

 consumes a lot of time, perform troubleshooting by using the same method as that 

for the consumer sending the request.

1.5.5 Batch operations
In the EDAS console, you can run machine commands to perform batch operations on the

ECS instances with EDAS Agent installed.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose Batch Operations > Machine Commands.

3. On the Batch Operations page, select a region and namespace.

4. In the Machine Commands section, click By Clusters, By Applications, or By Instances to

determine the operation level.

5.
Note:

Issue: 20200513 177



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

This topic describes operations at the cluster level. The procedures at the other two

levels are similar.

Click Add next to Select Cluster. In the Select Cluster dialog box, select a cluster (or

search for the target cluster by performing a keyword search for its name) in the field on

the left. Click > to add the cluster to the Selected field on the right. Then click OK.

6. Enter a command in the Command field.

7. (Optional) Select an operation range.

• Skip this step if all the selected items are ECS clusters, common applications, or

common single-server instances. The system uses the admin account to log on to

instances and run commands.

• If the selected items include Swarm or Kubernetes clusters, Docker or Kubernetes

applications, or Docker single-server instances, select Execute in Host, Execute

in Docker Container, or Execute in Host and Docker Container (or select the

three options). The system uses the admin account to log on to the host and run

commands, and uses the root account to log on to the Docker container and run

commands.

8. Click Run.

Result

178 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• View operation results and details

You are redirected to the View Details page after commands are executed. The View

Details page includes the Overview, Basic Information, and Details tabs.

- The Overview tab page shows the comprehensive analysis results of the command

 execution for batch operations, the number of successful and failed execution 

instances, and the time consumption.

- The Basic Information tab page shows the batch operator, operating time, and 

executed commands.

- The Details tab page shows the IP addresses and statuses (successful or failed) of the 

ECS and Docker instances for batch operations, and the command execution details.

The Execution Details section shows the detailed command execution processes on 

instances. If command execution fails, an error message that indicates the cause is 

returned.

In this case, select the instance and click Retry. You can rerun the command on the

selected instance.

• View operation records

On the Batch Operations page, view the batch operation record in the lower section.

The record contains the operator name, creation time, end time, commands, and status

(indicated by the execution results).

- If the current account is the primary account, you can view all the batch commands 

that are executed by the primary account and all its RAM users.

- If the current account is a RAM user, you can view only the batch commands that are 

executed by this RAM user.

The entries in the operation record are sorted in descending order by time. You can sort 

the entries by operator name, creation time, or end time.

Click View in the Details column to go to the Details page.

1.5.6 System management

1.5.6.1 Introduction to the EDAS account system
EDAS provides a comprehensive primary and RAM user management system. A primary

account can assign permissions and resources to multiple RAM users as needed in

Issue: 20200513 179



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

accordance with the minimum permission principle. This lowers the risks to enterprise

information security and reduces the work burden on the primary account.

EDAS account system

1.5.6.2 Manage RAM users
Resource Access Management (RAM) user management consists of RAM user overview and

the Apsara Stack tenant account's operations on the RAM users.

1.5.6.2.1 RAM user overview
When you use your primary account to operate EDAS, you need to complete different

types of jobs with different user identities, such as application administrator (with

the permissions to create, start, stop, query, and delete applications) and operation

administrator (with the permissions to list resources, check application monitoring data,

and manage alarm rules, throttling rules, and degradation rules). You can allocate different

roles and resources to the RAM users under the primary account to complete different types

of jobs with different user identities. This primary account and RAM user permission model

works in a similar way to the system and common user model in a Linux operating system,

where system users can grant or revoke permissions to or from common users.

Primary account and RAM user relationship

• In the EDAS system, you can bind your primary account to a RAM user to avoid sharing

 your account key with other users, and assign minimum permissions to the RAM user 

to complete different types of jobs with different user identities for effective enterprise 

management.

180 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• When a primary account is bound to a RAM user, their binding relationship is valid only 

within EDAS, and both are independent accounts in other environments.

• A primary account can be a primary account with RAM users or be a RAM user under 

another primary account.

1.5.6.2.2 Use a primary account for RAM user operations
You can use a primary account for RAM user operations, such as Manage Role, Authorize

Application, Authorize Resource Group, and Unbind. The procedures for these operations

are similar. The following describes how to manage roles in detail and how to perform the

other three operations briefly.

Context

A primary account can assign a role to a RAM user to grant the role-associated permissions

 to this sub-account.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose System Management > Sub-Account.

3. Locate the row that contains the target RAM user, and click Manage Roles in the Actions

column.

4. Select the target role and click OK.

After the preceding settings, the role name appears in the Role field for the RAM user on 

the Sub-Accounts page.

Note:

• Authorize an application

A primary account can assign an application to a RAM user to grant the application 

ownership to this RAM user.

Application authorization only grants the application ownership to the RAM user. 

To grant application operation permissions (to start or delete the application, for

 example) to the RAM user, assign a role to the RAM user. Therefore, application 

authorization is typically followed by role authorization.

Issue: 20200513 181



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Authorize a resource group

A primary account can assign a resource group to a RAM user, allowing the RAM user

to use resources in the resource group. For the definition of a resource group, see

Resource management.

• Unbind

Through the unbinding operation, you can release the binding relationship between

 a RAM user and the primary account. The relationships with the assigned role, 

application, and resource group are also released. If you have not bought the EDAS

 service for the RAM user, you cannot log on to the EDAS console by using this RAM 

user after unbinding.

1.5.6.3 Manage roles
A primary account can define different operation permissions for its RAM users by creating

different roles.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose System Management > Roles.

3. Click Create Role in the upper-right corner of the page.

4. Enter a role name, add the permissions in the left-side field to the right, and click OK.

After a role is added, you can perform actions on this role, such as View Permissions, 

Manage Permissions, and Delete.

1.5.6.4 View all permissions
You can list all permissions of the EDAS system in the console.

Procedure

1. Log on to the EDAS console.

2. In the left-side navigation pane, choose System Management > All Permissions.

3. Click a level to view the details of permissions at this level.

182 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6 FAQ
This topic describes the common problems and solutions during product development and

use.

1.6.1 Known issues and solutions
The features of this version have some known issues. If you encounter these issues, resolve

them by following the methods.

• Why can I not open the application monitoring data page?

Cause: This problem occurs if you do not purchase a certificate. In this case, the 

Application Real-time Monitoring Service (ARMS) page uses a self-signed or invalid 

certificate under HTTPS. Therefore, the access is directly blocked by the browser.

Solution: Open the blocked ARMS page on a separate tab, and then open it again in 

Enterprise Distributed Application Service (EDAS).

• Why is there no monitoring data after an application is upgraded?

Cause: This problem occurs when an application is upgraded to a later version. Since the

 EDAS monitoring solution has changed in version 3.9.0, you must manually restart the 

application to enable monitoring.

Solution: You need to restart the application to view the basic monitoring data and

service monitoring data again. If you cannot restart the application, remotely access the

Elastic Compute Service (ECS) instance and manually perform the following steps:

1. Reinstall EDAS Agent. For more information, see Use the command script to manually

 install EDAS Agent.

2. After switching to the admin user, run the edas refresh-apm command.

• What can I do if the HTTP Code 503 error is reported? That is, after I bound a Server

Load Balancer (SLB) instance with forwarding rules to an application group and then

unbound the SLB instance from the application group, the application cannot be

accessed through this SLB.

Cause: You entered the forwarding rules and bound the SLB instance to the application

 group, and then unbound the SLB instance in the EDAS console. In this case, EDAS did 

not delete the forwarding rules of the SLB instance. Since you unbound the SLB instance 

from the application group in the EDAS console, the servers in the virtual SLB group were

Issue: 20200513 183

https://help.aliyun.com/document_detail/54052.html#CLI
https://help.aliyun.com/document_detail/54052.html#CLI


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

 also unbound. As a result, the SLB traffic forwarding failed and the HTTP 503 error was 

reported.

Solution: Manually delete the forwarding rules in the SLB console.

• Why does an application bound to an SLB instance fail to be accessed through the IP

address of the SLB instance after traffic management is enabled?

Cause: In this scenario, traffic management was enabled and the application was bound

 to an SLB instance (over HTTP). At this time, there is a limitation. When the SLB instance

 used HTTP to detect whether the backend ECS instances were alive, the message HEAD

/HTTP/1.0 was sent, and Tengine responded with HTTP 400, which caused failure of SLB

 listener health check. As a result, the error code 502 (bad gateway) was reported when 

you accessed the application.

Solution: Disable traffic management on the Application Information page of the EDAS

 console for applications that do not require traffic management. This will uninstall 

Tengine, modify the application configurations, and restart the application. To retain this

 function, you can select Code 4xx returned by health check in Health Check of the SLB 

instance.

• What can I do if a task is stuck and no longer scheduled due to a change order lag?

When a change order lags, restart both EDAS Enterprise Asset Management (EAM) 

containers and try again.

• What can I do if the content of the mount script is cleared but the last content remains?

We recommend that you change the script to a null statement echo "" for bypass.

• If you cancel HTTP rules and click Save when setting throttling, the instance reports

the error "execution failed".

Generally, an error message is reported when you cancel HTTP rules for the first time. 

However, you can successfully cancel the HTTP rules by saving the configuration on the 

current page again.

• After you create an application as a RAM user, the error "no permission" is reported

when you delete the application. However, the application is deleted successfully.

This error message may confuse you, but you only need to cancel the error dialog box. 

The application can be deleted successfully, and this error will not appear later.

184 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Why can I use a RAM user to view ECS instances in the cluster list, but cannot view the

corresponding ECS instances on the ECS page or in the application scale-out list?

All ECS instances in the cluster are directly displayed in the cluster list. However, in the 

ECS instance list and during application scale-out, the system strictly checks whether an 

ECS instance is granted to a RAM user. If the ECS instance is not granted to the RAM user, 

the user cannot use the ECS instance.

1.6.2 Development FAQ
The development FAQ covers Ali-Tomcat, lightweight configuration center, HSF, HSF error

codes, and other development problems.

1.6.2.1 Ali-Tomcat FAQ
This topic describes the problems frequently encountered during the Ali-Tomcat

development process and their solutions.

• Problem locating procedure

Ali-Tomcat may fail to start due to various errors. Check the catalina.out and localhost.

log files to locate the error. If you use the Tomcat4E plug-in, you can view the detailed 

problem description in the Eclipse console.

• How do I distinguish an EDAS error from a code error when an exception occurs?

Check whether the last part of the error stack contains the code itself. Example: Caused 

by: com.yourcompany.yourpack.

Issue: 20200513 185



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Problem Error message Solution

Service
authentication
failure

java.lang.Exception:
Service authentication
failed

Note:
This problem
only occurs in the
EDAS production
environment.

• The AccessKeyId and AccessKeySecret used
for installing EDAS Agent are incorrect or
they became incorrect due to web-based
installation or other reasons.

1. Run cat /home/admin/.spas_key/default.
2. Log on to the EDAS console. In the left-

side navigation pane, choose Resource
Management > ECS. On the Instances
page, click Install Agent.

3. On the page that appears, check whether
 AccessKeyId and AccessKeySecret are set
 to the preceding values (case-sensitive). 
Web-based installation may cause case 
inconsistency.

• The ECS instance has a delay of more than
30s. Adjust the time of the ECS instance.

- Run the date command to check whether
the date is accurate.

Unknown host
exception

Caused by: java.
net.UnknownHos
tException: iZ25ax7xuf
5Z

iZ25ax7xuf5Z indicates the current hostname.
Check whether /etc/hosts contains the IP
address and name of the current host. If not,
configure them, for example, 192.168.1.10 
iZ25ax7xuf5Z.

Port in use Caused by: java.
net.BindException: 
Address already in use
: JVM_Bind

The port is in use. The troubleshooting method
 is the same as the method for troubleshooting
 port conflict in the lightweight configuration 
center.

com.ali.unit
.rule.Router 
initialization 
failure

SEVERE: Context 
initialization failed 
java.lang.NoClassDef
FoundError: Could not 
initialize class com.ali.
unit.rule.Router

Address server connection failure
jmenv.tbsite.net. Bind the domain. Add the
following content to the hosts file to bind the
domain name server address: 192.168.1.10 
jmenv.tbsite.net. Change 192.168.1.10 to the
IP address of your lightweight configuration
center. The path to the hosts file is as follows:

• Windows: C:\Windows\System32\drivers\etc
\hosts

• Linux: /etc/hosts

186 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Problem Error message Solution

QoS port
binding
exception,
resulting in
a Pandora
startup failure

Cannot start pandora
 qos due to qos port 
bind exception

The QoS port is in use. The troubleshooting
 method is the same as the method for 
troubleshooting port conflict in the lightweight 
configuration center.

Insufficient 
JVM memory

java.lang.OutOfMemor
yError

Set the memory size. For more information
about the solution, search JVM memory settings
on the Internet.

A null pointer
 exception 
during WAR
 package 
deployment

deployWAR NullPointE
xception

Check whether the WAR package is normal. 
Run jar xvf xxx.war to check whether the WAR 
package can be decompressed properly.

com.taobao
.diamond.
client.impl. 
DiamondEnv
Repo initializa
tion failure

Could not initialize
 class com.taobao.
diamond.client.impl.
DiamondEnvRepo

If DiamondServer data on the address server
is empty, check whether the address server
is correctly configured and is running stably.
Access http://jmenv.tbsite.net:8080/diamond-
server/diamond and check whether a response
is properly returned.

Issue: 20200513 187

http://jmenv.tbsite.net:8080/diamond-server/diamond
http://jmenv.tbsite.net:8080/diamond-server/diamond


User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6.2.2 Lightweight configuration center FAQ
This topic describes the common problems related to the lightweight configuration center

and their solutions.

Problem Error message Solution

Java version not 
supported, must be 1.6
 or 1.6+

Check whether Java is properly installed. If Java 
is not installed, install Java 1.6 or a later version.

Unable to start 
embedded Tomcat 
servlet container

Tomcat connector in 
failed state

Check whether port 8080 is in use. If the
port is used by another application, stop the
application and run the startup script. Perform
the following operations:

Windows:

1. Open the CMD window and runnetstat -aon
|findstr “8080”. Record the last column
of numbers in the queried data, that is, the
process ID (PID), such as 2720.

2. Run tasklist|findstr “2720”. The application
that corresponds to the current PID, such as
javaw.exe, appears.

3. Run taskkill /PID 2720 /T /F.
4. Start the lightweight configuration center 

again.

Linux:

1. Run netstat -antp|grep 8080. The PID of the
process that uses port 8080 appears, for
example "2720".

2. Run kill -9 2720.
3. Start the lightweight configuration center 

again.

Startup fails 
when startup
.bat and 
startup.sh are 
executed.

Caused by: java.
net.UnknownHos
tException: iZ25ax7xuf
5Z

iZ25ax7xuf5Z indicates the current hostname.
Check whether the IP address and name of the
current host are configured in /etc/hosts. If
not, configure them, for example, 192.168.1.10 
iZ25ax7xuf5Z.

• How do I specify the startup IP address for instances with multiple NICs?

In the startup script startup.bat or startup.sh, add the startup parameter -Daddress.

server.ip={accessible IP address}.

188 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• How do I customize service publishing IP addresses?

In some cases, a service must be published on a vNIC or a non-physical IP address (

for example, the EIP of an ECS instance) associated with the local host. If the virtual 

IP address is specified by using -Dhsf.server.ip, an error may occur when the service 

is started and the service cannot be published. This is because the virtual IP address 

cannot be found on the NIC of the local host during publishing.

To solve this problem, EDAS provides the service IP address customization function for

 the provider that allows the provider to publish a service in the configuration center 

without specifying any IP address. After the service is successfully published, modify the 

IP address and then publish the service again. The consumer does not need to make any

 changes.

Perform the following operations:

1. After the service is published, find it in Configuration List and click Update on the

right of the service.

You can also find the published service on the Services tab page.

2. On the Edit Configuration page, modify the IP address in the Content field.

Notice:

Do not modify the content after the IP address unless necessary. Otherwise, a service

call error may occur.

3. Click OK to save the settings.

4. Restart the service. The service with the new IP address is registered again to enable 

the modification to take effect.

After modification, the consumer does not need to make any changes and can call the

service in the normal way. You can query logs in {user.home}\logs\configclient\config-

client.log to check the real IP address that is called by the consumer. Check the content

next to the keyword [Data-received] in the logs to view the complete information about

the called service.

Issue: 20200513 189



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6.2.3 HSF FAQ
• Locate and solve HSF problems

HSF problems are logged in /home/admin/logs/hsf/hsf.log. If any HSF problem occurs,

check this file to locate the error. HSF errors have corresponding error codes. You can use

these error codes to find the appropriate solution.

• Set the timeout period for an HSF service

Use the HSF tags methodSpecials and clientTimeout to configure the timeout period.

- methodSpecials: sets the timeout period (unit: ms) for a single method.

- clientTimeout: sets the general timeout period (unit: ms) for all methods in the

interface.

The timeout period settings are sorted in descending order of priority as follows:

Consumer methodSpecials > Consumer clientTimeout > Provider methodSpecials > 

Provider clientTimeout

An example of the Consumer tag settings is as follows:

<hsf:consumer id="service" interface="com.taobao.edas.service.SimpleService"
version="1.1.0" group="test1" clientTimeout="3000"
target="10.1.6.57:12200? _TIMEOUT=1000" maxWaitTimeForCsAddress="5000">
<hsf:methodSpecials>
    <hsf:methodSpecial name="sum" timeout="2000" ></hsf:methodSpecial>
</hsf:methodSpecials>
</hsf:consumer>

• HSF invalid call is removed

Error message:

invalid call is removed because of connection closed

Causes:

- Transient network disconnection: After the provider and consumer establish a 

connection, the consumer initiates a call request. An error is returned if the provider

 is still processing this request within the timeout period of the consumer and the 

consumer is disconnected due to network and other problems.

- Provider restart: After the consumer initiates a request, it waits for a response from 

the provider. If the consumer is restarted at this time, the socket is disconnected and 

190 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

the consumer receives an operating system connection closed callback. In this case, 

an error is returned.

Solution

If the service is idempotent, retry the service. Check the HSF provider network. This 

problem is often caused by network disconnection (transient disconnection).

• Binding an IP address and port fails upon HSF startup

Problem: An error is returned when HSF is started. The error message is as follows:

Java.net.BindException: Can’t assign requested address

Cause: The current IP address and port cannot be obtained.

Solution: Set the following JVM parameter:

-Dhsf.server.ip=IP address of your local network adpater -Dhsf.server.port=12200

• Keep user logs from being overwritten

Problem: After EDAS is used, the log4j log cannot be generated.

Cause: The log4j log is overwritten and thus cannot be generated.

Solution: Set the JVM parameter Dlog4j.defaultInitOverride to false to generate user logs.

• HSF Others

Error message: The following error is reported during startup:

java.lang.IllegalArgumentException: HSFApiConsumerBean.ServiceMetadata.ifClazz is 

null.

Solution: The class for the interface cannot be loaded. Check that the interface class is

loaded to class path.

Error message: failure to connect 10.10.1.1

Solution:

Check whether the HSF services are in the same VPC and the same region. If not, they 

cannot be connected.

Check whether the HSF services are in the same security group. If not, enable port 12200.

Run telnet 10.10.1.1 12200 to check whether the port can be connected. If the port

cannot be connected, check the firewall settings of the ECS instance with the IP address 

10.10.1.1.

Issue: 20200513 191



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6.2.4 HSF error codes
Error code: HSF-0001

Error message:

HSFServiceAddressNotFoundException: This error message is returned when the address of

 the target service to be called is not found.

Description:

The target service to be called is xxxx, which is in the xxxx group.

Solution:

1. In the case of name mismatch, check whether the service name, version, and group (

case-sensitive, without leading or trailing spaces) are set consistently for the provider 

and consumer.

2. Check whether an error is reported when the Tomcat container is started. Go to the 

Tomcat installation directory and check whether /logs/catalina.out localhost.log. 2016-

07-01 (current date) contains any errors. If yes, fix the errors.

3. No service group is created. Log on to the EDAS console. In the left-side navigation

pane, choose Service Marketplace > Service Groups to check whether a service group is

created for the application. Example:

<hsf:provider
          id="sampleServiceProvider" interface="com.alibaba.edas.SampleService" ref="
target"
          version="for-test" group="your-namespace" ></hsf:provider>

The corresponding group named your-namespace must exist in the service group list.

192 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

4. In the case of failed authentication, go to the ECS instance that corresponds to the 

provider and check whether /home/admin/configclient/logs/config.client.log contains

the spas-authentication-failed error. If this error exists:

• No service group is created.

• The AccessKeyId and AccessKeySecret used for installing EDAS Agent are incorrect or

they became incorrect due to web-based installation or other reasons.

a. Run cat /home/admin/.spas_key/default.

b. Log on to the EDAS console. In the left-side navigation pane, choose Resource

Management > ECS and click Install Agent.

c. On the page that appears, check whether AccessKeyId and AccessKeySecret are set

 to the preceding values (case-sensitive). Web-based installation may cause case 

inconsistency.

d. The IP address of the provider cannot be pinged. If multiple NICs exist, publish the

IP address that is inaccessible from the consumer. Use -Dhsf.server.ip to specify

the IP address of the provider.

5. The service call is initiated too early. A call is initiated before ConfigServer pushes

the address, resulting in an error. Add maxWaitTimeForCsAddress to the consumer

configuration file. For more information, see Developer Guide.

6. In the case of a data push error, contact a developer for troubleshooting.

Error code: HSF-0002

Error message:

Consumer error: HSFTimeOutException

Solution:

• Check whether the network of the ECS instance is healthy. Check whether the IP address 

of the provider can be pinged.

Issue: 20200513 193



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• If the processing time of the provider is greater than 3s, find the service execution

timeout logs in hsf.log of the provider to locate the specific class and method:

- A serialization error has occurred for the provider. Check the codes. The stream type

, files, and oversized objects may cause a serialization error, and they cannot be 

transferred.

- The code performance is inadequate. Optimize the code.

- The logic of the provider is complex, and service processing requires more than 3s.

Modify the timeout period. (See the Developer Guide.)

• Timeout occurs occasionally, and GC occurs for both the provider and consumer. Check

the GC logs of the provider and consumer. GC that requires a long time may result

in timeout. For more information about troubleshooting methods, search Java GC 

optimization on the Internet.

• The consumer is heavily loaded and fails to send the request, resulting in timeout. Add 

more instances for the consumer.

Error code: HSF-0003

Error message:

Consumer error: java.io.FileNotFoundException: /home/admin/logs/hsf.log (The specified 

path is not found.)

Solution: The default HSF log path cannot be found or is under access control. Load -DHSF.

LOG.PATH=xxx during startup to modify the default path.

Error code: HSF-0005

Error message:

Startup error:

java.lang.IllegalArgumentException: This error message is returned when the object to 

be published as a service is not configured. The service name is com.taobao.hsf.jar.test.

HelloWorldService:1.0.zhouli.

Solution:

The target attribute is missing from the bean of the provider. Check the configuration file.

The implementation class of the service specified by target does not exist. Check the 

configuration file.

194 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Error code: HSF-0007

Error message:

java.lang.IllegalArgumentException: This error message is returned during startup when 

the serialization type is not supported.

Solution: The serializeType or preferSerializeType attribute is incorrectly configured for the

bean of the provider. Check the configuration file. We recommend that you use Hessian or

Hessian 2.0.

Error code: HSF-0008

Error message: java.lang.IllegalArgumentException, which is returned when the service

type specified by ProviderBean is not [com.taobao.hsf.jar.test.HelloWorldServiceImpl].

Solution: serviceInterface configured for the bean of the provider is not an interface.

serviceInterface must be set to an interface name. Check the configuration file.

Error code: HSF-0009

Error message: java.lang.IllegalArgumentException, which is returned when the real

service object [com.taobao.hsf.jar.test.HelloWorldServiceImpl@10f0a3e8] does not

implement the specified interface [com.taobao.hsf.jar.test.HelloWorldService].

Solution: No interface is implemented for the bean specified by target of the provider.

Check that the corresponding interface is implemented in the interface class.

Error code: HSF-0014

Error message: java.lang.IllegalArgumentException, which is returned

when the interface class specified by ProviderBean does not contain

[com.taobao.hsf.jar.test.HelloWorldService1].

Solution: The serviceInterface attribute of the provider is incorrectly configured, and the

specified interface does not exist.

Error code: HSF-0016

Error message:

Startup error: Failed to start the HSF provider.

Solution:

• Check whether port 12200 is already occupied. A server binding failure may cause a 

startup failure.

Issue: 20200513 195



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• If multiple NICs and an instance with a public network IP address exist, specify the local

IP address by using -Dhsf.server.ip.

Error code: HSF-0017

Error message:

Startup error: java.lang.RuntimeException: [ThreadPool Manager] Thread pool allocated

 failed for service [com.taobao.hsf.jar.test.HelloWorldService:1.0.zhouli]: balance [600] 

require [800]

Solution: The allocated thread pool is insufficient. By default, the maximum thread pool

size of HSF is 600. You can set the JVM parameter -Dhsf.server.max.poolsize=xxx to modify

the default global maximum thread pool size.

Error code: HSF-0020

Error message:

WARN taobao.hsf - HSF service: com.taobao.hsf.jar.test.HelloWorldService:1.0.zhouli, 

which is returned when initialization is repeated.

Solution: In one HSF process, a service is uniquely identified by the service name and

version. Services with the same name and version but of different groups cannot be

published or subscribed to in a single process. Check the configuration file. For example,

the service com.taobao.hsf.jar.test.HelloWorldService cannot be published or subscribed to

in a single process if the following two configurations exist in the configuration file:

com.taobao.hsf.jar.test.HelloWorldService 1.0 groupA

com.taobao.hsf.jar.test.HelloWorldService 1.0 groupB

Error code: HSF-0021

Error message:

Startup error:

java.lang.IllegalArgumentException, which is returned when the interface class specified by

 ProviderBean does not contain [com.taobao.hsf.jar.test.HelloWorldService1].

java.lang.IllegalArgumentException: This error message is returned when the interface 

class specified by ConsumerBean does not contain [com.taobao.hsf.jar.test.HelloWorld

Service1].

196 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Solution: The serviceInterface attribute of HSFSpringProviderBean is incorrectly configured,

the specified interface does not exist (HSF-0014), or the interface specified by the

interfaceName field in HSFSpringConsumerBean does not exist (HSF-0021).

Error code: HSF-0027

Error message: [HSF-Provider] HSF thread pool is full

Solution:

The processing speed of a service on the HSF provider is too slow, and requests from the

client cannot be processed in time. As a result, the thread pool of the HSF provider for

service execution reaches the maximum value. By default, HSF dumps the /home/admin

/logs/hsf/HSF_JStack.log file (default path). View the HSFBizProcessor-xxx thread stack

information about the file and analyze the performance bottleneck.

The maximum number of threads of HSF is 600 by default. To increase the number, change

the value of the -Dhsf.server.max.poolsize=xxx JVM parameter.

Error code: HSF-0030

Error message: [HSF-Provider] cannot find the method to be called.

Solution:

• The method is not provided by the provider. Log on to the EDAS console. In the left-side

navigation pane, choose Application Management and click the name of the applicatio

n that corresponds to the service provider to go to the Application Details page. In the

left-side navigation pane, choose Services and check whether the corresponding service

is successfully published.

• An earlier version and a later version coexist. The wrong version of a service is called. 

View the details of the service by using the preceding method.

• The interfaces of the provider and the consumer are inconsistent. For example, the 

provider provides java.lang.Double, whereas the consumer uses double to call the 

provider.

• Inconsistent interface classes are loaded for the provider and consumer. Check whether

 the MD5 values in the interface-contained JAR packages of the provider and consumer 

are consistent.

Error code: HSF-0031

Error message: [HSF-Provider] takes xxx ms to execute the xxx method of the xxx HSF

service. The time approximates the timeout period.

Issue: 20200513 197



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

Solution: The provider prints this log when the timeout period minus the actual time 

elapsed is less than 100 ms. The timeout period is 3s by default.

• If the timeout period is short, for example, less than 100 ms, this log is printed in each 

call, and you can ignore it.

• If this log is still printed for a long timeout period, it indicates service execution is slow. 

Analyze the performance bottleneck in service execution.

Error code: HSF-0032

Error message: please check log on server side that unknown server error happens.

Solution: An uncaptured error occurs when the provider processes a request. Check the

hsf.log file of the provider.

Error code: HSF-0033

Error message: Serialization error during serialize response.

Solution:

An error occurs when the provider returns data during serialization. Check the hsf.log file of

 the provider.

If the log file contains "must implement java.io.Serializable", implement a serializable 

interface on the DO.

Error code: HSF-0038

Error message: Multiple NICs are configured for the HSF provider, and the HSF provider is

bound to an incorrect IP address.

Solution: Add -Dhsf.server.ip=xxx.xxx.xx.xx to the JVM startup parameters to specify the

desired IP address.

Error code: HSF-0035

Error message: RPCProtocolTemplateComponent invalid address.

Solution: A TCP connection cannot be established between the current instance and the

corresponding address. Check whether the corresponding remote address and port can be

connected.

198 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6.2.5 Other development problems
• Q: How do I develop an HSF application by using a framework other than Spring?

A: We recommend that you use Spring to develop HSF applications. If you use another

framework, you can develop applications by using LightAPI. For more information, see

the Developer Guide.

• Q: Can I access the services in a production environment directly from a development

environment?

A: No. The production environment is isolated for security.

• Q: Does EDAS provide APIs? What functions do they have?

A: EDAS provides APIs to implement resource query, application lifecycle management, 

and account management.

• Q: Does EDAS support other languages in addition to Java?

A: HSF is developed in Java by default. HSF clients are also available in C++ and PHP, 

allowing you to access the backend HSF services provided by Java.

1.6.3 Usage FAQ
Common problems during development are related to accounts, resources, application

lifecycle, and monitoring and alarms.

1.6.3.1 Account management
• Q: Can I create multiple RAM users?

A: Yes.

• Q: Who can grant application operation permissions for RAM users?

EDAS allows you to grant application operation permissions to RAM users only by using 

the primary account.

Issue: 20200513 199



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

1.6.3.2 Resource management
• Q: Why doesn't the a prompt appear after EDAS Agent installation and EDAS Agent

version is not displayed?

A: Perform the following steps to troubleshoot the problem:

1. Log on to the ECS instance and check /home/admin/edas-agent/logs/agent.log. If

UnAuthorizedException exists, check whether:

- The AccessKeyId and AccessKeySecret used for installing EDAS Agent are incorrect

or they became incorrect due to web-based installation or other reasons.

a. Run cat /home/admin/.spas_key/default.

b. Log on to the EDAS console. In the left-side navigation pane, choose Resource

Management > ECS. On the Instances page, click Install Agent.

c. On the page that appears, check whether AccessKeyId and AccessKeySecret are

 set to the preceding values (case-sensitive). Web-based installation may cause

 case inconsistency.

- The region script used for installation is incorrect.

2. Check /home/admin/edas-agent/logs/std.log. If "Java not found" or other error

messages exist, run java —version to check whether the Java version is 1.7. If the

version is Java 1.5, run rpm -e corresponding installed RPM name to remove it and

reinstall EDAS Agent.

• Q: Why is the status Unknown or Abnormal after EDAS Agent is installed?

A: Check the std.log and agent.log files in the /home/admin/edas-agent/logs directory

of the ECS instance.

- std.log is the log of EDAS Agent installation.

- agent.log is the runtime log of EDAS Agent.

The possible causes are as follows:

- If "Permission denied" or "Not such file" is found in those logs, the possible cause

is the lack of required file and directory permissions. In this case, check whether

the admin account has permissions for all files in the /home/admin directory, and

reinstall EDAS Agent.

- Check whether the ECS hostname is the same as that in the /etc/hosts file. If not,

modify the name and restart EDAS Agent.

/home/admin/edas-agent/bin/shutdown.sh

200 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

/home/admin/edas-agent/bin/startup.sh

• Q: Which version of Java is EDAS using? Can I choose another version?

A: EDAS provides Java 7 and Java 8. Java 7 is used by default. You can select a Java

version when installing EDAS Agent. Run the following command to select a Java

version:

install.sh -ak -sk [-java <7(default)|8>]

• Q: What can happen if the heartbeat process of EDAS Agent stops?

A: If no application is installed on that ECS instance, no services are affected. If an

application is installed on that ECS instance, the real-time status of the ECS instance in

the ECS instance list of the application (which appears in the lower part of the page after

you select the application on the Application Management page and go to the Basic 

Information page) changes to Agent Abnormal. Any commands for the ECS instance,

such as deploy, start, and stop, are ineffective.

Log on to the ECS instance and run sudo -u admin /home/admin/edas-agent/bin/

startup.sh to start EDAS Agent. Troubleshoot the EDAS Agent crash as follows:

Check whether error messages are logged in /home/admin/edas-agent/logs/agent.log

.

Check whether the system memory is sufficient. If the system memory is insufficient,

the OOM Killer may be triggered. For more information, search for Linux OOM Killer on

the Internet. If the OOM Killer is triggered, we recommend that you check the system

memory usage and adjust memory allocation.

• Q: What should I do if the Ali-Tomcat container suddenly exits?

A: Log on to the EDAS console to start the corresponding application. Troubleshoot the 

crash of Ali-Tomcat as follows:

- Check whether error messages are logged in /home/admin/tomcat (installation 

directory)/logs/catalina.out.

- Check whether the system memory is sufficient. If the system memory is insufficient, 

the OOM Killer may be triggered. For more information, search for Linux OOM Killer on

 the Internet. If the OOM Killer is triggered, we recommend that you check the system 

memory usage and adjust the memory allocation policy.

Issue: 20200513 201



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Q: Why doesn't EDAS Agent start after the system is restarted?

A: Currently, EDAS Agent of the CentOS 6.5 version supports automatic startup. Testing

is not performed in other systems for the moment. If EDAS Agent is not started, run the

following program:

sudo -u admin /home/admin/edas-agent/bin/startup.sh
/usr/alisys/dragoon/bin/DragoonAgent

1.6.3.3 Application lifecycle
• Q: Does EDAS Agent automatically restart after the target ECS instance is restarted?

A: Yes. EDAS Agent automatically restarts after you restart the target ECS instance, but 

your Tomcat does not.

• Q: Why cannot I start EDAS Agent?

A: Run the following command on the ECS instance where the EDAS console is deployed

to check whether the instance is reachable:

ping edas-internal.console.aliyun.com

Then, check whether the security token file is correctly set:

cat /home/admin/.spas_key/default

• Q: Can I deploy multiple applications on the same ECS instance in EDAS?

A: EDAS allows you to deploy only one application on a single ECS instance.

• Q: Can I set the URL of an application deployment package to any address?

A: Ensure that the application deployment package can be downloaded from this URL.

• Q: Why does an application operation (such as starting, stopping, or deploying an

application) fail?

A: Check whether EDAS Agent runs properly on the ECS instance with the failed 

operation. An application operation usually fails because EDAS Agent is not running 

properly.

202 Issue: 20200513



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Q: Why don't the ECS instances under my account appear in the instance selection

dialog box when I create an application?

A: Check whether EDAS Agent is correctly installed on your ECS instances. Install EDAS 

Agent based on the procedure described in Resource management > ECS instance list > 

Install EDAS Agent.

Notice:

Be sure to select the correct region when installing EDAS Agent.

• Q: Why is the ECS instance status in the EDAS console "Unknown"?

A: EDAS Agent reports heartbeat data periodically to the EDAS console. If EDAS Agent

 stops reporting heartbeat data, the ECS instance is set to the Unknown state after a 

certain time. This problem is typically caused by the stopping of EDAS Agent.

• Q: Why doesn't the service list appear while services can be called normally?

A: APIs have generics, but the generics do not have a specific type, which results in a 

failure to resolve the service list. In this case, modify the corresponding code.

• Q: What should I do when a service appears as Normal in the service list but I cannot call

it?

A:

1. Check whether the group that corresponds to the service provider has been created. If

 not, authentication may fail.

2. Check /home/admin/logs/hsf/hsf.log to determine the error code, and query HSF

FAQ based on the error code.

• Q: Can I restore an application after I delete it?

A: No. Application deletion is irrevocable. All application data is cleared after the 

application is deleted.

• Q: How do I perform batch or beta publishing?

A:

- If an application has multiple ECS instances, select batch publishing and set the 

number of batches to a value greater than 1 to publish the application in batches.

- If an application has multiple ECS instances, set some of these instances to beta 

instances. You can separately publish the application to the beta instances. Only beta 

instances are updated during publishing. Other instances are not updated.

Issue: 20200513 203



User Guide - Middleware and Enterprise Applications /  1
Enterprise Distributed Application Service (EDAS)

• Q: How do I share cluster sessions after deploying my application on multiple ECS

instances?

A: Currently, EDAS does not support distributed session management. You can use a 

distributed cache system (such as OCS and Redis) to manage distributed sessions.

• Q: How do I set the health check URL?

A: When an application is published, the provided WAR file is automatically deployed

in the Tomcat directory. Therefore, the WAR package name is added to the health check

URL by default, and files in the WAR package must return the 200-400 HTTP codes. For

example, assume a WAR package is named order.war and includes the file index.jsp.

The health check URL can be set to http://127.0.0.1:8080/order/index.jsp.

• Q: Can I use SLB for load balancing after deploying my application on multiple ECS

instances?

A:

1. HTTP-based web applications in EDAS use SLB for load balancing. You can configure 

SLB on the application configuration page of EDAS.

2. Load balancing does not need to be considered for applications that belong to RPC 

providers of EDAS. EDAS natively supports loading balancing for RPC providers.

204 Issue: 20200513


	Contents
	Legal disclaimer
	Document conventions
	1 Enterprise Distributed Application Service (EDAS)
	1.1 What is EDAS?
	1.2 Quick start
	1.2.1 Log on to the EDAS console
	1.2.2 Deploy Java applications in ECS clusters
	1.2.3 Deploy Spring Cloud applications to EDAS
	1.2.4 Deploy Dubbo applications to EDAS
	1.2.5 Deploy multi-language microservice-oriented applications

	1.3 Application development
	1.3.1 Use Spring Cloud to develop applications
	1.3.1.1 Spring Cloud overview
	1.3.1.2 Implement service registration and discovery
	1.3.1.3 Implement load balancing
	1.3.1.4 Implement configuration management
	1.3.1.5 Build gateways based on Spring Cloud Gateway
	1.3.1.6 Implement task scheduling

	1.3.2 Use Dubbo to develop applications
	1.3.2.1 Dubbo overview
	1.3.2.2 Use Spring Boot to develop Dubbo applications

	1.3.3 Develop applications in HSF
	1.3.3.1 HSF overview
	1.3.3.2 Configure the lightweight configuration center
	1.3.3.3 Use Ali-Tomcat to develop applications
	1.3.3.3.1 Ali-Tomcat overview
	1.3.3.3.2 Install Ali-Tomcat and Pandora
	1.3.3.3.3 Perform startup configuration for an IDE runtime environment
	1.3.3.3.3.1 Configure the Eclipse development environment
	1.3.3.3.3.2 Configure the IntelliJ IDEA development environment

	1.3.3.3.4 Develop HSF applications (EDAS-SDK)
	1.3.3.3.4.1 Download demo projects
	1.3.3.3.4.2 Define service interfaces
	1.3.3.3.4.3 Implement services as a provider
	1.3.3.3.4.3.1 Implement service interfaces by code
	1.3.3.3.4.3.2 Configure services
	1.3.3.3.4.3.3 Provider configuration properties
	1.3.3.3.4.3.4 Publish services in the development environment
	1.3.3.3.4.3.5 Other JVM startup parameters

	1.3.3.3.4.4 Subscribe to services as a consumer
	1.3.3.3.4.4.1 Configure consumers
	1.3.3.3.4.4.2 Use services as a consumer
	1.3.3.3.4.4.3 Consumer configuration properties
	1.3.3.3.4.4.4 Consume services in the development environment

	1.3.3.3.4.5 Use HSF features
	1.3.3.3.4.5.1 Prerequisites
	1.3.3.3.4.5.2 Implicit parameter passing (currently, only string parameter passing is supported)
	1.3.3.3.4.5.3 Asynchronous calls
	1.3.3.3.4.5.4 ​Generic​ ​calls​

	1.3.3.3.4.6 Query services
	1.3.3.3.4.6.1 Query HSF services in the development environment
	1.3.3.3.4.6.2 Query HSF services in the online environment


	1.3.3.3.5 Migrate Dubbo applications to HSF (not recommended)
	1.3.3.3.5.1 Precautions for developing Dubbo applications
	1.3.3.3.5.2 Modify Dubbo application configurations
	1.3.3.3.5.3 Convert the format of a package from JAR to WAR
	1.3.3.3.5.4 Run programs
	1.3.3.3.5.5 Compatibility between Dubbo and HSF


	1.3.3.4 Use Pandora Boot to develop applications
	1.3.3.4.1 Pandora Boot overview
	1.3.3.4.2 Configure the local repository path and lightweight configuration center of EDAS
	1.3.3.4.3 Develop HSF applications (Pandora Boot)
	1.3.3.4.3.1 Example of HSF application development
	1.3.3.4.3.1.1 Create a service provider
	1.3.3.4.3.1.2 Create a service consumer

	1.3.3.4.3.2 Advanced HSF features
	1.3.3.4.3.3 Local debugging
	1.3.3.4.3.4 Deploy applications to EDAS

	1.3.3.4.4 Develop RESTful applications (not recommended)
	1.3.3.4.4.1 Terms
	1.3.3.4.4.2 Service registration and discovery
	1.3.3.4.4.2.1 Preparation
	1.3.3.4.4.2.2 Implement service registration and discovery
	1.3.3.4.4.2.3 Local debugging
	1.3.3.4.4.2.4 Deploy applications to EDAS
	1.3.3.4.4.2.5 Migrate from Eureka
	1.3.3.4.4.2.6 FAQ

	1.3.3.4.4.3 Distributed tracing
	1.3.3.4.4.3.1 Access EagleEye
	1.3.3.4.4.3.2 Distributed tracing example
	1.3.3.4.4.3.3 FAQ


	1.3.3.4.5 Migrate Dubbo applications to HSF (not recommended)



	1.4 Deploy applications
	1.4.1 Deploy applications in the console
	1.4.1.1 Deploy web applications in ECS clusters
	1.4.1.2 Deploy applications in Container Service Kubernetes clusters by using images

	1.4.2 Use CLI to deploy applications
	1.4.2.1 Use toolkit-maven-plugin to automatically deploy applications
	1.4.2.2 Use CLI to deploy applications in EDAS
	1.4.2.3 Use Alibaba Cloud Toolkit for Eclipse to deploy applications
	1.4.2.4 Use Alibaba Cloud Toolkit for IntelliJ IDEA to deploy applications

	1.4.3 Deploy applications in hybrid clouds

	1.5 Console user guide
	1.5.1 Overview page
	1.5.2 Resource management
	1.5.2.1 Import ECS instances
	1.5.2.2 View a VPC
	1.5.2.3 Manage clusters
	1.5.2.3.1 Create an ECS cluster

	1.5.2.4 Manage resource groups

	1.5.3 Manage applications
	1.5.3.1 Namespace
	1.5.3.2 Lifecycle management for applications in ECS clusters
	1.5.3.2.1 Publish an application
	1.5.3.2.1.1 Create an empty application (applicable to ECS clusters)
	1.5.3.2.1.2 Deploy an application (applicable to ECS clusters)

	1.5.3.2.2 Manage applications
	1.5.3.2.2.1 Scaling (applicable to ECS clusters)
	1.5.3.2.2.2 Create an application branch version
	1.5.3.2.2.3 Upgrade the container version
	1.5.3.2.2.4 Roll back an application
	1.5.3.2.2.5 Delete an application

	1.5.3.2.3 Application settings
	1.5.3.2.3.1 Set JVM parameters
	1.5.3.2.3.2 Configure Tomcat
	1.5.3.2.3.3 Bind an SLB instance to EDAS
	1.5.3.2.3.4 Set JVM -D startup parameters


	1.5.3.3 Lifecycle management for Container Service Kubernetes applications
	1.5.3.3.1 Container Service Kubernetes clusters
	1.5.3.3.2 Prepare an application image (a Container Service Kubernetes cluster)
	1.5.3.3.3 Deploy an application (applicable to Container Service Kubernetes clusters)
	1.5.3.3.4 Scaling (applicable to Container Service Kubernetes clusters)

	1.5.3.4 Log management
	1.5.3.5 Throttling and degradation (only applicable to HSF applications in ECS clusters)
	1.5.3.5.1 Throttling management
	1.5.3.5.2 Degradation management

	1.5.3.6 Container version management (only applicable to HSF applications in ECS clusters)

	1.5.4 Microservice management
	1.5.4.1 Trace details

	1.5.5 Batch operations
	1.5.6 System management
	1.5.6.1 Introduction to the EDAS account system
	1.5.6.2 Manage RAM users
	1.5.6.2.1 RAM user overview
	1.5.6.2.2 Use a primary account for RAM user operations

	1.5.6.3 Manage roles
	1.5.6.4 View all permissions


	1.6 FAQ
	1.6.1 Known issues and solutions
	1.6.2 Development FAQ
	1.6.2.1 Ali-Tomcat FAQ
	1.6.2.2 Lightweight configuration center FAQ
	1.6.2.3 HSF FAQ
	1.6.2.4 HSF error codes
	1.6.2.5 Other development problems

	1.6.3 Usage FAQ
	1.6.3.1 Account management
	1.6.3.2 Resource management
	1.6.3.3 Application lifecycle




